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A many-boson model is formulated and expressions for its exact eigenstates and energies are obtained
for both an arbitrary finite and an infinite number of bosons. The Hamiltonian of the model contains
interactions between bosons whose momenta have equal magnitudes but opposite directions. The matrix
elements of this interaction are taken to be a constant over a range of momenta surrounding k = 0. The
ground state of the 2N-particle system is shown to be a product of N pair-creation operators acting on the
vacuum state. Each of these pair-creation operators depends upon one of N parameters which are called
pair energies. The N pair energies are shown to satisfy a coupled system of nonlinear algebraic equations.
The energy of the state is the sum of the pair energies and the occupation probabilities of the single-
particle levels are given as simple functions of the pair energies. Similar results are derived for the excited
states of the system and for the states of an odd number of particles. These results are valid for both
a repulsive and an attractive interaction, since they only depend upon the form of the interaction. The
equations are solved algebraically for two model systems. The first of these is one whose single-particle
kinetic energy takes on only one value. The equations for this system are solved for an arbitrary inter-
action strength and it is shown that the pair energies are proportional to the zeros of certain Laguerre
polynomials. The second system is one in which the single-particle kinetic energy can take on two values.
The equations for this system are solved in the strong repulsive-interaction limit and it is shown that the
pair energies are proportional to the zeros of certain Jacobi polynomials. The excitation energies of this
second system are shown to be proportional to 1/r and the occupations of the two single-particle levels
in the ground state are shown to be proportional to #, where n is the total number of particles. For a
repulsive interaction and an arbitrary single-particle spectrum, the algebraic equations for the pair
energies are converted into an approximate integral equation for the density of roots which is accurate to
order 1/n. This integral equation is solved for a strong interaction which, in the context of this model,
means an interaction whose strength is greater than a constant times 1/¥# in the limit of a large volume.
From this solution, the following results are obtained: (1) the lowest two single-particle levels have
occupations of order n; (2) the excitation spectrum is that of a set of noninteracting quasiparticles;
and (3) the quasiparticle spectrum has two zeros corresponding to the lowest two single-particle levels.
Apart from the presence of two zeros, the quasiparticle spectrum does not differ significantly from that of
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the noninteracting particles.

1. INTRODUCTION

The Hamiltonian of an interacting many-boson
system may be written as!

H =Y gafa, + 1 > (Q)ai by oy, (1.1)
K 2V kk'q
where € = k*/2m is the energy of a boson with
momentum K in units such that 4 = 1, Vis the volume
of the system, v(q) is the Fourier transform of the
two-body interaction, and ¢f and g, are boson
creation and annihilation operators which satisfy
the usual Bose commutation rules

[ax, ap] = Oxi -

(1.2)

One widely used approach to the eigenstates of (1.1)
is to replace it by a model Hamiltonian which may be
easily diagonalized and which, in some sense, is a

* This research was supported in part by the National Science
Foundation.

1 E. H. Lieb, Lectures in Theoretical Physics (The University of
Colorado Press, Boulder, Colo., 1965), Vol. VIIc, p. 175.

good approximation to H. Two examples of this
approach are the Bogoliubov approximation? and
the pair Hamiltonian.!:3

In the Bogoliubov approximation, it is assumed
that the occupation of the k = 0 level will be a finite
fraction of the total number of particles in the thermo-
dynamic limit when the volume of the system and the
total number of particles go to infinity in such a way
that their ratio, the density, is kept constant. The
interaction in (1.1) is then truncated by ignoring all
terms which have fewer than two operators referring
to this k = 0 state. The terms of the interaction that
are retained in this approximation are those that
involve the operators ajajaya,, ajajaa,, aiaja,a,,
afataua,, and afaja_ya,, for k # 0. In order to

2 N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947); N. N.
Bogoliubov and D. N. Zubarev, Sov. Phys.—JETP 1, 83 (1955);
N. M. Hugenholtz, Rept. Progr. Phys. 28, 201 (1965).

3 D. N. Zubarev and Iu. A. Tserkovnikov, Sov. Phys.-—Dokl. 3,
603 (1958); M. Girardeau and R. Arnowitt, Phys. Rev. 113, 755
(1959); M. Girardeau, Phys. Rev. 115, 1090 (1959); M. Girardeau,
Phys. Rev. 127, 1809 (1962); M. Girardeau, J. Math. Phys. 3, 131
(1962); G. Wentzel, Phys. Rev. 120, 1572 (1960); M. Luban, Phys.
Rev. 120, 965 (1962).
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diagonalize the resulting Hamiltonian, the further
approximation of replacing the operators «, and a,
(n,,)é, where n, is the occupation of the k = O state, is
made. Thus, the commutator of ¢, and a,, which is
one, is neglected relative to the expectation value of
a)a, which, by assumption, is of order n, the total
number of particles. The Hamiltonian resulting from
these approximations is a bilinear form in the operators
referring to the states with k % 0 and may be di-
agonalized by a canonical transformation of these
operators. The resulting excitation spectrum is given
by the energies of a system of noninteracting quasi-
particles whose energies are given by

e = [exle, + 2Pl'(k))];,

where the density of the system is p = n/V.

The pair Hamiltonian is also the result of a trunca-
tion of the interaction in (1.1). In this approximation,
only those terms in the interaction which involve the
operators alalayay,, afalaa,, and ajata_.a, are
kept. This includes the terms of the Bogoliubov
approximation plus many more. The resulting
Hamiltonian has been the subject of extensive studies,®
where it is shown that, in the thermodynamic limit,
its excitation spectrum is that of a system of non-
interacting quasiparticles. However, the expression
for the energies of the quasiparticles is much more
complicated than (1.3).

It is important to note that, in both these approxi-
mations, the terms of the interaction that are retained
are those that are quadratic in the number operators
aia, or are products of the pair operators afat, and
a_yay. In this paper, we consider a special Hamil-
tonian whose interaction contains terms of this second
kind and show how it can be exactly diagonalized.

The Hamiltonian that we treat may be written as

(1.3)

H=73 eaja, + gz 0(k)O(k Yat ata_pay, (1.4)
k k,k’

where
0 <k <K,

k> K.

0(k)y =1, for

=0, for

(1.5)

This Hamiltonian is the boson analog of the reduced
Hamiltonian of the Bardeen—-Cooper—Schrieffer (BCS)
theory of superconductivity.* As such, it has been
studied by Valatin and Butler,® who transcribed the
quasiparticle formulation of the BCS theory® into a
form appropriate for bosons. In (1.4) and (1.5), g is an
interaction strength and 1/K is the “range” of the

1J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

5 J. G. Valatin and D. Butler, Nuovo Cimento 10, 37 (1958).

6 J. G. Valatin, Nuovo Cimento 7, 843 (1958); N. N. Bogoliubov,
Sov. Phys.—JETP 7, 41 (1958).
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separable nonlocal interaction. If we transform this
interaction into configuration space, we have

(1.6)

(ryry| v lejey) = gh(|r, — e,)0(Ir; — r3)),
where

() = ';z (k)

K3 |:sin Kr — Krcos Kr:l
1w (2 (Kry? '
(1.7)

The interaction strength of g may be taken to be
proportional to 1/¥, as would be the case if (1.4) were
the result of a truncation of (1.1). However, if this is
done, then the interaction (1.6) is proportional to
1/V rather than being independent of the volume.
Therefore, in Secs. 2-4, we use g as a parameter which
may or may not be taken proportional to 1/V. In Sec.
5, where we consider the infinite volume limit of a
realistic system, we explicitly put g equal to G/V.

While it may well be argued that the form of the
interaction in (1.4) is nonphysical, our point of view
is that the exact solvability of the model more than
makes up for this deficiency. Exactly solvable models
are very useful testing grounds for the approximations
of many-body theory and they provide a lot of insight
into the properties of real many-body systems. Thus,
the Hamiltonian (1.4) joins the small number of
model Hamiltonians such as the model studied by
Bassichis and Foldy” and the BCS' reduced Hamil-
tonian® that may be analyzed exactly and in complete
detail.

In Sec. 2, equations for all the eigenstates of (1.4)

‘are derived. These equations are a set of coupled,

nonlinear algebraic equations for a set of parameters
which we call pair energies, which characterize a
given eigenstate. The energy of a state is given in terms
of the sum of these pair energies. In Sec. 3, an ex-
pression for the occupation probabilities of the single-
particle levels in one of these states is derived. The
evaluation of this expression is shown to require the
solution of a system of algebraic equations whose
coefficients depend upon the pair energies. Two
model systems, for which the equations for the pair
energies can be solved exactly, are treated in Sec. 4.
The first of these is the system in which the single-
particle kinetic energy takes on only one value and
in the second it takes on two values. The equations
for the first system are solved for an arbitrary inter-
action strength and those of the second are solved in
the strong repulsive interaction limit. In Sec. 5, we
solve our equations for a system with an arbitrary
single-particle spectrum and a repulsive interaction

” W. H. Bassichis and L. L. Foldy, Phys. Rev. 133, A935 (1964).

8 R. W. Richardson, Phys. Letters 3, 277 (1963); R. W. Richard-
son and N. Sherman, Nucl. Phys. 52, 221 (1964).
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in the limit of an infinite number of particles. This is
done by first converting the algebraic equations for the
pair energies into an integral equation for the density
of pair energies. This equation is then solved and
expressions are given for the energies and occupation
probabilities of the states. The excitation energies of
the system are shown to be sums of independent
quasiparticle energies. However, in contrast to (1.3),
the quasiparticle energy is zero for the two lowest
values of k instead of just the k = 0 level. Correspond-
ing to these two zeros in the quasiparticle energy,
the occupations of the lowest two single-particle levels
are finite fractions of the total number of particles.
Thus, the model exhibits a very special kind of
generalized Bose condensation of the form discussed
by Girardeau.®

2. EIGENSTATES OF THE MODEL

We consider the eigenstates of n bosons contained
in a volume V' with periodic boundary conditions
imposed. The single-particle states of the system are
labeled by their momentum k. In terms of these
states, the model Hamiltonian may be written as

H =3 qaja, + £ > afahaea.,  (2.1)
K 2 ik’
where ¢, = k2/2m (we choose units such that t = 1),
g is the interaction strength, and 4 and a, are boson
creation and annihilation operators satisfying the
usual Bose commutation rules (1.2). In (2.1), all
sums over k are restricted to the range 0 < k < K,
where k = |k|, and, in what follows, we will assume
that all vectors K lie in this range. The neglected part
of the Hamiltonian,
z ai(%“ak’

k,i> K

only plays a role if we consider excitations with
momenta greater than K and, since these states can be
easily expressed in terms of the states of (2.1), we
shall not discuss them in this paper.

In this section we will develop a set of equations for
the eigenvalues and eigenstates of (2.1). In order to
have a specific system in mind, we have written (2.1) in
terms of plane-wave single-particle states. However,
it should be pointed out that this is in no way essential
for the analysis that follows. All we need is some
set of single-particle states k for which —k is uniquely
related to k, e.g., by time reversal, and which satisfies
ex = €_i.. Thus, the analysis is equally valid for one-,
two-, or three-dimensional systems with any single-
particle spectrum that is invariant under time reversal.

? M. Girardcau, Phys. Fluids §, 1468 (1962): J. Math. Phys. 6,
1083 (1965).
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The analysis is also independent of the value of g and
is therefore valid for both repulsive and attractive
interactions. Before turning to this analysis, we will
consider two points. First, we will rewrite (2.1) so as
to emphasize the arbitrary nature of the single-
particle states k and then we will consider in detail the
problem of labeling the eigenstates of (2.1).

It will turn out that the discrete nature of the single-
particle spectrum will play an important role in the
equations that we are about to derive and this remains
true even in the infinite volume limit. We therefore
order the possible values that €, can take on with the
integers as €, €, ', ¢, with ¢, < ¢,,. We also
define the degeneracy of the /th level, Q,, as being the
number of different values of k for which ¢, = ¢,. It
is then useful to perform the sums in (2.1) over the
states in each degenerate level and write it as

H =32, + %Z“,A;‘Al., (2.2)
where
A= Zyalay, (2.3)
(ep=¢€;)
and
A‘l'- = }:kaiatk, AL = Eka.kak . (2.4)

(€x=¢€7) (eg=¢€;)

The sums in (2.3) and (2.4) may contain as few as one
or two terms if the single-particle state only has time-
reversal degeneracy, or they may contain many terms
if there are other degeneracies. In general, the number
of terms is €,. In the form (2.2), the single-particle
spectrum ¢; and the associated degeneracies , are a
set of arbitrary numbers and the Hamiltonian is
manifestly independent of the particular single-
particle states. For future reference, it will be useful
to complete this transcription of the Hamiltonian by
listing the commutation rules of the operators defined
in (2.3) and (2.4). These follow from the Bose com-
mutation rules (1.2) of the operators 4 and a,, and
are given by

(A, A = 20,47 (2.5)
and

[4,, AIF'] = 20,(2; + 24). (2.6)

In labeling the n-particle states of this Hamiltonian,
it is useful to introduce the concept of an unpaired
particle. From (1.6) and (1.7), it is clear that the
interaction is only effective between two particles with
zero total linear momentum and which are coupled to
zero angular momentum. Therefore, a particle that is
not coupled to zero linear momentum and zero angular
momentum with any other particle will not interact.
We will call such a particle an unpaired particle. To be
more explicit, let us first define a v-particle state with
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all the particles unpaired. This state is defined by the
equations
Aley) =),

A,y =0, foralll, 2.7)

where 7 is the total number of particles operator
(2.8)

These equations, of course, do not uniquely determine
the state |@,). However, since the unpaired particles in
this model do not interact, we may further require that
the state [¢,) be an eigenstate of the operators #,, i.e.,

Ayley) = v @), (2.9)

Here v, is the number of unpaired particles occupying
level /. Equations (2.7) and (2.9) still do not determine
|@,) uniquely. However, as we shall see, the energies of
the eigenstates of (2.2) will only depend upon the
numbers ¥, and are therefore degenerate with respect
to the quantum numbers of |¢,) that we have not
defined. The possible values of the quantum numbers
v, are

A = Z,#,;.

y,=0,1, for Q, =1,
=0,1,--" for Q;>1, (2.10)
where 7 is the total number of particles in the state.
Here, the first case is appropriate for ak = Olevel and

the second case for a k 7 0 level of a system. Note
that with (2.7) and (2.9) we have

v =Xy,

,n9

and
Hlp,) = Epe) o)) (2.11)

Such states may be constructed by putting particles in
states k but not in states —k, e.g., for » = 2,

lgs) = (ai)* 0),
where |0) is the vacuum state, or they may be made up
of pairs of particles with nonzero total angular
momentum, e.g.,
lpy = Zya(k)aial,|0),
(ex=¢€1)
where X, (k) = 0. An arbitrary state that has n =
2N + » particles and v unpaired particles may now be
constructed as a linear combination of the states

Af Al Lo (2.12)

We will refer to such states as having N pairs of par-
ticles and » unpaired particles. The quantum numbers
v, are good quantum numbers of such states and are
therefore good quantum numbers of the eigenstates of
H.
In order to distinguish between those states of 7
bosons that have the same quantum numbers v,, we
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must introduce labels that distinguish the various
states formed from those of (2.12). We do this by
introducing the set of labels /5« -/, defined as
follows: if |y) is the eigenstate of H that is being
labeled, then the set /4« - * I, is defined by
!lll—r'l(} lw} = AIO o A-I*l-\'o lq’\')’
ie., 4o+ Iy, are the levels that are occupied by
paired bosons in the limit of zero interaction strength.
Note that many of the indices /,, may be equal. Thus,
the ground state of an even number of particles is
labeled by the quantum numbers

(2.13)

lo=0, =0, a=1---n2,
and that of an odd number of particles by
lo=0, =1, » =0, [>0,

=1+ (n— 12

With these notational preliminaries over, we will
now show that an n-boson eigenstate of H, with N
pairs of bosons and » unpaired bosons, can be written
as

l¥) = Bf - - By loy, (2.14)

where we have disregarded a normalization constant.
The pair-creation operators B} in (2.14) are given by

Bf =S u DA, a=1---N,  (2.15
1

and in proving (2.14) we will determine the form of the
amplitudes u, as well as the energy of the state. In
order to demonstrate that (2.14) is an eigenstate of H,
we calculate

Hly) = HBf - B 1p)
- (z v) lv) + [H, Bf -~ Bi] g, (2.16)
1

where we have used (2.11). We now do some com-
mutator algebra on the second term of (2.16) to write
it as

[H, By - - B{l19y)

- {g (H B;“) (H, BY]

y#a
+3 % ( I B+)[[H B;] B*]} lp, (2.17)
2 ap=1\y#a,p v » Pals Tp v/)s

where the prime on the sum on « and f indicates that
it is over those values of « and f satisfying a # f.
The commutators in (2.17) may be evaluated using
(2.5), (2.6), and (2.15) with the results
[H, Bf] = 3 2, (DA} + g 3 ATu,(1)(Qp + 2,
i w
(2.18)
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and
[[H, Bf], Bj] = 4g > Afu,(NugINAS. (2.19)
n’

When these results are substituted into (2.16), we
obtain a Schrodinger equation for the amplitude of
the state |p). However, before doing so, we will discuss
the form of the double commutator (2.19).

In order to proceed further, we assume that the
product u,u, in the double commutator (2.19) can be
written as

ua([)uﬂ(l) = Maﬂua(l) + Mﬂa”ﬂ(”)

for all / and all « 5 . This is to be regarded as a set
of equations that must be satisfied by the u, and it
introduces the as yet undetermined matrix M. This
assumption is made with the advantage of hindsight
and we will show that it can be exactly satisfied. The
skeptical reader may wish to treat (2.20) as an approx-
imation and place a remainder term on its right-hand
side. The matrix M would then be chosen so as to
minimize the magnitude of this remainder. He would
then proceed as we do and derive equations for the u,
that are identical to ours. However, these equations
would be valid in the approximation in which the
remainder term introduced into (2.20) is neglected.
The solutions to these equations will be the same as
ours given below and, as we will show, these solutions
satisfy (2.20) exactly. Therefore, the remainder term
is zero and the approximation is exact. We will
therefore proceed under the assumption that (2.20) is
exactly satisfied and we shall demonstrate that this is
so after we determine the form of the amplitudes u,.
Using (2.20), the double commutator (2.19) becomes

(2.20)

[H, B3], B}l = 4g (; A?) (M,,B} + M,,Bp). (221)
If we write the energy of the state |y) as
v
E = Z'Vlfl +2Ea,
I3 a=1

where the pair energies E, are yet to be determined,
then, substituting (2.18) and (2.21) into (2.17) and the
result into (2.16), we obtain

(I 57) 3 41 e = Eunt)

3@+ 2 () + 483 My ).
7
(2.23)

Since the operators #,. in this expression operate on the
state [@,), they may be replaced by the quantum
numbers »;. of that state using (2.9). The expression
(2.23) will now vanish if the u, satisfy the system of

(2.22)

(H—E)ly)=3

v
a=1
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equations
(2, = EQu(D) + g 2 (Q + 2w )u ()
£
+ 432'Mpa= 0, a=1---N. (2.24)
B

Equations (2.20) and (2.24) provide a complete set of
equations for the amplitudes u,(/), the matrix M, and
the pair energies E, .

The solution of Egs. (2.20) and (2.24) starts with
the observation that only the first term of (2.24)
depends upon /. We can therefore immediately solve
for the / dependence of the amplitudes », which is
given by

_gCa
2¢,— E,’

) = (2.25)

where C, is given by
C, =2 (Q+ (D + 43 My,. (2.26)
l B

Furthermore, using (2.25) in the product u,u, , we have

°C,C
u(Dug(l) = LA
(2e, — E )2, — E,)
- g2cacf’[ ! ] (2.27)
E,— E)l2¢, — E, 2¢,—E,

where we have assumed E, # Ej in order to perform
the partial-fraction expansion. The validity of this
assumption will be discussed in the following para-
graph, where we will show that it is always satisfied.
Comparing (2.20), (2.25), and (2.27), we have

—gca
Eﬂ - Ed

for the matrix M, and Eq. (2.20) is exactly satisfied.
Substituting (2.25) and (2.28) into (2.26), we then

have
Q, + 2y,
g‘:zz 2¢, — E,

M,, = (2.28)

G,

43

1 'Cz
f Eﬁ EG ’
m_l...

+

N,
which, for nonvanishing C,, yields the set of equations
Q, +2
g =
¢ 2¢, — E,

o=1-N, (2.29)
for the pair energies E,. Since the coefficients C, are
arbitrary and the over-all factor of Il ,{—gC,) can be

absorbed in the normalization coefficient of the state,
we may write the u, as

“a(l) =

1 +4g3 + 0,

5 E;g—E,

.
2¢, — E,
Therefore, Eqs. (2.14), (2.15), (2.30), (2.29), and (2.22)

(2.30)
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are the equations for the eigenstates of H. There are
two aspects of these equations that need further
discussion. The first is the validity of the assumption
E, # E; used in the derivation of (2.29) and the
second is the question of whether all the solutions of
(2.29) are in one-to-one correspondence with all the
states of H. We now turn to a discussion of these two
points.

The question of the validity of the assumption
E, # E, may be investigated using the same methods
that were used in discussing the same point in the
corresponding many-fermion problem. We will briefly
outline the application of these methods to this
many-boson problem. The question to be answered
is under what conditions is the assumption E, # E;
for all « # 8 incompatible with the E, being roots of
(2.29). In the corresponding many-fermion problem,
whose equations differ from (2.29) by presence of
some minus signs instead of plus signs, we found that
these two requirements on the E, are indeed incom-
patible for a finite set of isolated values of g. For the
boson problem, we will show that the signs in (2.29)
are such that the two requirements on the E, are
always compatible. Clearly, in the limit g — 0, the
conditions E, 3 E; are not satisfied for any state that
has more than one pair in a particular single-particle
level in this limit. In particular, for the ground state,
all the E, are 2¢, in the limit g — 0. However, one can
show that

lim 2 (E, — E,) # 0, (2.31)

920 &

and this is sufficient for the validity of (2.27). We
defer the proof of (2.31) until Sec. 4, where we treata
one-level kinetic-energy model as an example of our
equations. There we show that if the sum on / in
(2.29) is restricted to one term, then its roots are g
times the zeros of certain Laguerre polynomials.
Since the zeros are distinct, (2.31) is satisfied for this
system. However, in the limit g — 0, the single-
particle level spacing becomes very large compared
to the interaction strength and each degenerate set of
single-particle states can be treated as an isolated
one-level kinetic-energy system. The result (2.31) is
therefore proven for an arbitrary system. Furthermore,
from the known properties of the zeros of the Laguerre
polynomials, we know that the pair energies are all
real in this limit. We have thus shown that our
assumption is satisfied for an arbitrary state and
system in a neighborhood about g = 0.

In order to study the validity of the assumption for
g # 0, we first consider the conditions under which
all N pair energies may become equal. For conven-
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ience, we adjust the energy scale so that the value that
the pair energies have when they are equal is zero.
We therefore seek conditions that must be satisfied if
Egs. (2.29) are to have the solution £, =0, o« =
1---N, for g # 0. Since we have shown that Egs.
(2.30) have solutions that satisfy E, # E; for small
g, we can think of the violation of this condition
occurring at some value of g which we call g,. We
therefore have the situation that is described by

E, # Eg,
for g=g,

for |g] < gl

E =0, and a=1-'-N. (2.32)

We now show that this is impossible by considering
(2.29) in the limit g — g, with |g| < |g,l. If we multiply
Eqgs. (2.29) by E, and then sum over o, we have

N N .
ZEa-ZgN(N— D+ gZE‘M=

a=1 ra=1 2¢, — E,

0,

(2.33)

where ¢, is now the energy of the single-particle level
! after we have readjusted the zero of energy as
described above. We now take the limit of (2.33) as
g — g,. This limit is given by

gN(w + 2N — 2) = 0, (2.34)

where @ = 0 if €, 7 0 for all /and w = Q,; + 2, if
€, = 0 for some value /, of /. However, since » > 0,
(2.34) cannot be satisfied for g, # 0. Thus, we have
shown that Eqgs. (2.29) do not have a solution with all
the E, equal to each other.

The above argument may be easily generalized to
the cases in which fewer than N pair energies become
equal. Thus, we have shown that the assumption
E, # E; is implied by Eqgs. (2.29) and it is not an
additional set of conditions that the roots must satisfy.
Furthermore, since we have shown that the roots are
real and distinct for small g and that no two become
equal, we have shown that the pair energies are real
and distinct for all values of g 3 0. This is in contrast
to the corresponding many-fermion problem,!® in
which there are isolated values of g, where the condi-
tions E, #% E; are violated. The fact that the pair
energies are real for all values of g in the boson
problem makes the analysis of their properties much
simpler than the analysis of the pair energies that
describe the eigenstates of the fermion pairing
Hamiltonian.

In the light of the preceding discussion on the
conditions E, # Ej, it is now easy to set up a one-to-
one correspondence between the states of the inter-
acting system, i.e., the roots of (2.29), and the states

10 R, W. Richardson, J. Math. Phys. 6, 1034 (1965).
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of the noninteracting system and therefore show that
we have equations for all the states of the system.
We have indicated that the states of the paired
particles are labeled by the quantum numbers /;4- -
[yo, which indicate the levels that are occupied by
pairs in the limit g — 0. Transcribing this label into a
property of pair energies, we have

lim E, = 2¢,,,, «a=1-*N, (2.35)
g0
and from our discussion of the one-level kinetic energy
model we have indicated that such a limit exists for all
possible choices of I;4 * - - Iy, . We can therefore single
out the roots of Egs. (2.29) which correspond to a state
with any set of quantum numbers /4 <+ [y,. This
concludes the proof of completeness. However,
knowing that the pair energies E, are real and distinct
for all values of g, we can rewrite (2.35) in the more

practical form
2¢,, < E, < 2¢,441, for g>0 and a=1---N

(2.36)
and
26,1 < E, < 2¢,, for g<0 and a=1--'N
(2.37)

where in this last expression we have defined e_; =
— c0. Thus, for a given value of g, a state is labeled
by the way the roots E, are distributed between the
values of 2¢,. The equivalence of these last two
expressions with (2.35) follows from two properties of
the pair energies. First, from the one-level kinetic-
energy model mentioned above and treated in Sec. 4,
we have (9E,/dg),_, > 0. And second, since the pair
energies are real and distinct, the only time when
E, = 2¢,;, for some value of /, is when g = 0. There-
fore, for a repulsive (attractive) interaction, the pair
energies are increasing (decreasing) functions of |g|
at g = 0 and for larger values of |g| are bounded by
the values of 2¢; as given in (2.36) and (2.37).

3. OCCUPATION PROBABILITIES

The occupation probabilities for the single-particle
levels

ny = (p| A, lyp) 3.1

may be calculated using a general theorem of quantum
mechanics that is applicable to Hamiltonians that
depend linearly on a parameter. In this case, the
parameter is the single-particle energy €, and the
theorem states that

oE

n, = —

9,
This may be easily proven using the fact that the

(3.2)
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expectation value of H in one of its eigenstates |y) is
stationary with respect to variations of that state,
Using the expression (2.22) for the energy in (3.2), we
have

. 0E,
=10¢,

3.3)

for the occupation probab:hty.

Equations for the derivatives of the pair energies
that appear in (3.3) may be obtained by differentiating
(2.29) with respect to €, . This yields the set of equations

1 JE, 1 J0E
C,+4> —— 4y — ¢
[ Z (E, — Eﬂ)}ael ‘S;: (E, — Ep)* 0¢,
— g_(_&:]_,—_{—__Z_vg , “N, (3.4)
(zel - Ea)
where
C, = Z(Ql + 2w) (3.5)

(2, — E*’
Solving (3.4) for 0E,[0¢, and substituting the result
into (3.3), after rearranging the terms we get
i Q + p
n=y &2 iait N
P= T gl (2¢, — E,)?
where the D, satisfy the system of equations
1 1
C,+ —————JD -4y Dy =
[ BT AT
N. 37
We may readily verify that the total number of

particles in the state is # = » + 2N. For, summing
(3.6) on /, we have

n—an—v+22CD,,,

a=1

(3.6)

)

=1"-"

and summing (3.7) on «, we have
zCaDa = N,
a=}1

which proves our point. Equations (3.6) and (3.7) pro-
vide a starting point for the study of the dependence
of n, on the interaction strength g and the single-
particle spectrum e,.

4. TWO EXAMPLES

In order to exhibit the structure of our equations,
we will discuss two simple models in some detail. The
first model is a one-level kinetic-energy model in
which the index / takes on the single value / = 0 and
we adjust the energy scale so that ¢, = 0. This model
is used to prove (2.31) and thereby fill in the remaining
hole in the proofs of Sec. 2. Physically, this model
would approximate the strong-coupling limit of an
attractive interaction in which the splitting of the
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single-particle levels ¢, is ignored or it can be used to
obtain the first-order perturbation theory expressions
for the E, as mentioned in Sec. 2. The second model
has a two-level kinetic energy with / taking on the two
values /=0 or 1 and ¢ =0 and ¢ =1 in the
appropriate units. The equations for this model are
solved in the limit of a strong repulsive interaction
and they show some interesting features which, as we
will show in Sec. 5, are true of systems with more
realistic single-particle spectra.

A. One-Level Kinetic Energy Model

If the sum over / in (2.29) contains just the single
term with / = 0, then we have the equations

, 1 w

b 4§ EIJ — E, a ’
where we have set ¢, = 0 and chosen the units of
energy so that g = 1. In this expression, we have set
o = Q + 2v, where we have dropped the subscript
[ =0,and N = }(n — v). We will obtain an explicit
expression for the energies of the states of this system
and we will show that the pair energies are propor-
tional to the zeros of certain Laguerre polynomials.
The interest in this model is not in the energies and
eigenstates of the Hamiltonian since they can be
calculated by much simpler means. Rather, the interest
lies in the structure of Eqgs. (4.1) and, in particular, in
the proof of (2.31), i.e., the proof that the pair
energies are distinct in the limit g — 0. Nevertheless,
as an introduction to (4.1), we will first derive the
energies of the states of the model before we consider
the structure of the equations.

The energy of a state of this model is the sum of the
pair energies and we may obtain an expression for it
by muitiplying Eqs. (4.1) by E, and then summing on
«. Using the result

a=1--N, (41)

N E
f——— = —IN(N = 1), (4.2)
ap=1 E; — E,
we then have
E= N+ 2N —2)
or, labeling the states with 17 and »,
E(ny) = 1(n —v)(n 4+ Q 4+ v — 2). (4.3)

Note that the ground-state energy is proportional to
n* in units of g. This indicates a condensation for an
attractive interaction that is independent of the
volume of the system [see (1.6)]. If we assume that
g < 0, then the state with » = 0(1) is the ground
state of an even (odd) number of particles and the
excitation energies are given by

En,v) — En,0) = —5(Q + v — 2)v,

R. W. RICHARDSON

for n and v even, and
E(n,v) — En,1) = —}(Q+ v~ D —~1),

for n and v odd. Recall that these excitation energies
are positive, since they are in units of g which is
negative. For g > 0, the state with » = n is the ground
state. However, this is unrealistic, since Eq. (4.1) will
only represent the strong coupling limit of a system
with a normal single-particle spectrum if the pair
energies are proportional to g as [g| — o, and this is
not possible due to the bounding of the pair energies
given in Eq. (2.35).

In order to study the structure of Egs. (4.1), we
construct a polynomial whose roots are the N pair
energies E,. This is done by first considering the
symmetric functions of the reciprocals of the pair
energies defined by

Sp= 2 —,

m=1--+N,
al'“amEal' E

(4.4)

Am

where the primed sum is over all values of «, * - * «,,,
each one ranging from 1 to N, such that no two «’s
are equal. In terms of these functions, the pair
energies are the N roots of the single equation

N 1 1 N—m
m=o0 m! X

where S, = 1. Using Eq. (4.1), we can obtain a
recursion relation between S,, and S,,_;, which, when
solved, shows that the left-hand side of (4.5) is
proportional to the Laguerre polynomial L{(x/2),
with @ = }o — 1. The study of Eqs. (4.1) is thus
reduced to the study of the zeros of the Laguerre
polynomials, the properties of which are well known
to mathematicians.!! We now turn to the construction
of the symmetric functions S,, from Egs. (4.1).

We simplify our notation for S, by letting the
index 7 stand for o; in sums such as (4.4). With this
shorthand, (4.4) becomes ~

Snl = z, ]

1""mE1"'Em

(_ 1)'V§ g (—xm=o,

x] m=om!
4.5)

(4.6)

The first symmetric function S, may be easily evaluated
by summing (4.1) on «, with the result that

N

«)

S, = 4.7

"' G. Szego, Orthogonal Polynomials (American Mathematical
Society, New York, 1939); Bateman Manuscript Project, Higher
Transcendental Functions (McGraw-Hill Book Co., New York,
1953).
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In order to evaluate S,,, for m > 1, we write (4.6) as

1 1
S7ﬂ = ' r .. E_
(l . ~Zrn—1 El T Em—l) (g Em)
1
—(m=1) 3

-2
Lo m—1 El T Em-2bm—-1

1
=S _ .S —-—(m—1 L —_—
mo1 = € )v-‘-z,n—lﬁl---ﬁm_g:s?n-l

(4.8)

The second term in (4.8) may be evaluated by using
(4.1) for one of the factors 1/E,__, in the summand,
ie.,

S
1:--m-1 El st Em—ZE2

m—1
Ly (s
m—1

] )
o)1 m—1 El st E m#E m—1 Em -_ Em-—l

1 4 1
= - Sm— + — ! .
0 Yo "Zm—l m g;—l E,-E, (E,—E,_))

(4.9)

The second term in this expression may be evaluated
by separating it into two parts. The first part includes
those terms in the double sum for which the index m,
ie., «,, does not equal any one of the indices
1---m — 1 and the second part is made up of the
remaining terms in which m equals one of the indices
1---m — 2. With this separation, we have

, 1

1-+-m—1 m#m~1 E1 e Em—l(Em - Em—‘)
, 1
=2
1---m El ctt Em—l(Em - Em—l)
1
+(m-=2 ! .
( )1 . .Zm_l EI A E,n_gEm_l(Em__z - Emﬁl)

(4.10)

The second term in (4.10) vanishes because the sum-
mand is antisymmetric in the indices m — 2 and
m — 1. The summand in the first term of (4.10) can
be symmetrized in the summation indices m — 1 and
m, yielding

Zl

1

1-“mE - E, (E, —E,_)
_1 , 1 1 1
B 2 1'27" E,- - E, E,— Em—l)(Em—l - E;)
= 1S,,. “4.11)

Substituting (4.9), (4.10), and (4.11) into (4.8), we
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have
s =0h—mtlg
w4+ 2m—2
_N—m+1
o + 2m — 2
where we have used (4.7) for S;. Iterating (4.12), we
then obtain

(4.12)

m—1»

—N
Sm —_ (_%)'lﬂ( )m ,

).

where (a),, is defined in terms of I" functions as

(4.13)

_I'(a + m)

(@), = o a@+ 1) (@a+m—1).

(4.14)

We therefore have obtained an explicit expression for
the symmetric functions of the reciprocals of the pair
energies for this model.

Substituting (4.13) into (4.5), we obtain the poly-
nomial equation for the pair energies,

S N (X" _
m2=0m'((_o (2) "1F1( N
' 2)m

where we have written the sum as a confluent hyper-
geometric function. However, the confluent hyper-
geometric function in (4.15) is proportional to the
Laguerre polynomial L{¥(x/2), with a = (»/2) — 1.
Thus, the pair energies are proportional to the zeros
of L{¥ and as such they satisfy two conditions?! that
are of interest in the present context. The first is that
the pair energies are real, positive, and distinct. This
proves Eq. (2.31) and fills in the gap in our proof that
the pair energies are real and distinct for an arbitrary
single-particle spectrum and for all values of g. The
second condition establishes upper and lower bounds
on the values of the pair energies. For if the pair
energies are ordered so that £, < E,,,, for a =
1+++N — 1, then they are bounded by

w X
;—i=)1 =0, (415
: 2) 4.15)

252 < 4o +
AN + w *TAN+ o
X {4a+ o + [(4a + 0 + 1 ~ (0 — 2711},

(4.16)

where j, - - - j\- are the first N positive zeros of the
Bessel function J,,, ,(x). For large o, we have j, ~
(7a)?, and (4.16) becomes

272

4N + o

2
Ea<_§_2°‘_’

1.
4N + o b

4.17)



1336

In the particular cases w = 1 or 3, the zeros of the
Bessel function Jy,,; are those of the trigonometric
functions and (4.16) becomes

2 . 1\2 2
27 — 3) . 2(4a + 1) , (4.18)
AN + 1 4N + 1
forw =1, and
2702 2(4o + 3)*
— < E, < =, 4.19
4N + 3 4N + 3 (4.19)

for @ = 3. These two special cases are important
since they correspond to an even or an odd number of
particles in a nondegenerate level such as the k = 0
level. Equations (4.19) and (4.20) thus give bounds on
the first-order perturbation theory expressions for the
pair energies, in units of g, for the ground state of an
even or odd number of bosons. They also indicate
that this perturbation theory result is accurate as long
as 2N |g|, the upper bound on the largest pair energy
|E,|, is small compared to twice the single-particle
level spacing, 2(e; — €,).

B. Two-Level Kinetic Energy Model

Another special case of Eqgs. (2.29) that can be
reduced to the study of the zeros of a classical poly-
nomial is the strong repulsive-interaction limit of the
idealized system, in which the single-particle kinetic
energy takes on only two values. The polynomials in
this case will be shown to be the Jacobi polynomials
and the methods that we will use to show this are
similar to those used in the preceding subsection on
the one-level kinetic-energy model. That is, from the
equation for the pair energies, we will derive a
recursion relation for the symmetric functions S,,
defined in (4.4). When the solution of this recursion
relation is substituted into (4.5), we will show that
this equation becomes an equation for the zeros of a
Jacobi polynomial. However, before turning to the
construction of the functions S,,, we will first derive
explicit expressions for the energies of the states of
this system and the occupation probabilities of the
two single-particle levéls in one of these states. We
will show that the excitation energies of the low-lying
states have the interesting property that they are
proportional to 1/n for large n, where n is the total
number of particles. The occupation probabilities,
which are obtained from the energies by using (3.2),
show that, for large », the particles are evenly distrib-
uted over the two levels. In the next section, we will
show that these features are present in a system with
an arbitrary single-particle spectrum.

For a system with a two-level kinetic energy, Eqgs.
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(2.29) may be written as

1 [an ,
+ + =0,
2¢g — E, 2¢,—E,
a=1---N, (4.20)

where wy = Q) 4+ 2vy, v, =Q; + 2v,, and N =
#(n — v). In order to keep the model as physically
reasonable as possible, we will assume that Q, = 1
and that €, = Q is arbitrary, although this specializa-
tion is not at all necessary for the analysis of the
model. We are going to consider the solutions of (4.20)
in the limit g — 4 co. These solutions fall into two
classes. In the first class the states are labeled with the
quantum numbers /,p = 0, « = 1 * -+ N. According to
(2.36), the pair energies for these states lie in a
bounded interval and satisfy 2¢, < E, < 2¢;, 0 =
1---N, for all positive values of g. For the states in
the second class, we have /,, = 1 for some values of «.
The corresponding pair energies lie in the unbounded
interval 2¢; < E, < o and it is easily seen that they
are proportional to g in the limit g — co. We shall only
consider the states of the first class here since they are
the only states with a finite excitation energy in this
limit. The states of the second class could be treated
by a combination of the methods used in this and the
preceding subsection. However, we shall not do that
here. Since the pair energies all approach finite limits
as g — oo for the states that we are considering, we

i
_+4 4
b4 gEﬁ_Ea

‘may neglect the term 1/g in (4.20). In order further to

simplify the equations, we introduce the dimensionless
quantities x, defined by

E, = 2¢) + (e, — €)Xy, =1---N. (421)

In terms of these new quantities, we have the equations
1 )
4 zl 0
8

+

+_u—)l__=0’
2 —x

x=1-"N,

Xg— X, —X, o

(4.22)

and we seek roots of these equations on the interval
0 < x, < 2. We will first calculate the energies and
occupation probabilities for the states described by
(4.22) as functions of n, vy, and »,, after which we will
show that the x, are given in terms of the zeros of
certain Jacobi polynomials.

The energies of the states may be obtained from
(4.22) using techniques similar to those used in the
preceding subsection. As a first step, we sum Egs.
(4.22) over the index a. The first term, being antisym-
metric in = and f, does not contribute to the sum and
we therefore have the relation

N | N 1
0> —— + o, 21 3 = 0.

a=1 —X,

(4.23)

a
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For a second relation, we first multiply (4.22) by x,
and then sum over the index «. The contribution of the
first term of (4.22) was evaluated in (4.2). The contri-
bution of the second term is — N, and the contri-
bution of the third term is

AY AY 2
(’)Iz Xa = (()lz (—1 + )
a=1 a=1 2~ X,

2—-x
N 1
= —No, + 20, Y,
=1

a= — X4

£

(4.24)

Combining these results and using (4.23), we have

N N
My — = wlzl
A=

=1 X,

1
2—-x

= INQ2N + w4 + ©; — 2).
(4.25)

We obtain a third and final relation by multiplying
(4.22) by x2 and then summing on «. The contribution
of the first term of (4.22) to this sum is

X

2 2 42
43" Ya  _3y Ta 7 X8 _ 4N — 1)x, (4.26)
af Xg — Xy wp Xp — Xq

where we have introduced

N
X=X,
a=1

which is the energy of the paired bosons in the units of
(4.21). The contribution of the second term of (4.22)
to this sum is —wyx and the third term yields

(4.27)

N X 2

)
2 — x,

= —wx — 2Nw; + NN + 0y + 0, — 2), (4.28)
where we have used (4.25). Combining these results
and solving for x, we have

‘= 2N(2N 4+ wy — 2)
4N 4+ wy + v, — 4

for the energy of the paired bosons or, returning to
the original units of energy, we have

2N(2N + @y — 2)
4N + vy + o, — 4
Adding to this the energy of the unpaired bosons,

ve€0 + v1€1, and expressing the result in terms of n,
vy, and v, we then have

(4.29)

N
ZE, = 2Ne¢, +

a=1

(4.30)

(e1 — €o).

E(n, vy, v)) = ne,

— v — ) v — vy — |
+ ,:yl_}_(" Vo 2:1_*(_’19 _1‘03 41 )](51'"50)

(4.31)
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for the energies of the states of the system, where we
have used Q,=1 and Q, = Q. However, since
Qo =1, v, can only take on the values 0 or 1 [see
(2.10)] and this expression is independent of ;.
Therefore, we may write the energies of these states as

E(n’ vl) = E("; Yo > Vl) = Nn¢g

n— n—y —1
+ l}’l + ( 2:1):_ Q 113 ):l(ﬁ — &),
(4.32)
for v, =0,1,---,n 1f we denote the excitation
energy of the state ny, by e(n, v)),
e(?’l, 3’1) = E(n’ Vl) - E(”a O):
then we have
Q4+ v, — 2
L) = —————3 =1:--n, (4.33
e(n 'Vl) 2n + Q _ 3 1451 ( )

in units of €; — ¢,. Thus, for fixed Q and large #n, the
excitation energies are proportional to 1/n and there
are roughly (2n)? states with excitation energies less
than that of the first excited state of the noninteracting
system. In the next section we will see that these
properties are characteristic of the interaction and are
independent of the single-particle spectrum.

The occupation probabilities of the two levels may
be calculated using (3.2). Differentiating (4.32) with
respect to ¢, and ¢, we then have

=(n—v1)(n+Q+v1—2)
2n + Q — 3

(4.34)

ny

and
(n—=9)n—»—1
2n+ Q=3

ny = + (4.35)

for the occupations of the two levels. Note that, for
the low-lying levels of a large number of particles,
both these occupations are of the order n/2. In the
next section, we will show that this feature of the
states is also independent of the single-particle
spectrum.

A polynomial equation for the pair energies may be
derived using the same methods that were used for the
one-level kinetic-energy model. We first derive and
solve a recursion relation for the symmetric functions
S,. of (4.6) and then substitute the results into (4.5).
The resulting equation indicates that the pair energies
can be given in terms of the zeros of certain Jacobi
polynomials which, for large N, can be given explicitly
from the asymptotic forms of these polynomials.

We can initiate a recursion relation for S, with S;
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which, using (4.25), is given by

NQN + wy + o, — 2)
Sl = H

2w,

(4.36)

where we are using the dimensionless pair energies
x, rather than the E,. This recursion relation is
obtained by using (4.22) to evaluate the second term
in (4.8). For if we solve (4.22) for 1/x,,_, [recall that
we use the notation of (4.6), where m — 1 stands for
®,—1] and substitute the result for one of the two
factors in the second term of (4.8), we have

, 1

Sl Xy X e X
N S B
Wyl Tm—1Xy "t Xy
x [—“’1— +4 3 —1—} 4.37)
2 — Xy q mEmM—1 X, — Xpu_q

The first term of this expression can be evaluated
by performing a partial-fraction expansion of the
factor 1/x,,_4(2 — x,_,) with the result

on , 1

xm—l(z - xm—l)

MWyl m—1Xy "

Y ! ( ! ! )
2091 m-1Xy " Xppea \ X1 2 — X
w1y , 1

271)01"' xm_z(z -

—_ Wy S
2w,

xm—l)

(4.38)

Next, Egs. (4.22) are solved for w,/(2 — x,,_,) and the
result substituted into the second term of (4.38), giving

m—1 Xy "

) , 1

2we1--Tm—1 Xy * X, (2 — X, 1)

_ 1 1

T 2wy 1- Xy X

g 1
l: m-—l m#m 1X,, — Xm—I:I
= 2Sm 1T T ' ! .
Wol-Tm—imEFm—1Xy " Xy o Xy — Xppy)

(4.39)

We next evaluate the second term in this expression.
This may be done by first splitting the sum into two
parts—the first part coming from those terms in the
sum in which the index m equals one of the indices
1-+-m—2 and the second part coming from the
remaining terms in the sum in which the indices
1--+m are all distinct. That is, we may write the
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second term of (4.39) as

2 o |
Wol---m—1 m#Em-1Xy """ '\‘m—'..’('\‘m - '\‘m—l)
_2(m=2) , 1
(G 1essm—1Xy " " '\-m—z('\.m»'.’. - '\‘m—l)
+ 2y ! (4.40)
Wg1--+mXy** xm—'.!(xm - ‘\-m—l)

The second sum of (4.40) vanishes due to the anti-
symmetry of the summand in the indices :n and m — 1.
The first sum may be evaluated in the same manner as
(4.11) with the result

2 , 1

= 2

Wg1--" Xm2o(Xm = Xm_q)
= —(m—=2)

W,

m—1 m#Fm—1 Xy * *°

Sn- (441
Substitution of this result into (4.39) and that into
(4.38) yields

IR 1
xm—1(2 - xm—l)
_ W+ w +2m—4

= St
2w, !

Wl m=1X;"° " "

(4.42)

which completes the evaluation of the first term of
(4.37). The second term of (4.37) has been given in
(4.11). Combining these two terms, we then have for
(4.37)

1

’

1. m~1Xy """ xm_gx%n_,l
2m — 4 2
—tontim—te L2 (443)
2w, W,

and, substituting this into (4.8), we have

S =2w031—(m—])(w0+w1+2m—4)s
" 2wq(wy + 2m — 2) m
_(N—m+l)(2N+wo+w1+2m—4)S
- Awy + 2m — 2) mt
(4.44)
where we have used (4.36) for S;. The solution of
(4.44) is
(—N)m(N + w - 1)
w=(=h" =, (449)

?)
(2
in the notation of (4.14). Substituting this result into
(4.5), we then have the pair energies given as the roots
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of the equation

g + 0y

L (=N (N +

l ) N
m [ X
m! (529) ( 2)
2/m

Dot L l‘) =0, (4.46)
22

where we have written it in terms of a hypergeometric

function. Equation (4.54) can be rewritten in terms

of a Jacobi Polynomial as'!

=G

= 2F1(—'Ny N +

Pf{i*"’(l — x) =0, (4.47)
where
a=}w,—~1=r,—4+=4}% (4.48)
and
b=1ow, - 1=+ ~1

=10 ~1,-, 10 +n~ 1. (449

Equation (4.47) is the polynomial equation for the
pair energies that we set out to derive.

Equation (4.47) takes on a particularly simple form™
if we artificially set » = 41} and, sincc the roots are
monotonic functions of b, this sets bounds on the
roots for b = 0, i.e., Q =2 and », = 0. If we write
the roots of (4.47) as x,(a, b) and order them so that
X, < Xq,1, then these bounds are given by

200 — 1 2o — |
I — cos < x (=% 0) <Y —cos T
N+ ) IN
and
1 —co X,(3,0) <1 — cos 7T,
° 1 7 < ) 2N +
(4.50)

for & = 1+ -+ N. In the limit of large N, we then have
the pair energies given by
Qo — 1
X, =1 —cos 5 . (4.51)

P

The spacing between the pair encrgies is then given by

X X, = — sin 22— 1
Y 2N
which is equal to the reciprocal of the density of the
roots. If we approximate this distribution by a con-
tinuous one with the same density, we obtain

Ay(x) = e

Tt

[l — (1 — x)'J

for the density of roots. In the next section, we will

show that similar results may be obtained for an
arbitrary single-particle spectrum.

o, (4.52)

, 0<x <2, (4.53)
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For other values of b, we may use an asymptotic
expansion of the Jacobi polynomial to obtain the
pair energies in the limit of large N. From such an
expansion,’ we obtain the result

4o + 2a + 1 )w+0(-1-),
4N + 2a + 26 + 2 N,
(4.54)

which is valid for those E, that lie in the fixed interval
€ < E, < 2 — . Comparing this with (4.51), we see
that the qualitative features of the example with
b = 0 are independent of &.

x{a, b) =1 — cos (

5. INFINITE SYSTEM WITH A REPULSIVE
INTERACTION

We will now solve Eqgs. (2.29) in the limit N — o
for a repulsive interaction in a system with an arbi-
trary single-particle spectrum. This is done for an
arbitrary value of the volume so that the solution can
be evaluated in the thermodynamic limit in which N,
¥V — oo in such a way that the density N/} is fixed.
The energies of the states are obtained to order I/N
and it i1s shown that, to this order, the excitations
behave like a gas of noninteracting quasiparticles.
However, as is suggested by the results of the pre-
ceding section, the quasiparticle energy associated with
the first excited single-particle level is zero to this
order and the ground state is barely stable. Corre-
sponding to this zero in the quasiparticle spectrum,
the occupations of the lowest two single-particle levels
are of order N. Thus, the model exhibits a very
special type of generalized Bose condensation? in
which the particles condense into two single-particle
Jevels. We will first consider the states of the system
with the quantum numbers /4 = 0, i.e., those statcs
which correspond to the states of the noninteracting
system in which all the paired bosons occupy the
[ = Olevel. These states can be characterized as having
roots £, of Eqgs. (2.29) satisfying 2¢, < E, < 2¢,. We
will then consider states with a finite number of pairs
excited out of the / = 0 state.

Since the roofs of (2.29) will be located between
values of 2¢, for a repulsive interaction [see (2.35)],
it will never be possible to replace sums over the
single-particle states by integrals. Therefore, the
analysis of the equations is facilitated by choosing a
volume-dependent unit of energy that keeps «, fixed
as the volume varies. We therefore choose the energy
€; — €, as our unit of energy. For plane-wave states,
this unit is }(27/L)?, where ¥ = L® and we have set
the mass of the bosons equal to one. We also readjust
the zero of energy so that it lies midway between
€, and €,. We therefore introduce the dimensionless
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quantities x, and y,, defined by

Ey= (e + &) + (61 — €)x, (5.1
and
2e, = (& + €) + (&1 — €y, (5.2)
where, in particular, we have
Yo=-~1, yy=1 (5.3)

In terms of these quantities, Eqs. (2.29) become

1 0
y+4Y +3 =0, a=1--N,
B Xg— X4 t Y= X,
(5.4)
where
y = (& — €)fg (5.5)

and the sum on f is from 1 to N while the sum on /
is from 0 to M, where M + 1 is the total number of
single-particle levels included in the Hamiltonian, and

(5.6)

For the ground state and those states with /4 = 0,
for @ = 1--+ N, we seek roots of (5.4) which satisfy
—1 < x, <1 for a repulsive interaction, y > 0.
Equations (5.4) are solved for these states by con-
verting it into an integral equation for the density of
roots on this interval. This integral equation is accurate
to order 1/N and can be solved explicitly. For the
states which have a finite number of the /,, different
from zero, Eqs. (5.4) can be written as an integral
equation for the density of roots with /,, = 0 in the
sense of (2.34), which is coupled to a set of algebraic
equations for the pair energies corresponding to
1o # 0. These equations can also be solved explicitly.

Before turning to the solution of (5.4), we will
discuss the range of values of the interaction strength
for which our solution will be valid. The discussion
will be given in the specific framework of plane-wave
single-particle states and the thermodynamic limit
will always be taken. Our solution is predicated upon
the assumption of a smooth distribution of roots of
(5.4) in the interval (—1, 1). However, for g = 0, we
know that the distribution is No(x + 1), i.e., all the
pair energies satisfy E, = 2¢,. Therefore, we expect
our solution to be a strong coupling solution with a
distribution similar to (4.53). We therefore need to
determine a lower bound on the interaction strength
for the validity of our solution. In order to do this,
let us consider the volume dependence of (5.4). The
volume of the system appears in 7y, which, setting
g = GV since we are interested in a lower bound,
becomes y = (e, — €)V/G with € — ¢, = 3(2n[L)%
It also appears in the limits on the sum on /, since the
sum is over all states with |k| < K. We approximate

m, = Q, + 2v,.

R. W, RICHARDSON

the sum and its volume dependence by its first two
terms, which restrict the roots to the interval (—1, 1),
plus a constant contribution from the remaining
terms, i.e.,

o8 ™y

o +
LY — Xq —l_xa

Wy

1 —x

+2KL. (5.7)

This approximation is valid because it is only the first
two terms of the sum on / that depend strongly upon
X, . With this approximation, (5.4) becomes

— )\y
(61 Eo)V + ZKL + 42/ 1
ﬂ=IXﬂ—xa
+ Yo + “y =0, a=1-'N, (58)
—1-x, 1-x,

which is (4.20) with a redefinition of g and the zero of
energy. If we can neglect the first two terms in (5.8),
then we have (4.22), whose solution we have discussed
in detail in the preceding section. From this solution,
we know that the roots of (5.8), still neglecting the
first two terms, are spread over the interval (—1, 1)
with spacings of the order of 1/N. Thus, the dominant
terms in the sum on f will be of order N. This leads to
the criterion

=V | JkL « 4N = 21

for the validity of the assumption of a continuous
distribution of roots. For fixed p = n/V and K, this
becomes

2pG > (&1 — €) (5.9)

in the limit #, ¥ — 0. Since €; — €, = $(2n/L)?, this
is a very weak condition. However, it should be
emphasized that our results are not valid for G — 0.

Returning to the solution of (5.4) for the states with
lh,=0, «=1---N, we introduce the density of
roots A\(x) defined by

N
AI\'(X) = E o(x — x,),

=1

(5.10)

which in the limit N — o we replace by the smooth
function A(x), defined by

b b
f A(x) dx = lim | Ay(x) dx,

N—w Ja

(5.11)

for any a, b in the interval (—1, 1). The second term
in (5.4) can then be written as

i/ 1 = Pfl AA'(x) dx
=1 X5 ~ X, ~1 X = X,

1
P A(x) dx )
11X — X,

(5.12)

n~—+ oo
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where P indicates that the principal value of the
integral is to be taken. Equation (5.12) is just the
finite Hilbert transform of the density A, and Eq. (5.4)
becomes an equation for this Hilbert transform,? i.e.,

W,

4rD(x) = —y — > ——, —1<x<1, (513)
Yp— X
where D(x) is defined by
1 ’ ’
D) =—1Pf AL dx' (5.14)
kg -1X — X

In going from the discrete variable x, to the con-
tinuous variable x, we have made an error of order
1/N, since this is the order of the spacing between the
x,’s. This will be verified by comparing the solution
of (5.13) with the exact results of Sec. 4. Thus, the
problem is reduced to one of inverting this integral
equation for A. Note that from its definition A must
satisfy

JIA(X) dx = N, (5.15)

in addition to (5.13).

The general form of (5.13) is known as the airfoil
equation, and the inversion of such transforms has
been studied by Tricomi,'® who gives the solution

2% , ,
A(x)=——1—l[c—pf‘“ ) D(x)dx}
x2)?z —1

(1 — x' = x

(5.16)

where C is an arbitrary constant. The solution (5.16)
is valid when the function D(x) belongs to the class
L?(—1, 1) with p > 4. However, this last requirement
is not satisfied by the terms in (5.13) with / = 0 and
1, which have poles at —1 and +1, respectively. In
order to remove these poles from the interval (—1, 1),
we introduce small shifts in the corresponding single-
particle energies that move the poles out of this
interval. That is, instead of (5.3), we let

yo=—1=0, yy=1+09 (5.17)

and, in all calculated quantities, we will take the limit
6 — 0. The strong coupling assumption (5.9) is
necessary for justifying the introduction of this shift.
For it is certainly not possible to introduce such a
shift at zero interaction strength when all the particles
occupy the / = 0 level. However, when the roots are
spread out over the interval (—1, 1) and no root has
the value y, or y,, then the solution of (5.14) using
(5.17) will be a good approximation to the equation

12 The author is indebted to Professor Jerome K. Percus for this

observation.
13 F, G. Tricomi, Quart. J. Math. (Oxford) (2) 2, 199 (1951).
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using (5.3). Furthermore, when we calculate the
energies of the states and their occupation proba-
bilities, we may take the limit 6 — 0. These results,
when specialized to the two-level model of Sec. 4B,
will be shown to agree with the exact results to order
1/n. We therefore proceed under the assumption that
the interaction is strong enough to justify the use of
(5.17) rather than (5.3). With this method of removing
the singularities, (5.13) may be substituted into (5.16)
and all the integrations performed. The result of this
calculation is

{
4m(1 — xO)

x [41\/ x4 ‘;wl(l — M)] (5.18)

Ax) =

11

where we have used (5.15) to fix the value of the
constant C = N.

The energies of the states are given by (2.22), which
may be written as
N
2. %

a=1

E = Z”zez + N(eg + &) + (e — <)
l

= S e+ Nieo + &) + (6 ~ ) f xAGx) d
(5.19)

where we have used (5.1) for the pair energies E, . The
integral over x may be evaluated using (5.18), with the
result

1 1 1
f XA(X) dx = — LN Y ol(y; — 1) = y] (5.20)
1 7

B 8 4
_ y l 2 '5'
= — g + 42{:(QL + 21’{)[(}’1 - 1)" =yl

(5.21)

where we have used (5.6) for ;. Substituting this into
(5.19), we have

E= 3308 — Die — &) + dnfe, + €)
l

+ { -2+ 3ot~ 0= y,1}<e1 — &)

(5.22)

for the energy of the states, where we have used (5.2)
for y, and n = 2N + v. Note that this expression is a
well behaved function of  and we have therefore set
6 equal to zero.

The ground state of an even (odd) number of
particles has » = 0 (v = 1 with v, = 1). Therefore,
the term

FNGTPEN

Svdi = e — <) (5.23)
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in (5.22) is the excitation energy of the state. This has
the character of the states of a set of noninteracting
quasiparticles whose energy is given by (37 — 1) %
(€, — €. If we set ¢, = 0, this expression may be
written as

e, = [e(e; — E1)];‘f~ (5.24)

Therefore, the quasiparticle spectrum has two zeros
corresponding to the lowest two single-particle levels.
This result, which is valid up to terms of order 1/n, is
in agreement with the exact results of the two level
model treated in Sec. 4B. For the other single-
particle levels, the quasiparticle energies are not
qualitatively different from those of the noninteracting
particles.

The accuracy of (5.22) may be checked by com-
paring it with the exact results for the two-level model
given in Sec. 4B. From (4.32), we have the exact
ground state energy of this model given by

n(Q—1)
2021 + Q — 3)

Q-1 (e, — €) + O(1/n). (5.25)

E = jn(e; + &) — (&1 — &)

= 3n(e, + &) ~

If weset y =0, Qy=1, and Q, = Q in (5.22), we
have
E = jn(e; + €) + H1 — Q}(eg — &), (5.26)

which agrees with (5.25) to order 1/n. This result is in
accord with our estimate of the errors in (5.22) to
be of order 1/m. The excitation energies cannot be
checked in this way since they are all of order 1/n in
the two-level model.

The occupation probabilities for the single-particle
levels may be calculated using (3.2). In order to use
(3.2), we need to write the energy as an explicit
function of the single-particle energies ¢;. This ex-
pression is obtained by substituting the definitions of
the various quantities into (5.22) with the result

Q - Q,
4

=" € _(61_60)2— )e—e
E=la+w =00 ( (e1 — &)

£330+ 2l - el - ot
— Q,2¢; — ¢, — €1)}. (5.27)

Differentiating this expression with respect to the
various single-particle energies according to (3.2), we
obtain

ng = 4in + iy + HQ — Q) .
+ i s [Q, —(Q, + h,)(el = 61) } (5.28)

>1 €
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1>1

n % s [Q, —(Q, + 2»1)(61 « j], (5.29)

_ 1 {(Q, + 2v))(e; — 1€y) _

; Q,}, for 1> 1,
2 [Gz(ez - 51)]

(5.30)

14

where we have set ¢, = 0. For plane-wave states in the
limit n, V' — oo, these expressions may be simplified to

i 20
n, = E[n + (—Gl + K)L], k=0,
2 2
- —l—[n - (3’—1 + K)L} K= (21 . (532)
12 G L
m? — }

p o R vy

m?>1, (533)

(5.31)

where the interaction strength is G, the range of the
interaction in momentum space is K, ¥ = L%, and we
have assumed that » = 0. These expressions are the
occupations of the individual single-particle states
since we have divided the previous expressions by the
degeneracies ;. Thus, the system exhibits a Bose
condensation into the lowest two single-particle levels.
Note that the strong coupling requirement (5.9)
requires that G be large enough so that the terms
+[27*G) + K]JL in (5.31) and (5.32) be small
corrections to the occupations of the lowest two levels.
This condition is satisfied for any nonvanishing G.
To show that the quasiparticle interpretation of the
excitation energies holds even for states that have
pairs excited out of the / = 0 level, we calculate the
energies of the states with one pair excited out of this
level, i.e., those states with /; o ="+"=1/Iy_;,=0
and /y o # 0. The method can be generalized to treat
any state with a finite number of pairs excited out
of the / = O state. Equations (5.4) for a state with one
pair excited out of the / = 0 level, may be written as

N-1 1 4
y+4y + +3—1— =0,
b=1Xg — Xy Xy — Xz 1Y, X4
a=1---N~—1, (534
and

t 1 w,

y+43 +3 =0, (5.3%
=1 Xg — Xy LY Xy

where —1 < x; < 1l,fori=1-+-N~—1,and xy >
1. Introducing the density of roots A which is defined
on the interval —1 < x < I, we may write these
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equations as

4
4nD(X) = —y — D
XA\"—x i yl""x
—l<x<1, (536)
and
1
;»+4f MY | s @ L0, xy>1, (537)
X=Xy Ty — Xy

where D(x) is again the finite Hilbert transform of
A(x) given by (5.14). We may now use (5.16) to solve
(5.36) for A(x) subject to the normalization condition

1
f A(xydx =N — L. (5.38)
—~1
The result of this calculation is
2 _ 1yt
A(x) = S S ] <4N — YX - 4————--—(XN D
477(1 - x2) X‘N -— X
2t
+3 wl[l -~ (—)’—*Q}} (5.39)
1 Y, —x

This result may now be used in (5.37) to obtain an
equation for xy. Using (5.39), the second term of
(5.37) becomes

1
4 A{x) dx

-1 X ~ xjv

4XV i

— +

oy = 0f

x5 =1

2 __
X {——4N + yxy + zw{(—xl———-—l)— - 1]}
¢ Yi— Xy
w
-_y =3 . (5.40)
l yl - xAV
which, when substituted into (5.37), yields the equation
4xy
N 4 oyxy — 4N
I
(i — 1
+ Ew,[w ~ 1} =0 (5.41)
4 y( —_ .)CN

for xy. The solutions of this equation, to order 1/n,
are just the values
Xy =y, lh>1L
The energies of these states are given by
E = Z”zfc + Nley + &) + (e, — €)
i _ .
x 5y + f XA(X) dx:l
L =)
= [ = 0 4 S0t - 0]
X (€1 — €} + Inle; + )
1
ot 3000t - 0t - ile -,
4 2 9
(5.43)

(5.42)
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where we have used (5.39) to perform the integration
over x. In view of (5.42), the contribution of the
paired particles to the energy of the state is just that
of two quasiparticles in the level /,. Thus, the quasi-
particle interpretation of the excited states holds true
even for those states with pairs excited out of the / = 0
level.

It is interesting to compare the above results with
those of the Bogoliubov approximation.** In this
approximation, we neglect all terms in the interaction
that contain fewer than two operators associated with
the / = 0 level. Furthermore, a, and a, are replaced
by nj , where

ng=n—73 afa, (5.44)
kK
in the notation of (2.1). Then, keeping only the leading
terms in powers of n and setting g = G/V, (2.1)
becomes

Hy, = inpG

+k§0[(€k ~ pGlagay + LpGafat, + a_yay)]
(5.45)

where we have set ¢, = 0 and p = n/V.

This is a bilinear form in the operators a, and a
and can be diagonalized by a Bogoliubov uv trans-
formation, with the result that the ground-state energy
is given by

Ey = npG +«§ 3 {leer — 2p0)F — (e, — pG)}
k#0
(5.46)

and the excitation encrgies are those of a system of
independent quasiparticles whose energies are given
by

e = [e(ex — 2pG) P (5.47)

These expressions become complex for 2pG > ¢,
indicating a failure of the approximation. We can
therefore say that the Bogoliubov approximation
fails unless

206G < €, (5.48)

a limit that vanishes as the volume increases. It is
interesting to note that this upper bound on the
strength of the interaction for the validity of the
Bogoliubov approximation is precisely the same as
the lower bound on G (5.9) for the validity of our
calculation. The two calculations are therefore com-
plementary, with one appropriate for weak coupling
and the other for strong coupling. The dividing line
between these two domains of interaction strengths is
essentially at zero interaction, i.e., G o €2p ~ V-3%
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The gravitational ficld generated by a gas whose one-particle distribution function obeys the Liouville
equation is examined under the following assumptions: First, the distribution is locally isotropic in
momentum space with respect to some world-velocity field; second, if the particles have rest-mass zero,
the gas is irrotational. It is shown that the model is then either stationary or a Robertson-Walker model.
The time dependence of the radius in the Robertson-Walker models is given in terms of integrals

containing the distribution function.

1. INTRODUCTION

In galactic dynamics it is useful to relate the velocity
dependence of the stellar distribution function to the
spatial configuration of the galaxy and to the galaxy’s
gravitational field. In this paper we give some analo-
gous general-relativistic results for the very simple case
of a locally isotropic distribution function. We have
in mind applications to cosmology.

Einstein’s gravitational field equation

Gab =

—Ta (L.1)

relates the metric of space-time to the stress-energy-
momentum distribution of matter. It is necessary to
supplement (1.1) by assumptions about the structure
of matter. We must specify the dependence of T,, on
the basic matter (or field) variables, and state the
nongravitational equations of motion, constitutive
equations, etc., which these additional variables are
supposed to obey.

The model of matter used in this paper is that of
kinetic theory. We imagine space-time contains a
system of particles all having the same! proper mass
m (> 0). We think of the metric g, in (1.1) as the
macroscopic gravitational potential generated col-
lectively by all the particles, and we assume that each
particle moves as a test particle in this average field
except during point collisions. Moreover, we restrict
ourselves to two cases: either collisions are completely
neglected—Case A ; or there is collisional equilibrium
(detailed balancing)—Case B.

Let f(x, p) be the one-particle distribution function,
defined on the seven-dimensional manifold of pairs
(x, p), where x is a space-time point and p a tangent
vector at x with p?> = —m?. [We use the signature
(+++—) for g,,.] The function f* determines the

* Research supported by Aerospace Research Labs., OAR,
AF-33 (615) 1029.

1 The assumption of equal masses could easily be relaxed; it is
made here for simplicity and because of the special role played by a
rest-mass-zero gas.
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energy—momentum tensor via the equation

T =[  pnseopdr: ()
here P, (x) denotes the mass hyperboloid p? = —m?

in the tangent space of space-time at x, and dP,, is the
Lorentz-invariant measure on P,,(x).

Either Case A or B above implies that f satisfies the
Liouville condition?

fIx(s), p(s)] = const along each timelike (if m > 0)
or lightlike (if m = 0)
geodesic {x(s), p(s)}. (1.3)

The system of equations (1.1)-(1.3) is the general-
relativistic analog of the basic equations of stellar
dynamics; (1.1) corresponds to Poisson’s equation
and (1.3) corresponds to the collisionless Boltzmann
equation with gravitational forces.

Equations (1.1)-(1.3) are not independent; either
(1.1) or the pair (1.2) and (1.3) imply?

T, = 0. (1.4)

Real systems for which Case A above seems to be a
reasonable model are the system of galaxies now®
and the galaxies themselves, considered as systems
of stars.? Case B, with m = 0, may be applicable to the
early state of the universe in a big-bang model. In the
latter case, pertaining to epochs earlier than 10? years,
we may think of a mixture of photons, perhaps
neutrinos and even gravitons, and some electrons and
nucleons, with most of the energy due to rest-mass
zero or to ultrarelativistic particles. For photons the

2 G. E. Tauber and J. W. Weinberg, Phys. Rev. 122, 1342 (1961).

3 1t is difficult to estimate reliably the relaxation time, but if one
uses the usual Newtonian formulas (cf., e.g., Ref. 4) with a cutoff
distance ~10!° light years, one obtains relaxation times which are
at least not short compared to the Hubble time.

4 S. Chandrasekhar, Principles of Stellar Dynamics (Dover Publ.
Inc., New York, 1960), especially Chap. 11; see also the article by
L. Woltjer in Lectures in Applied Mathematics, J. Ehlers, Ed. (Ameri-
can Mathematical Society, Providence, R.1., 1967), Vol. 9, especially
Appendix 1.
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collisional equilibrium could be catalyzed by the
clectrons via scattering and free~free transitions; the
average time a photon takes to Thomson-scatter at
f = 10* years, assuming a temperature 7~ 10° °K
and a mass density p ~ 1071% gfem? (see Ref. 5), is of
order 1072 years, and this average collision time
decreases rapidly if we consider still earlier epochs.

In this paper we consider those solutions of Egs.
(1.1), (1.2), and (1.3) in which the distribution is
everywhere isotropic: There exists a timelike unit-
vector field u*(x) such that f(x, p) is, at any event x,
invariant with respect to all those restricted homo-
geneous Lorentz transformations in the tangent space
which leave u* unchanged. In physical terms, this
property means that there exists a preferred state of
motion at each event x in the universe, with respect to
which the peculiar motions of the particles near x are
isotropically distributed. Analytically this means that
f has the form f(x, p) = A(x, —u(x) - p). In Case B
this isotropy follows from the assumed collisional
equilibrium®; in Case A it is, of course, an independent
assumption.

We show that this assumption (and, in the case
m = 0, the additional assumption that either the
acceleration or the rotation of the mean flow vanishes)
leads, without any a priori assumptions about the
symmetry of space-time, to a Robertson-Walker
metric or to stationary space-times. In general-
relativistic cosmology (we now have in mind Case
A, m > 0) the cosmological principle and the Weyl
postulate (see, e.g., Ref. 7) can, therefore, both be
considered as consequences of the apparently weaker
postulate of an isotropic distribution of peculiar
velocities. The dependence of the scale factor a(r) of
the universe on the distribution function is given [Eq.
(4.7)]; this corresponds to the dependence of a(t) on
the “equation of state” in hydrodynamical models.

Our result and the method of proof are extensions
of the work of Tauber and Weinberg on general
relativistic gases (Ref. 2). These authors have deter-
mined the restrictions imposed on the metric and the
mean flow by the Liouville equation and the condition
of isotropy; they did not consider the further restric-
tions imposed by the Einstein field equation. Because
we want to point out the special role of rest-mass zero
gases, and also because we need a more detailed
description of the case of irrotational flows with
expansion than that given in the paper mentioned,
we shall rederive some of the relevant results.

5 R. H. Dicke, P. J. E. Peebles, P. G. Roll, and D. T. Wilkinson,
Astrophys. J. 142, 414 (1965).

$ K. Bichteler, Z. Physik 182, 521 (1965).

7 H. Bondi, Cosmology (Cambridge University Press, Cambridge,
England, 1961).
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2. GEOMETRICAL AND KINEMATICAL
PRELIMINARIES

In this section we describe a few properties of
congruences of timelike curves in normal hyperbolic
Riemannian spaces. We use these properties in the
proof of our main theorem.

Let u* be the normalized tangent vector to a con-
gruence of timelike curves uu® = —1. The vector
u* may be interpreted physically as the local average
particle world velocity.

The quantities w,,, 0,,, #,, and 0, defined by

2.1)

W’ = g,u’ =0, (2.2)

Uy = gy + Og — Uty + 10(ga + uatty),
— — a —
Ogy) = O‘[ah] =0,= 0»

are known, respectively, as the angular velocity (or
vorticity tensor), the shear velocity, the acceleration,
and the expansion velocity of the congruence (see,
e.g., Refs. 8 and 9).

We use the brackets ( )} and [ ] for symmetrization
and antisymmetrization, respectively, and use through-
out the dot to indicate covariant differentiation in the
u” direction, e.g., i, = t,,u".

The definitions imply the following lemmas:

Lemma 1: A flow is irrotational, oy, = 0, if and
only if the streamlines are hypersurface-orthogonal,
i.e., if and only if there exists a scalar ¢ such that

t, = —t,#0. (2.3)
Lemma 2: The property
(l:l[a - ‘:lsou[a),m =0 (2.4)

is necessary and sufficient for the existence of a
metric g,, conformally related to g, such that the
congruence is geodesic and expansion-free with respect
to g,; if (2.4) holds, we may put

i, — 30u, = U,, &, =e2Vg,. (2.5)
The properties discussed in these two lemmas are

conformally invariant, that is, they are preserved

under transformations

0% = W—lua,

gab = W2gaba (26)

where W is an arbitrary positive scalar field. The
vanishing of shear, o, = 0, is likewise conformally
invariant.

8 J. L. Synge, Relativity: The General Theory (North-Holland
Publ. Co., Amsterdam, 1960).

% J. Ehlers, Akad. Wiss. Lit. (Mainz) Abhandl. Math.-Nat. KI.
11, 793 (1961).
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By combining the preceding lemmas we obtain
further:

Lemma 3: The curves of a congruence are the orbits
of a one-dimensional (local) group of conformal
mappings of space-time into itself if and only if the
congruence is shearfree and satisfies (2.4); if these
conditions are satisfied and U is defined by (2.5),
&% = eVUu® generates the group. If, in addition, = 0,
the mappings are isometries.

We shall now prove:

Lemma 4: If a congruence satisfies w,, = o, = 0
and (2.4), then the metric is conformally decom-
posable; that is, there exist coordinates (x%) = (x°, t),
v =1, 2, 3, such that

DEF

G = Lo dx® dxb = e2U{dg2 —_ dtz}’
do® = p,,(x) dx* dx*, u®=eUsl. (2.7)

In fact, if w,, = 0, = 0 and (2.4) holds, we find from
Lemma 2 that, with respect to g,,, @g = Gop = U, =
6 = 0, i is then covariant-constant with respect to
&.» by Eq. (2.1), and consequently g, is locally the
direct product of a 3-space and a line (see Ref. 10,
p. 286), so that g,, can be written as in Eq. (2.7).

Finally, we shall establish two properties of Ricci
proper congruences defined by

(2.8)

From the contracted Ricci identity %, = }R,u°
and Eq. (2.1), we compute

U Rty = 0.

u'R, ey = §0 4, + terms containing wg, Or 0y.

Hence:

Lemma 5: If a Ricci proper congruence satisfies
a4 = 0, = 0, then its expansion velocity 0 is constant
on each hypersurface orthogonal to the streamlines, so
that

0 =0(1)
with 7 as in Eq. (2.3).

(2.9)

If we specialize further by combining Lemmas 4
and 5 taking into account that, for the case (2.7),
0 = 3e"U(0U/o1), we get:

Lemma 6: If an irrotational, shearfree Ricci proper
congruence satisfies Eq. (2.4), then coordinates exist
such that (2.7) holds with

e U = X() + Y(x). (2.10)

10 J, A. Schouten, Ricci Calculus (Springer-Verlag, Berlin, 1954).
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3. ISOTROPIC SOLUTIONS OF LIQUVILLE’S
EQUATION!

We now proceed to analyze Liouville’s equation
(1.3), ignoring the field equation (1.1) for the moment.
We have to find g,,(x), u,(x), and A(x, E) such that,
for a given mass m > 0, the distribution function

SCx, p) = hix, —u(x) - p]

is constant on each geodesic {x"(s), p*(s)} with p® =
dx*(ds, p* = gup°p’ = —m?. Here E is an auxiliary
real variable (£ > m) to be interpreted as the energy
of a particle with respect to that local frame (with time
axis u”) with respect to which f is isotropic in momen-
tum space.

Since h(x, E) > 0 and A(x, E)—0 as £E— o on
physical grounds, we know that 4" = 0h/0F # 0 for
some open £ interval. For £ in this interval let us put
h(x, E) = F and, for the solution with respect to E,
write E = g(x, F). Then Liouville’s equation is
equivalent to the statement that

dE d “ i
-5 (”apa) = —U,,D pb =P8 (3])
ds ds
on each geodesic, where we define g, = dg/0x* with
F fixed. If we split the 4-momentum in the form
P = Eu® + (E? — m¥)te,

a
ue® =0,

et =1,

3.2)
and insert Eqs. (3.2) and (2.1) into Eq. (3.1), we obtain

., 0 ; a
g +3(8" = m) +(g" ~ m (i, + g e
+ (g — mYo,efe® = 0.
This equation has to hold identically in the seven
independent variables x?, F, e*; e* may be considered
as a point on a Euclidean, two-dimensional unit
sphere. Hence, since spherical harmonics of different
degrees are linearly independent,
—28g
gz —m?
(3.3)

The last two of these equations can be replaced by
the single relation

WD

0, =0, u,+ (logg), = au,,

2

Uy = 30, = —(log ) — T2, (3.4)
Differentiating this equation with respect to F and
inserting the resulting expression for #, into Eq. (3.4),

we obtain
l"la - %0ua = ‘—%(108 gg'),a = U,rw (35)

11 For this whole section, compare Ref. 2, Sec. 111
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where g’ = 0g/0F and U(x) is defined by Eq. (3.5) up
to an additive constant.

According to Lemma 3 of Sec. 2, the congruence
associated with an isotropic distribution is conformal
{Tauber and Weinberg, 1962).

The function g(x, F) is related to U(x) by dU =
—4d(log gg’), d referring to the variables x* only with
F treated as a parameter. Integrating gives

e2(g? — m?) = I(F) — k(x) (3.6)

with some functions / and &. But from (3.3) and (3.5)
_0—=(g8 =)
3 2AgE—md

consequently, differentiation of Eq. (3.6) in the u*
direction gives

k=0; 3.7

thus & is constant on each streamline.
Combining Eqgs. (3.4) and (3.5), we get a further
condition:

2
'113—0 ug = m*Uu, = —g"(U + log g),.

(3.9

To summarize: Characterizing properties of an
isotropic solution of Liouville’s equation are Eqgs.
(3.6), (3.7), (3.8), and the conformal character of the
congruence generated by %

According to Eq. (3.8). two possibilities exist:

A. mf = 0: In this case (3.8) requires that g% is
a function of F only; then the distribution function
has the form

S(x, p) = j(EL(x)p*), (3.9

where &% = eUu® generates a conformal group and j
is some function. If § = 0, which is necessarily so if
m # 0, the group is an isometry group.

It is well known that Eq. (3.9) gives first integrals
for the equations of geodesics; the remarkable fact is
that these are the only ones of the form A(x*, —u,(x)x).

The case 6 = 0 is not of interest in cosmology, and
we shall not consider it in detail.

B. m0 # 0: In this case, Eq. (3.8) and Lemma 1 of
Sec. 2 show that the congruence must be irrotational;
consequently, Lemma 4 applies. Moreover, Eqs. (2.3)
and (3.8) show that the preferred time variable # must
be related to g and U by

ig*d(U + log g) = m2U dt.

Hence, ¢?Ug? must depend functionally on ¢ and F;
this fact, together with Eqs. (3.6) and (3.7), restricts the
functional relation to the form

e2Ug? = I(F) — q(t) (3.10)
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with some functions /, g. The distribution function is
therefore

JCx, p) = jLE)p°F + q(1)).

Using the preferred coordinates of Eq. (2.7), we have,
then, the result

@3.11)

G = k(xv) - Q(t) [d0'2 - dtZ],

m2

(3.12)

fx p) =j(ﬁ"—)n72—‘@ E* + q(t>), (3.13)
E being the energy of p® with respect to u*.

When mf 5 0, the irrotationality of the flow
follows, as we have seen, from the Liouville equation
and the isotropy condition. w,, might be different
from zero if mf = 0, at least so long as no field
equations are imposed. It is, however, of interest to
note that, if the flow is geodesic and has expansion,
u,=0%0, Eq. (3.5 and Lemma 1 show that
Wy, = 0. For m = 0 and 6 0, we therefore have the
subcases Aj:u, = w,, =0 and A,:u, # 0. In the
former, Lemma 4 applies again, and the metric can be
written in the form (2.7).

4. SOLUTIONS OF THE FIELD EQUATION
FOR ISOTROPIC DISTRIBUTIONS

We now ask which restrictions are imposed on the
solutions {g,,, f} of Liouville’s equation by the field
equation (1.1) with the source (1.2). The isotropy of
Jf with respect to u* implies that

T = (u + p)us® + pg®, 4.1)
where the mean energy density « and pressure p can be
expressed in terms of f (see below). From (4.1) and
(L.1) it is obvious that #° is an eigenvector of the Ricci
tensor, i.e., Eq. (2.8) holds. In Case B of the preceding
section and also in Case A, if either 4, = 0 or w,, = 0
is assumed, we can apply Lemma 6 of Sec. 1; we then
obtain the metric

[X() + Y(x*)]2[do? — dr?]. (4.2)

In Case B, comparison of this expression with Eq.
(3.12) shows that the conformal factor can depend
only on ¢ or on x*, but not on both variables. Since
0 # 0, we conclude that k = const, ¥ = const; hence,
without loss of generality, ¥ = 0in (4.2). The resulting
metric satisfies the field equation with (4.1) only if it is
a Robertson-Walker metric (see Ref. 12, p. 107)

a*(t) do® — dr® 4.3)

(t is a new time coordinate), where do? has constant
curvature € = 4+1,0. From (3.13) the distribution

12 P. Jordan, Schwerkraft und Weltall (Vieweg and Sohn, Braun-
schweig, Germany, 1955).
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function is then of the form

1

" g(a*(np”),

J(x, p) = (4.4)

where
P? = (gu + utt)pp’

is the squared 3-momentum of a particle relative to
the preferred local frame defined by «%, and g is some
positive function of a real variable.

From (1.2) and (4.4), introducing x = a |p|, we get

p= [Tt 4 2,
o
p= %a"f x'g(x*)(a*m® + & tdx, (4.5
0

These relations imply, as is well known,? energy
conservation, (ua®)" + p(a®) = 0, and therefore the
only remaining field equation is

3a%(a® + ¢) =J‘mx2g(x2)(mza2 + x)tdx. (4.6)

Since all these nniverses have, according to Ray-
chaudhuri’s theorem, a singular state ¢ = 0 which we
may take as the ¢ origin, the time development of a
generalized Friedmann model is determined by the
function g, the distribution, through

= %3 J l:—3eu + f x*g(x*)(m®u +x2)%'dx:|_‘d”~
0 0

4.7

Equations (4.3), (4.4), (4.5), and (4.7) determine
completely the model universe in Case B.

We now return to Case A and restrict attention to
the subcase 0 # 0 so that m = 0. Since, in this case,
T, = 0from (1.2), in Eq. (4.1) we have

1

P = M.

Independently of Kinetic theory, it follows that, for an
energy-momentum tensor (4.1) together with (4.8), the
conservation law 7., = ( is equivalent to the relation

(4.9)

(4.8)

ua - :lsouu = —i(log fu),a’

which implies the conservation law s + juf = 0.
Its geometrical meaning is described in Lemma 2 of
Sec. 2. (The quantity whose density is uf is conserved
during the motion. For thermal radiation, this
conserved quantity is the entropy.)

Combining (4.9) with the arguments which led to
the metric (4.2) [cf. Eqs. (2.5) and (2.10)], we see that
in the case m = 0 the source quantity u is related to
the conformal factor by

po= X1 + YOI (4.10)

EHLERS, GEREN, AND SACHS

Now we use the “4,4 component” of the field equation
(1.1):

Gabuaub = —Uu,

where the left-hand side can easily be computed from
(4.2) by means of the equations for conformal
transformations,’® and the right-hand side is given by
Eq. (4.10). We obtain

dx\ PR 2
6(:17) — X+ V)= RX + Y)
—4AY(X + Y) + 6DY = 0. (4.11)

Here R is the Ricci scalar of do?, A is the Laplace
operator of do*, and DY = y*Y,Y . Since 0 0
implies dX/dt # 0, we can introduce ¢’ = X(f) as a
new time variable and write (dX/dt)? = F(t'). Then
(4.11) becomes

6F(t) =2(t'+ Y)*+ R(¢' + Y)?
+4AY(t' + Y)+ 6DY.

This equation holds identically in ¢’ and x*; the left-
hand side is independent of x*; therefore, the right-
hand side (in particular, the coefficient 8Y of ¢3)
is independent of x¥; then Y = const. We absorb Y
into X(r) so that ¥ = 0. The further analysis is identi-
cal with the one in Case A, following Eq. (4.3), with
the specialization m = 0 in Eqs. (4.5) to (4.7). Then
the models are precisely the Tolman models.
We have proven the following:

Theorem 1: The most general solution of the Ein-
stein—Liouville equations (1.1), (1.2), and (1.3) with an
isotropic distribution function for particles with
nonvanishing mass is either stationary or a generalized
Friedmann model {(4.3), (4.4), (4.7)}; for particles
with vanishing mass, the solution is either stationary,
or a Tolman model, or nonstationary with #, %
0 # o, M

If one looks at the proof, one recognizes that a
result can also be formulated which is independent
of kinetic-theory assumptions.

Theorem 2: The only solution of the Einstein field
equation (1.1) with a “perfect-radiation” source

T = %(411“:1" + g™

13 |, P. Eisenhart, Riemannian Geometry (Princeton University
Press, Princeton, N.J., 1956); P. Jordan, J. Ehlers, and W. Kundt,
Akad. Wiss. Lit. (Mainz) Abhandl. Math.-Nat. KI1. No. 2, 23 (1960).

14 Whether the jast case actually admits solutions is not known
at present. Some perturbation calculations suggest this case is
empty. Of course stationary solutions are known: see O. Klein, Arkiv
Mat. Astr. Fys. 34A, Paper 19 (1947).
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in shearfree, irrotational motion is the Tolman
universe.

We also note the following:

Corollary: The gravitational field generated by a
spherically symmetric “perfect-radiation” source in
shearfree motion is either static or the Tolman uni-
verse.

In fact, a timelike vector field #*, invariant under the
group Oy (acting on spacelike spheres), is automatically
hypersurface-orthogonal; the gas is then irrotational,
and the corollary follows from Theorem 2.

We end this section with a few additional remarks:

(1) Equation (4.5) can be considered as a parameter
representation of an “equation of state” u = @(p)
determined by the distribution g. If m =0, u = 3p
for all g’s.

(2) The original Friedmann universes, i.e., the
dust models (p = 0), are contained in {(4.3), (4.4),
(4.7)} as the limiting case in which

2
g(x®) = M 3(x) , ua® =M = const;
they are the only models without any random particle
motions.

(3) For t -0, and hence a — 0, all the models
(except the dust model) behave, according to Egs.
(4.5) and (4.7), asymptotically like a Tolman
radiation universe; if a model expands indefinitely, it
behaves for #-— oo and a — oo asymptotically like a
dust model; more precisely, one has u~ a3 and
plp~a?.

(4) A Planck distribution

is rigorously compatible with (4.4) if m =0 and
T~a?; an equilibrium distribution for m > 0,
however, is incompatible with an isotropically ex-
panding universe.®
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According to Eq. (3.13), the general solution of
Liouville’s equation in a Robertson~Walker universe
has the form f(x, p) = j(a*(t)p?); hence if at = 1, we
have, say, a (relativistic) Boltzmann distribution

(2 2v%
¢ exp (;E) = exp (_(L’__i__p_)_.) y
kT, kT,

then we obtain later

f(x, p) = cexp (k:ft{'"z N [ag(%}zpz}%),

which is not an exact equilibrium distribution. For
(a(t)/a(ty))’p* K m? we have, however, approximately

f(x, p) ~ ¢ exp (pY/2mKT),
with
T = Ty(a(tp)/a()?,

which is a (nonrelativistic) Boltzmann distribution
with a temperature T ~ a~2 (compare Ref. 5).

5. DISCUSSION

Unfortunately, the result presented cannot be
taken to mean that the universe in its earliest stages
was necessarily a Friedmann model with detailed
balance established by rapid collisions of a gas whose
particles have zero or negligible rest mass. There are
various difficulties. First, nothing is known as yet
about the case where a rest-mass zero gas rotates, not
even if time-dependent detailed-balance rotational
solutions exist. Second, it is known that in a Friedmann
model there are particle horizons.!® For example,
with the parameters mentioned in the Introduction a
given particle has had time at # = 108 years to com-
municate with only about 10 solar masses of matter.
There must be particle horizons in more general
models as well; we can hardly suppose that portions of
the gas which have not had time to communicate have
been able to establish detailed balance. More generally,
our equilibrium considerations do not indicate how
quickly detailed balance is established, if at all.

15 W. Rindler, Monthly Notices Roy. Astron. Soc. 116, 662, 1956.
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The results of a previous paper concerning the asymptotic behavior of Stieltjes transforms for large
|2] are extended to prove theorems which hold uniformly for all directions in the complex plane. Special
additional assumptions, which hold for all sufficiently large values of the argument of the function whose
transform is taken, are required to obtain these extended results,

I. INTRODUCTION

In an earlier paper! we proved several theorems
concerning the asymptotic behavior of Stieltjes
transforms for large |z|, which were shown to hold
uniformly in a sector of the complex z plane which
does not include the cut in the transform. It was
pointed out that such asymptotic properties are
important in considering the exact form of dispersion
relations for particle-scattering processes. For such
considerations it is in fact necessary to have results
which hold uniformly for all directions in the complex
plane and apply, in particular, to principal-value
integrals. The purpose of this paper is to extend the
results of Ref. 1 in just this way.

The first task is to define the Stieltjes transform on
the upper and lower sides of the cut. This leads
naturally to the imposition of a Lipschitz condition
on the original function at each point. The boundary
value of the transform can then be defined in terms
of a Cauchy principal-value integral, and the trans-
form thus defined in the cut plane has a continuity
property as the cut is approached from above and
from below. These ideas will be made precise in Sec. IL.

Section III will prove, under two inequivalent sets of
conditions, that the transform F(z) approaches zero
as |z| approaches infinity in any direction; indeed
uniform convergence for all directions will be demon-
strated, As one would expect, the conditions on the
original function are more restrictive than in Ref. 1.
Section IV establishes that, under stricter conditions
on the original function, z*F(z) -0 as |z} — oo,
where 0 < « < 1. Finally, in Sec. V a bound on
|F(z)| is obtained from a bound on the original.

A number of results about the asymptotic behavior
of principal-value integrals were given by Hamilton
and Woolcock.2? The results in Secs. III and IV of this
paper considerably extend many of the results given
"+ Present address: Department of Theoretical Physics, Institute of
Advanced Studies, Australian National University, GPO Box 4,
Canberra, ACT 2600, Australia.

1 W. S. Woolcock, J. Math. Phys. 8, 1270 (1967).

2 7, Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963).

in that paper. The original inspiration for these
results derives from the late E. C. Titchmarsh. The
result of Sec. V is similar to one of Lanz and Prosperi,?
who derive a bound on |F(z)| by putting conditions
on the derivative of the original function.

II. PRELIMINARIES

We take g(x) to be a real-valued function, defined
for all x > 0, which belongs to L([a, b]) for any
choice of a, b with 0 < a < b and for which the limit
J_0g(x) dx exists.* These conditions will be assumed
to hold for every theorem and corollary in the paper
and will not be explicitly stated.

If the limit [~ g(x) dx/x exists,* the function F(2)
may be defined by

Ry ={ 04

-0 t—2z

for z not belonging to [0, o). The Stieltjes transform
as usually defined is then F(—z). The function F(z)
is an analytic function, regular in the whole z-plane
cut along the nonnegative real axis.

We first remove the complication at the lower end
by noting that, if

“ g(r) dt
-0l — Z

$(2) =
for z not belonging to [0, a], then
29— = [ s dr
as |z| — oo uniformly for all directions. For, writing

v =[ et ©<x<a. yO) =0,

we have

260 + [ g(0 de = 22D

a—2z

(1) dt
ot — 2%

3 L. Lanz and G. M. Prosperi, Nuovo Cimento 33, 201 (1964).

1 The use of an arrow to denote that a limit is taken is due to
E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals
(Oxford University Press, New York, 1948), 2nd ed., p. 9.
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For any z, with |z| =1 > a,

le2sl=q

and the result follows.
This simple resuit will mean that results stated for
F(z) later in the paper need be proved only for the

function
_ (T g(nadt
@ =[5

f () d,

which is defined when z does not belong to [a, ).
We put the natural extension of the definition of
f(z) to the upper and lower sides of the cut [a, )
in the form of a theorem.

Theorem A: Suppose that there exist constants
K>0,u(1>u>0),h(xg—a>h>0)such that

lg(x) — g(x)l < K |x — Xl
for all x for which |x — x,| < h. Then

6 Pf g(1) dt exists;
a t— Xo
(ii) f*‘” _gdt dt N PJ*‘” g(1) dt
t— Xo — a 1= X

yl0.

The proof uses straightforward analysis but lies
outside the purpose of this paper.® Since g(x) is
real-valued,

f"“ g(®) dt _’me g(1) dt
a t—xo—iy a t— X,

— img(x,) as y10.

If the Lipschitz condition of Theorem A holds uni-
formly, the conclusions of the theorem can be strength-
ened. This leads to:

+ img(x,) as

Theorem B: Suppose that for x, > a there is an
interval I = {x, — h, x, + k], where 0 < h < (x, —
@), such that, for any points x,, x, belonging to I,

lg(xy) — 8(xa)| K K |x; — x,/* (O <pu <.
Then

(i) $(x) = P f )

[which exists for (x, — /) < x < (xo + /) by Theo-

® g(y) dt
t—Xx

5 The techniques of the proof will be found, for example, in N. 1.
Muskheliskvili, Singular Integral Egquations (P. Noordhoff Ltd.,
Groningen, The Netherlands, 1953), Chap. 2.
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rem Al] satisfies
[(x)) — x| < K'[x; — x| (0 <p’ <)y

for any two points x;, X, belonging to the interval
[xo — H', xo + '], where 0 < A" < A%
(ii) given € > O there exists & > 0 such that

|f(x + iy) — d(xo) — imglxg)| <€
for all x, y satisfying 0 < |x — xo| < 6,0 < y < 4.

In the theorems of Secs. III-V it will be possible to
find @ > 0 such that the condition on g(x) in Theorem
B holds for each x > a; the correct definition of f(z)
for the upper and lower sides of the cut is therefore
clear. Write z = r exp (i) and distinguish 6 = 0 and
6 = 27 as two separate possibilities. Thus from now
on fis taken as a function of two real variables r,
6 which is defined as follows:

s =[O

t — re®’

for z = re not belonging to [a, ©);
f(r,0) = f g(t) dt + ing(r) for »> a;

f(@r,2m) = PJ %(—t)—(% — ing(r) for r> a.
The complete transform F(r, 0) = ¢(r, 6) + f(r, 0) is
defined provided z = re?® does not belong to [0, a]
and satisfies F(r, §) = F*(r, 2= — 0).

We shall prove results concerning the behavior of
F(r, 6) as r — oo which hold uniformly for 0 < 6 <
27. In view of the reflection property above, only the
interval 0 € 6 < 7 need be considered. The corre-
sponding theorems of Ref. 1 will show in each case
that the desired asymptotic property holds uniformly
for § <0 <m, where 0 < 8 < =w. Thus we need
consider only the interval 0 < 6 < B, which we denote
by S, . For reasons which will appear later, § is taken
to be a fixed angle satisfying 0 < 8 < tan™' 1.

1. CONDITIONS UNDER WHICH THE
TRANSFORM TENDS TO ZERO
Theorem 1: Suppose that |~ g(x) dx/x exists and
that g(x) satisfies one of the two following conditions:
(a) There exist constants K >0, A > 0, b > 0,
@ (1 > p > 0) such that

18(x2) — g(x)] < Klxp — x,|*

for all x,, x, satisfying x;, x, > b, {x; — x| < h.
Further, g(x) In x — 0 as x — oo.

8 Any positive 4’ < p will do; K’ will depend on the values of
W, k' chosen.
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(b) Given € > 0, there exists X > 0 (depending
on ¢) such that
lg(xs) — g(xy)| <
x2 - xl xl
for all x;, x, satisfying x, > x; > X.
Then F(r,0) —0 as r— oo, uniformly for 0 <
b £ 27,

Proof: Choose a > 0 as in Sec. II and consider
f(r,6) for 6 €S;. From now on we take x > 4,
where x = rcos 8, y = rsin 6. Let

f(r: 6) = (.ﬁl +.fz +f3 +.ﬁl +f:5 +f6)(r9 6),

where the range of integration has been divided into
the intervals [a, A}, [A, 3x], x,x— 7], [x — 7
x + 9], [x + 7, 2x], [2x, o), respectively.

(a) Consider first f, and f;. We have

o i

tm . 0) = [ ar 80—

Resdr, )=, gﬁ’)zri%}%‘
tmfir, 0 =y a8t

Now the functions #(x — t)/[(x — )+ »*] and
t/[(x — t)? + y*] are monotonically increasing in
[A, x/2], while the functions #(t — x)/[(t — x)? + »?]
and ¢/[(t — x)* + y*] are monotonically decreasing
in [2x, ), provided tan 6 = y/x < 1/v/3. Applying
the second mean-value theorem for integrals,’

_=(x/2 g(t)
Re fo(r, 0) = 2 + 7 f dt »
(x/2)y g(t)
Im i1, 0) = =02 [
2l Y ()
Re fi(r, 0) = — g Lmdt ut
Ym fy(r, 6) = ny f dt g(‘)

where A < &, £, < x/2, 2x < &, 54. Now, since
§27° g(1) dift exists, given € > 0, we can choose A so
that

[falr, O + | fo(r, O)] < €[4
for all r, 6 satisfying r cos 6 > 2A, 6 € S;. Henceforth

7 See, for example, E. W. Hobson, The Theory of Functions of a
Real Variable and the Theory of Fourier’s Series (Cambridge Univer-
sity Press, New York, 1927), Vol. I, 3rd ed., Sec. 422.
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A is fixed; it is taken to be always > 1. Next,
* lg(n)] dt 1 f s
< )| dt
a |t —z| '_(x—A) alg()l
2 A
<2 { ) a,
since x > 2A.
Hence | fi(r, 0)| < €/4, provided

[fi(r, O) £

rcos @ > lg(t)ldt

Consider now
Res(r,0) = P ay MEEE D Z 0D,
~n u® 4 y?

the principal value need be taken only when y = 0.
If # < h, we have

ulte

! 2Kn*
1Ref4(r,0)|gzl<f duy ——— <=L

o Uty I
Therefore by choosing # sufficiently small we can
make |Re fy(r, 0)| < €/4, independently of r and 6.
Henceforth 7 is fixed; it is taken to be always < 1.

Finally, choose X so that

elnA

42InA +2Inyt + 7)
for all ¢ > X, and suppose that x > 2X. Then

=1 qt a dt
, 0 "N ——— <] —
alr )I<EJ‘%¢ lntlt-—zl"eféx (x—1lnt

< €(ln x/2)(In x/2 + In77Y),
and similarly

lg®)|Int < (= ¢, say)

Lfs(r, 0)] < €(In x)(In x + In7 ™).
Since, for y # 0,

t) dt
m ) = [~ EET

x+n

we have
(Im £i(r, 6)] < i —
m f(r,
g In x/2L—"(t—x)2+y
= __251_ tan_l ﬁ < .__’_ .
In x/2 y Inx/2
But Im f,(r, 0) = mg(r), so this inequality extends to
6 = 0. Thus, provided r cos & > 2X, we have

| fa(r, O) + (Im fo(r, O)] + | fo(r, O] < €/4,

since x > 2A.

Combining the above estimates, we conclude that
|f(r,0)| < e for all (r,0) such that 6eS;, r>
sec f max {24, 2X, 8/e (% |g(2)| dt}.
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(b) We prove first that g(x) -0 as x— oco.
Given € > 0, we have, for x > X(e),

J“g(t)— gx) 4, <€r’(t_—x_)if
© t

x tx
=¢€(1 —1n2),
and so
2 e ofv
f g—(t—)—t——g—("—)dt—>0 as x— o0.
€
But
2x
f -‘g(—t—)dt->0, as x — o0,
) !
and

2z 2
f 80 4t = g(x)1n 2 +f g — g(x) dt,
x
which establishes the required result.

The estimates of f;, f;, and f; given in (A) may be
taken over to this case, thus fixing A, It remains to
consider

(fs + fo + ), 6)
2x t 2z N —
d i8+f g g(X)d
w2t — re x/2 t — re®
= ¢i(r, 0) + $u(r, 0).
The definition of ¢, , ¢, for 6 = 0 is clear from Sec. I1.

Now
by(r, 0) = g(x)[% In ((;/‘;2__%)

+ i(ﬂ- —tan ¥ — tan™? 2—"})},
X x

and so |$y(r, 6)] < g(x)| (In 2 + ). Since g(x) —0
as x — oo, there exists X; such that |¢,(r, 0)| < €/4 for
all (r, 0) satisfying x > X;, y > 0.

Finally, choose X, so that

= g(x)

M< for x, > x;, > X,.
Xy — X 8x,
Then, for x > 2X,, y > 0, we have
|a(r, 0)]
o—§ - 2z —
< im ( f g = £l ,, . f 15 — &), )
E-0 x/2 x -1 t—Xx

<illar s

Hence | f(r, 6)| < € for all (r, 0) satisfying 6 € Sg,

€ €
= —(1 In2 -
) 8(+n)<4

A
r> sec f max {2A, X,, 2x2,§f lg(t))dt}.
€ Ja

The theorem is therefore established under both the
conditions (a) and (b).
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The conditions (a) (with g = 1, of course) are not
equivalent to that of (b). Two simple examples show
this. Note first that, if g(x) is differentiable for all
sufficiently large x, condition (b) becomes xg'(x) — 0
as x — oo. Now consider g(x) = sin x(In x)~2. Then
J== g(x) dx/x exists and g(x)Inx—0 as x— oo.
Further, g'(x) — 0 as x — oo and so, if

= sup {g'(x): x > 2},

then for y > x > 2 we have [g(y) — g(0)|/(y — x) < M.
This means that all the conditions in ((a) are satisfied,
with 4 = 1. However, since xg’'(x) does not approach
0as x — oo, condition (b) is not satisfied. On the other
hand, if

g(x) = sin (In x)(In x)72,

§7 % g(x) dx/x exists and xg’(x) — 0 as x — 00 so that
(b) is satisfied. But g(x) In x does not approach 0 as
x — o0 and so one of the conditions in ((a) fails.

We turn now to two corollaries.

Corollary 1: Suppose that xg(x) satisfies the condi-
tions on g(x) in Theorem 1. Then

—» o

gtydtasr —

re’F(r, 6) — —f

0

uniformly for 0 < 0 < 2.
This is an immediate consequence of Theorem 1.

Corollary 2: Let xg(x) = A + h(x), where h(x)
satisfies the conditions on g(x) in Theorem 1. Then

re®F(r, 0) =

where

—A(lnr + i(0 — m) + O(r, 0),

o(r, ) — —Log(t) dt -fﬁ ‘ ﬁ%‘ﬂ

1

as r — o0, uniformly for 0 < 6 < 27,

Proof: When z = rexp (i) does not belong to
[a, c0),

re’%f (r, 0)

=Af dt( 1.0—1—)+rei"f _Hodt
a t—re' t « Kt — re®)

The extension to r > a, 6 = 0, 27 is clear. By Corol-
lary 1, the second integral on the right side

N _J‘*"O Ar) dt

as r-—» oo, uniformly for 0 <0 < 2% The first
integral on the right side is

—A[ln (@ + r? — 2ar cos ) + i(0' — 7) — Inal,
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where tan 6’ = rsin 6/(rcos @ — a). For r> a, 6’
increases monotonically from 0 to 27 as 6 increases
from 0 to 2. Now
In (a® + r* — 2ar cos 0)%’
r

< —In (1—9)90
r

as r — oo, uniformly for 0 < 6 < 27, while
ltan (0" — 0)] = a|sin 6|/(r — a cos 6)
<alf(r—a—0

as r— oo, uniformly for 0 < 0 < 2.
From Sec. 11,

a
re®(r, ) — —f g(?) dt
-0
as r — oo, uniformly for 0 < 6 < 2=. Thus
ré®®F(r, ) = —A(nr + i(0 — m)) + O(r, 6),

where

O@r,0)—>Alna —fjog(t) dt —f

a

- 1

=% h(1) dt
t

as r — co, uniformly for 0 < 0 < 2.

IV. ANOTHER THEOREM

In this section we show that strengthening the
conditions on g(x) leads to the behavior r*F(r, 6) — 0
asr— oo, with0 < a < 1.

Theorem 2: Suppose that g(x) = h(x)/x*, where
0 < « < 1 and h(x) satisfies one of the following three
conditions.

(a), (b). These are identical with the conditions
(a) and (b) on g(x) given in Theorem 1, together with
the condition that [~* h(x) dx/x exists.

(¢) h(x) = 1/p(x), where:

(@) px) > 0forall x > a (> 0),

(i) p(x) is concave?® in [a, 00),

(iil) p(x) — co as x — 0.

Then reF(r,0)—0 as r— oo, uniformly for 0 <
0 < 2m.

Proof: Choose @ > 0 as in Sec. II. Since a« < 1 we
need prove onmly that r*f(r, 6) — 0 as r — oo, uni-
formly for 6 € S;. Again we always take x > a.

& This means that for any x,, x, such thata < x, < x, and any 4
for which 0 < 2 < 1 we have

P(}*xl + (1 - A)xn) > }-P(xz) + 00— l)P(xa)-

See, for example, G. Choquet, Topology (Academic Press Inc.,
New York, 1966), Sec. 16.
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(a) The proof is an adaption of that of Theorem
I(a). To deal with f; and f, note that if 0 < « < 1
and 0 < 0 < tan™! §, the functions

1 (x — 1) e
(x—0*+ ) (x— 0"+
are monotonically increasing in [A, x/2], while
%t — x) e
(t=x*+y* (t—x)* +y*

are monotonically decreasing in [2x, c0). Using the
second mean-value theorem as before, it follows from
the existence of {,”® A(t) dt[t that, given ¢ > 0, we can
choose A such that

r 1 folr, )] + 1% fo(r, 0)] < €[4

for all (r,0) satisfying rcosf > 2A, 6eS;(0 <
g < tan~' %). Henceforth A is fixed (and is chosen
> 1). Next,

A
i 0)] < 2/ f 18] dt

and so
A
A )] < 2x7M(sec B)F | |g()] dt.

Thus r* | fi(r, 6)| < €/4 provided 6 € S; and r cos 6 >
(/< (sec f)* [2 [g(1)] =",
Special care is needed in estimating Re fy(r, 6). For
x2b+hlu <h
|x*(g(x + u) — gD
S + w)* — xg(x + u)
+ 1 + w)f'glx + u) — x"g(x)
< lgx + wladulGx — lul)*™ + Klul*.
But g(x) is bounded for x > b and so a constant X’
can be found so that

Ix*(g(x + u) — g(N| < K'|ul*
for x > b + h, |u| < h. Then estimating as before,

A1
r* [Re fi(r, 0)] SM
u

for < h, 6 €Ss. Thus by choosing % sufficiently
small we can make r*|Re fy(r, 6)| < ¢/4 for 6 € Sy.
Henceforth 7 is fixed (and is chosen < 1).

Finally, choose X so that

elnA

4Q21n A + 2Iny7 + 7)(sec B)*
for all t > X. Then for rcos 6 > 2X, 0 € S;, we find
that

(| fo(r, O + [Im fi(r, O)] + 1£5(r, O)]) < €/4.

k() In t] <
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The proof is completed on combining the above
estimates.

(b) The estimates of f;, f5, and f; in (a) may be
used, thus fixing A. As in Theorem 1(b), h(x) — 0 as
x — co. Now consider

st fa t fs)("a )
dt k() — h(x)
= r*h(x —_— dt
) o2 1%t — re'®) +r 2/2 *(t — re'd)
= ¢1(r> 0) + ¢2(r’ 0)
The definition of ¢,, ¢, for 8 = 0 is clear. Now

2z — d
Re ¢1(T, 0) = r“h(x)L/2 t“[(t(t—- x;? +t yZ]

B

x 4 (u 4+ D*u® + tan® 0)
For fixed 6, the integral on the right side decreases
monotonically as « increases from O to 1. For « = 0,

this integral < In2 and, for « = 1, > — In 2. Thus,
for0 < a<1andfesS,,

IRe ¢y(r, 0)] < (sec BY(In 2) | h(x)].

Also,
\Im ¢y(r, )|

( ) IH9)ltan f%(l + u)“(ju+ tan® 6)

< (sec By ;’T [h(x)]

for 0 < « < 1and 6 € . Since h(x) - 0 as x — 00,
there exists X; such that |¢,(r, 6)] < €/4 for all (r, 6)
satisfying rcos 6 > X, 6 € S;.

Finally,
3 2k _
[$a(r, )] < (2—’) im f |h(x) — h()| dr
X/ &0 /2 X —t
2z
- x
Now choose X, such that
lg(xs) — g(xy)| .
X2 — X% 8x,(2 sec B)*’

for all x,, x, satisfying x, > x; > X,. Then we have
[ha(r, 6)] < €/4 for x > X,, O ¢ Sg. Combining the
above estimates completes the proof.

(c) Since p(x) > 0 for all x > a,it follows that
p(x) is a monotonic increasing function of x for
x 2 a. For, if there exist x,, x, (x, > x,) such that

p(xz) < p(xy), it follows from the concavity of p(x)
that, for x > x,,

P() S pOxa) + [p(xa) — pOrol(x — x3)/(xy — xy).
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But the right side of this inequality becomes negative
for x > [x,p(x1) — x1p(xx))/[p(x1) — p(x,)).
Since 1/p(¢) is monotonically decreasing for 7 > a,
the second mean-value theorem gives
=/2 dt(x — t)
L #p(l(x — O* + ]
__1 F*’” du(l — u)
p(A)x* Jare u[(1 — u)* + tan® 6]’
where A < &, < x/2. Hence for 6 € S,,
du
ou*(l —u)

Re fy(r, 0) = —

(sec B)*
a R 2 0
IRe fo(r, )| < )

Similarly we find that for 6 € S,
(sec B)*tan B LI
p(d) out(l — u)*’
(secpy*(° du
p(2x) J2 wu — 1)’
(secf)*tan B° du
p(2x) 2 ufu— 1)

Since 1/p(x) — 0 as x — co, we may choose A so that

1o O + 7 | fo(r, 0)] < ¢/4
for all r, 0 satisfying rcos 6 > 24, 6 & S;. Hence-
forth A is fixed.

Exactly as in «(a), r*|fi(r, )] < /4 provided
6 € Sg and

r* {Im fy(r, 6)] <

r*|Re fo(r, 0)] <

r*[Im fi(r, 6)| <

A {1—-a)-1
rcos 0 > (§ (sec ﬂ)"‘f dt ) .
€ a *p(t)
Finally, consider
*(fs + fo + f)(r, 6)
- rafzz———ﬁi‘——-—— (r, 6)
a2 1°p(0)(t — re’) v
Asin (b), for 0 < o < 1 and BESﬂ,
1
[Tm (r, 6)] < (sec ﬁ)’
2 ( /2)
Now write
a 2
Re y(r, 6) = __dit—x)
P(x) Jarz [(t — x)° + ¥
_ P (md (@~
p(x) Jaiz 1 (t — x)? + y°
1 p(t) — p(x)
iy t—x

The first term on the right side is less in absolute value

than (sec $)*(In 2)/p(x) for 6 Sp, by the same argu-
ment as in (b). To estimate the second term, note that,
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since p(x) is concave in [a, o), the function (p(f) —
px)/(t — x), for fixed x (> a), is a monotonic
decreasing function of ¢ for a <t < x and for
t > x (its left and right limits at x need not be equal,
but of course the left limit > the right limit). Thus

o (dt _(t—x® 1 p(t) — p(x)
pe) Jarzt® 1 — X + ¥ p(d) t—x
r*  p(x) — p(x[2) (> dt

~ p(x)p(x/2) x[2 a2 1
(_’)“ P = p(x2) _ 4 (_r) 1
x/  p(x)p(x[2) x) p(x]2)

Combining the above inequalities,

Y (3 1

r 0 <(—)(——+ln2+3) ,

vl O < {~]{3 G2

so that we may choose X such that |yp(r, 6)| < €/2 for

all r, 0 satisfying r cos 0 > X, 6 € S;. Combining the
above estimates completes the proof of (c).

Clearly the conclusion of Theorem 2 holds if g(x)
can be written as the sum of a finite number of terms,
each of which satisfies one of the conditions (a), (b),
or (c). The simplest examples of functions p(x)
satisfying the condition (c) are In x (witha > 1) and
In In x (with @ > e). This means that we could have
h(x) In x — a nonzero constant as x — co in (a).

Corollary: Suppose that x*g(x) = A + h(x), where
A, o are constants, 0 < « < 1, and A(x) is the sum of
a finite number of terms, each of which satisfies one of

the conditions (a), (b), or (¢) on A(x) in Theorem 2.
Then

r*e"®F(r, 6) — Am(cot ma + i),
as r — oo, uniformly for 0 < 6 < 27,

Proof: For 0 < 0 < 2=,

r*e**F(r, 6)

= raeiaoAJA#w———dt -
-0 1%t — re®)

— raeizO A j ¢ dt
~0 1%(t — re')

+ r“ei“"fﬂ g(p) dt + raeiadf-}w dt h(t) .
0t — re o (t —re?)

The extension to 6 = 0, 27 is clear. The first term on
the right side is wA(cot w 4 i). The result proved
early in Sec. IT applies to the second and third terms
and Theorem 2 to the fourth term.

W. S. WOOLCOCK

V. A BOUND ON THE TRANSFORM
The theorem to be proved in this section is similar
to one of Lanz and Prosperi.?

Theorem 3: Suppose that g(x) = h(x)/x* (0 <
a < 1), where A(x) satisfies the conditions:

(i) |A(x)| < A4, a constant, forx > a > 1, and

(ii) thereexist constants K > 0,72 >0, u(1 > u >
0) such that

[h(xg) — h(x)] < K [x5 — x,|"

for all x;, x, satisfying x;, x, > a, |x3 — x| < h.
Then there are constants C, R (> a) such that

|F(r,0)| < Cr*Inr
for all r > R, 6 € [0, 27].

Proof: By Theorem 4 of Ref. 1 and the result of
Sec. Il it is sufficient to prove that there exist constants
C’, R (> a) such that

Ifr 0 < Cr*lnr

forallr > R, 0€S,.

Take x = rcos 0 > (a + h) and divide the range
of integration into three intervals [a, x — A], [x — A,
x + h], and [x + A, ), with

fr, 0 = (fi + fa + 1), 6).

As in the proof of Theorem 2(a) there is a constant
K’ such that

[x(g(x + u) — g(x)] < K" |u]*
for x > (a + h), [u| < h, and so

IRe fi(r, 0)] < 2K
ux®

For the other estimates we have
IImfZ(r’ 0)' < 7""‘1/(x - h)“a
=k dt A (9= 4
|f1<r,6)l<Af Y| u

a (x—1) x*Jwe u(l —u)

1-a/z
S%‘L/x u(ldiu)<A(l _+1nh)
o< 4] =%
<A L) = Sl
Thus, for 0 € Sy, r = (a + h) sec B,

r* | f(r, O)|/Inr < (sec f)*(34 + BfInr),
where B is a constant. This proves the result.

=
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The orbit—orbit, spin—spin, and spin—orbit Hamiltonians of the Breit-Pauli approximation are express-
ed in terms of irreducible tensors. One- and two-center expansions are given in a form in which the
coordinate variables of the interacting particles are separated. In the one-center expansions of the orbit—
orbit and spin-orbit Hamiltonians the use of the gradient formula reduces some of the infinite sums to
finite ones. Two-center expansions are discussed in detail for the case of nonoverlapping charge distri-
butions. The angular parts of the matrix elements of these Hamiltonians are evaluated for product

wavefunctions.

1. INTRODUCTION

Relativistic effects cause energy splittings and
energy shifts in atoms and molecules. They are
responsible for certain “forbidden transitions,”
which are often significant in spectroscopy. These
effects also modify the interaction between atoms and
molecules at large separations.

The lowest-order relativistic corrections to the
energy of a system can be calculated by using the
Breit-Pauli Hamiltonian. Corrections of order higher
than o2 (where « is the fine-structure constant) cannot
be obtained consistently in this approximation. This
Hamiltonian is limited to systems containing nuclei
with Z <« 137, However, this does not seem to be a
practical limitation for many problems since the
valence electrons are shielded by the inner-shell
electrons and thus are not appreciably affected by the
bare nuclear charges. In long-range force calculations
the Breit-Pauli approximation is valid for inter-
molecular separations less than the wavelength of the
characteristic transition in the molecules.'? At
larger separations retardation effects become more
important and quantum electrodynamics must be
used to calculate the higher-order corrections.?

In this paper one- and two-center expansions for the
orbit-orbit, spin-spin, and spin-orbit Hamiltonians
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are derived using the algebra of irreducible tensors.**
This technique makes it possible to separate the
coordinate variables of the interacting particles. If
product wavefunction§ are used, then the matrix
elements can be evaluated in a straightforward
manner.

In the one-center expansions the coefficient involving
the radial variables contains an infinite sum. In the
case of the orbit-orbit and spin-orbit Hamiltonians,
the use of the gradient formula results in a finite sum.
This technique has also been used by Blume and
Watson® for the spin-orbit Hamiltonian.

In the two-center expansions only the expressions
for nonoverlapping charge distributions are discussed
in detail. The general case, however, can be treated
using the same techniques.

For other expansions and integrations of the spin-
spin Hamiltonian, see Ref. 7.

2. THE BREIT-PAULI HAMILTONIAN

The following Breit-Pauli Hamiltonian® describes
the interactions of electrons moving in a nuclear
Coulomb field. The operators for the spin and linear
momentum of the jth electron are denoted by s; and
p; = (1/))V;, respectively. All the results are in
atomic units (energy in e?/a, units, length in g, units
where q, is the Bohr radius). The vector going from
electron k to electron jis r;;, = r; — r,. We use Greek
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¢ M. Blume and R. E. Watson, Proc. Roy. Soc. (London) A270,
127 (1962).

? R. M. Pitzer, C. W. Kern, and W. N. Lipscomb, J. Chem. Phys.
37, 267 (1962); M. Geller and R. W. Griffith, J. Chem. Phys. 40,
2309 (1964); D. M. Schrader, J. Chem. Phys. 41, 3266 (1964).

8 The starting point for this Hamiltonian is the Breit—Hamiltonian:
G. Breit, Phys. Rev. 34, 553 (1929); 36, 383 (1930); 39, 616 (1932).
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indices to designate nuclei and Roman indices to
represent electrons.

The derivation of the Breit-Pauli Hamiltonian
is discussed for a 2-electron atom by Bethe and
Salpeter.®1® The generalization to a molecular
system is given by Hirschfelder, Curtiss, and Bird.!
The grouping of the tcrms is similar to the one used
by Bethe and Salpeter?:

H=H, + o®H,,, 2.1
where o = e*[fic is the fine structure constant,
V4 1 Y/
Ho=-33V-3=2+3 —+3 =L, (22)
i WBTjp k>iTg  f>a Ty
and
Hy=Hp + Hgg + Hg, + Hp + Hp, (2.3)
with
a1 .,
Hpyp=—--3% —5 [PaPi P+ Ty (- PIP), (24)
28531
8
Hgg =k§_ {— ?ﬂ (85 - 80 (r;)
1 .
+ 5 Py s = 3 w0 1)), 29)
ik
1 z
Hgp =~ ET”(rm X P;)+S;
2 Birig
1 1
--> 5 [ x py) - s; — 2(r X py) - 85l
PATER
(2.6)
Hp=—1%2 0} Q.7
i
Hy =T [z 2,69, — 23 5‘3’(r,.,».)]‘ (2.8)
B K>3

Equation (2.2) is the usual nonrelativistic Hamiltonian
for the system. Z, is the nuclear charge of the ath
nucleus.

The first term in the relativistic Hamiltonian H,;
gives the orbit-orbit interaction corresponding to the
classical electromagnetic coupling of the electrons.

The coupling of the spin-magnetic moments is
given by Hgg. The Fermi contact term involving the
delta function gives the behavior of this Hamiltonian
when r;;, = 0. The second term is only applicable
when rj;, # 0.

? H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Academic Press Inc., New York, 1957),

. 170.
P 10 This Hamiltonian has recently been derived using quantum
electrodynamics by T. Itoh, Rev. Mod. Phys. 37, 159 (1965).

115 O, Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York,
1954), p. 1044.

P. R. FONTANA AND W. J. MEATH

Hg;, represents the spin-orbit magnetic coupling
between electrons.

Hp is the relativistic correction due to the variation
of mass with velocity.

Hyp, is a term characteristic of the Dirac theory,
which has no simple interpretation.

In the above equations the nuclei are considered
fixed (Born-Oppenheimer approximation) and we
assume no external electric or magnetic fields.

In order to derive the one- and two-center expan-
sions of the Breit-Pauli Hamiltonian, it is convenient
to use the algebra of irreducible spherical tensors.*-®
This method allows the separation of the variables
into product form and permits the application of the
Wigner-Eckart theorem!? in the calculation of
matrix elements, The first step in this procedure is to
write the various terms in the Breit-Pauli Hamiltonian
as contractions of irreducible tensors. To illustrate
the method of contraction, we consider H; specific-
ally, and then state the results for the other relativistic
Hamiltonians without derivation.

In the first term of H; one has to contract p; * p;.
This can be done by introducing the following
spherical tensor of the arbitrary vector A:

L

2

T(A) = F =4, £id); Ti=A4,. (29)

Then

P P = Zl(—l)“’Ti’(p,-)Tr“’(pk)- (2.10)

Pk
The second term of Hy,; can be written as a double
contraction. The first contraction is as follows:

3
Tyoe By = (4—3’-’) S (=D REITIE), 21D

where Y¢(r;;) is a solid spherical harmonic which in
general is defined as!®

() = r'Y0, ). (2.12)

Then
L s (P * PP

1 1
AT S S (1Y) W TR TR

3 w=—1 p=—1

(2.13)

12 E P, Wigner, Z. Phys. 43, 624 (1927); C. Eckart, Rev. Mod.
Phys. 2, 305 (1930).

13 The phase convention we use for the ¥;“(0, @) is the same as that
used, for example, in E. U. Condon and G. H. Shortley, Theory of
Atomic Spectra (Cambridge University Press, London, 1935), and
in Refs. 4 and 5.
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The two solid spherical harmonics can now be coupled
together:

Yo ) i) = ]é C(i1l; w, n)

”zm<n+n
X C(111; 00) Y™ (6, @), (2.14)
The Clebsch-Gordan coefficient C(11/; 00) vanishes

unless (1 + 1 + /) is even and / is in the range 0 to 2.
Using Egs. (2.10)-(2.14), one obtains

—% E (=D*TY() T (Pe)

1
Hpp=32 —

k>7 Vi

—QQZ(D“ngQm

X Y500, @) TP TT(0)
(2.15)
The first part of Eq. (2.15) contains a contribution
from the /=0 term of Eq. (2.14). The Clebsch~
Gordan coefficient in Eq. (2.15) can be given in ¢losed
form?s:
C(112; wy)
=[ @+ o+n2=o—n!
6(1 + o)1l — )11+ {1l — !
In a similar fashion the spin-spin Hamiltonian can
be contracted to yield!®

T. (2.16)

- %r 890 T (—D°T(s;) T1°(s:)
T (= 1)*HC(112; wn)

(2417)*
5 r ik @
X Y§H(6,e, ) T1o(8,)TT(5:)
217

It is sometimes convenient to couple the spins

Hgg =3
e
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together to form a total spin tensor defined by*?
17755 Si)

=3 C(1l; —«x, —v + QOTSHTT (s, (2.18)
Then the Fermi contact term contracts to a scalar

and in the spin-dipole—dipole term the spin transforms
like a second-rank tensor:

33‘— o ) T3(s;,8:)

Hgg == (2.19)
88 kg}, _ (2477) S (— 1)
5 Jk y
X Y305, @) T2"(5;5 8¢)
In the spin-orbit Hamiltonian Hg; one can first
introduce a tensor T{(r x p) to give

V4
Hmf=“22 LS (=D TP, x PTG

7 ’ﬁ w
1
~= 27 Z( e
2KFirh e
X [TP(rm x py) — 2T7(r; x pITT(s))-
(2.20)

In the first term of Eq. (2.20), (r;, x p;), is the orbital
angular-momentum operator of electron j with
respect to nucleus f. The vectors (r; x p;) and
(r; X Pr), however, are not angular momentum
operators about a fixed center. Here it is convenient
to write them as a contraction which separates the
position variables from the momentum operator:

Tf("dk x Pf)
=1 3 2 C(i1l; 9, w

i =1

— Y )T "(p). (2.21)

The Clebsch-Gordan coefficient in Eq. (2.21) is
given by

[(1 +1 0=+ + o) — w)!]*
1L a=mia+o-—nthte-oF

C11;n, 0 — ) =

(2.22)

J3 _[(1—n)z(1+w-n)z(1+w)z(1—w)!]%

I+l —o+H1 —n!H{eo -]

The remaining relativistic Hamiltonians H, and
Hp only involve scalars and thus need not be
considered further.

14 See, for example, Ref. 4, p. 61,

15 Closed form expressions for these coefficients are available
(see Refs. 4 and 5), and they are tabulated in Ref. 13. The 3+
symbols, which are closely related to the Clebsch~Gordan coefficients,
have been tabulated in detail by M. Rotenberg, R. Bivins, N, Metro-
polis, and J. K. Wooten, Jr., The 3-j and 6-j Symbols (The Technology
Press, Cambridge, Mass., 1959).

¢ p. R. Fontana, Phys. Rev. 125, 220 (1962).

3. ONE-CENTER EXPANSIONS

In general, the origin of the coordinate system is
arbitrary. The vectors r,; and r; denote the position
of a nucleus and an electron, respectively.

The derivation of the one-center expansion for
Hpp., Hgg,and Hgy, respectively, consists of three
steps. First one has to express the Y*(f,,, ¢;) as a
sum of products in the spherical harmonics of (6;, ¢,)
and (0, ¢,). Then (1/rp)" is expanded in a similar
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manner. Finally the two expansions are coupled
together.

The general addition theorem for the solid spherical
harmonics is given by Rose!’:

Yi(r) = 42N + D1t
y L C(L,N — L, N:x,yt —
Lo k=21 [CL+ DN —2L + n!
X YyZp(r,) Yi(ry). (3.1
The one-center expansion for (1/r;)" can always be
written in the form?®
2 & R(—n D

1

— =4 2= (= 1)'YYO;, )Y V(0k, @),

3 ﬂ-zgnvg—s(ﬂ-{-l)( YYUO;, oY (6rs @)
(3.2

where R(—n,[) is a function of r; and r;. Only the
radial coefficients for » = 1, 3, and 5 are required.
In the limiting case r; = r, the functions R(—n,!)
diverge for n > 3, and one has to introduce a special
cutoff in the integrations. Letting r; = r(1 — ¢) at
the limit avoids these difficulties. After integrating
and adding up the sums, € can be set equal to zero.
If one uses the Laplace expansion, then!®

rl
R(-1,) = ;;}}1 (3.3)
0 r2<-n+l
R=3.D= QI+ D3 550 G4
_Q4pe et
R(=51 = —-—3——20(;1 + D@+ 21+ 3) ST
(3.5)

where r_ and r_ stand for the greater or lesser of r;
and r,. The coefficients R(—#n, /) can also be written
symmetrically with respect to r; and r,. There are two
such expansions; they involve powers of (r? + rij
and (r; + ry), respectively’®3*:

_ (2n — Dt
R(—1,0) = (2l + 1)§(n T4 DU = Dl

(3.6)

_ 2n + DU riry

3.7)

QI+ 1) s @2n + )N
3 T4+ Dt — Diptrts’
(3.8)

R(~5,1) =

17 M, E. Rose, J. Math. & Phys, 37, 215 (1958).

18 R. A, Sack, J. Math. Phys. 5, 245 (1964); 5, 252 (1964).

19 p_ R. Fontana, J. Math. Phys, 2, 825 (1961); Y. N. Chiu, J.
Math. Phys. 5, 283 (1964).
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where
r=@2+rdt n=0L142,1+4,- -,
(2k)’!=::24-..2k,

and
Qk+ DN =13+ 2k + 1);
R(=1,1) =221 + 1)
y & 2L+ 2n — DU+ n)rr)t"

, (39
n=0 (21 + n + D! nl (r; + r )2t (3.9)
R(—3,D=QlI+1)
bt 2 2 1(r.r )"
% (21420 4 DI (rm, 610
w0 (2L 4+ n 4 D n! (r; 4 rfiteess
R(~5,1) = &+ 1
6
%S QL+ 2n 4 3! (r )"
a0 (I 4+ n 4+ DR+ n 4+ Dinl(r; + r)ttroms’
(3.11)

Finally, Egs. (3.1) and (3.2) are combined using the
coupling theorem for spherical harmonics!4:

1
“n YR(rie)

Fix
= [4=(2N + DI il v L s g3 1)
1,v L,k q,¢
X Y ErER(=n, DY 0, 9) Vi O 92
(3.12)
where

o, v; L, ks g3 1) = (= DE
< C(L,N — L,N; k,u — ©)C(N — L, I, aip ~ ‘)
(2 + D@t + DL 2N = 2L)')*
X C(N ~ L, 1, g; 00)C(L, 1, t; , —»)C(L, 1, t; 00).
(3.13)

Here the sums over ¢ and ¢ are controlled by the
Clebsch~Gordan coefficients.

One can now apply Eq. (3.12) to the tensorial
representation of the relativistic Hamiltonians [Eqgs.
(2.15), (2.17), and (2.20)]. The resulting one-center
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expansions are

X Y7 (0> @) TY(PDTL(Py)
0 13 2 L 1 ’
+22 2222
1=0v=—1 L=0xk=—L q,t o,n=—1
X (=1)YC(112; o, n)

X x5, v; L, x5 q; 05k
X R(=3, DY(0;, ¢,)
_x Y70, 0T °(p)T1"(py) |

(3.14)

Hp, = —87"’2

k>j

+ 36%r,) E TY(s)T1(sy)

w=~1

+653 S 553

1=0v=—1l L=0k=—L q,t o,n=—1
X (=1D)*MC(112; w, )
X 25, v; L, k5 g5 1)
X r2 —L LR( 5 l)
X Y70, @)Y O, @)
_x T7“(s;)T1"(s;)

k>J

(3.15)
%Z 3 =Z (=DT7(rss x pYT1(s;)

L
22
=—Lq,{ w,

|

|

M
iMs ¢
T~
M»—a
M=

(=1

i k# 1= —1 L=0

X C(lll;n,w —-n)

X 71 v; Ly w5 43 Oy riR(=3, 1)

X Y70, 9V Ors 90)

X [TY7"(p;) — 2T7"(pIIT (). (3.16)

There is a striking similarity between the second

terms of Hy; and Hgg, the difference being the radial
coefficient R and the appearance of linear-momentum
operators in Hy; and spin in Hgg. It is interesting to
note that the angular-momentum operators do not
appear in Hyy. It is indeed possible to rewrite this
Hamiltonian in such a way that it contains angular-
momentum terms, but the transformed Hamiltonian
does not simplify appreciably.? In all these expansions,

I

n

20 The transformed Hamiltonian has the following form
1 |

-3 ,T [2r2:(p; - P&} — (r; X PL)(P; X Dy
E>j ik

Hyp =

— (5 X P) o L; — (125 X py) Ll
The terms of the form (r;; X p,)I; represent the couplmg of the

angular momentum of electron k relative to electron j with the
angular momentum of electron j.
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the variables associated with electron j and k are now
separated. In this form the angular part of the matrix
elements of these Hamiltonians can be carried out in
a straightforward manner (see Sec. 5). A difficulty
arises in the radial integrations since the coefficients
R(—n, I) for n > 1 involve infinite sums.

In the case of H;; and Hyg;, these infinite sums can
be transformed into finite ones by applying the
gradient formula to Eqs. (2.4) and (2.6), respectively.
The procedure makes use of the fact that r;/rd
appears in these two Hamiltonians. By making use of
the relationship

T . _y L
r s
ik ik

(3.17)

and the gradient formula®

TY(WNO(r)Y (0, ¢)

I+ 1 ,
(21+ )C(l L4 1w, w Y5O, 9)

dd ] l
— —-d) - Cl,1,1—1;9,
% (dr r ) (21 ) ( % H)
X YIH(O, qo)( + ’—+—1<1>) (3.18)
r

the uth component of ry,/r3, can be written as

T{‘(—V, 1) 473 (~1yC(1n; 00)
Tk L,y

X C(lln; v, —w)
X Y570, @)Y (6ks 94, (3.19)

2+ 1\
Al,l+1=(2l+3) z+2 «(r; — re),

% Pt
2l 4+ 1
bt = —(2l ) ey — 1) (3.20)

and e(x — y) =1 for x > y, € = 0 for y > x. With
these equations one can rewrite H; ; and Hg, in the
following way:

(411_)2 0

S35 3 (e

6 r>il=0v=_iw=——1

where

R(—1,1
Q1+ 1)
X Yy0;, )Y (b, ) TY(PHTT(Py)
4,”2 5 o 1 1 L 1
U2y SS S S Y S

6  k>il=0v=—IL=0k=—L n,q,{cq~—1

Hpp = —>+—+

X 15 e AL YO0, 0 )Y IOk )
X Ty(p) T, "(pr)s (3.21)

#1 M. E. Rose, Multipole Fields (John Wiley & Sons, Inc., New
York, 1955), p. 28.
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FiG. 1. Coordinate system for two-center expansions.

where
G = (= 1)L+v+m+.,[ @n + D21 + 1) ]*
QD@2 ~-2LY!(12q+ DRt + 1
x C(L,1 — L, 1; k, o — x)C(I1n; 00)
X Cllln; v, =)C(n, 1 — L, q;m — v, 0 — k)
X C(n,1 — L, q; 00)C(ILt; v, k)C(ILt; 00),
(3.22)

1 1
Hop =23 355 3 (=D Tir, x p)TT™G)
B i ripw=—
2 5 w 1 1
\/ > 23 2 im0 —7)
E#*il=0y=-1n o,q=—1

X C(lln; v, —n)C(I1n; 00)
X Y305, 9)Y(0rs 1)
X Ay [TY7(P) — 277 ()1 T %(sy).  (3.23)

In a calculation of matrix elements of Hy; the
angular integration restricts the ranges of g and ¢
and then C(/, L, t;00), say, limits the sum over /.
For Hg; the angular integration directly limits the
sum over /.

4. TWO-CENTER EXPANSION

One has to distinguish several regions in two-
center expansions.?? In long-range force calculations
the distance R between the two centers is larger than
the size of the charge distributions of the interacting
molecules. In this case one can expand the Breit-
Pauli Hamiltonian in a series in inverse powers of R.
To obtain two-center expansions for the regions
where the charge distributions overlap, one begins
with the one-center result, transforms to the second
center, and re-expands the result.

The coordinate system used in the two-center
expansion is given in Fig. 1. The x, y, and z axes of
the two coordinate systems are parallel. In general,
R is not along the z axes. However, in most applica-
tions R is chosen to lie along the z axes. The vector
r; specifies the position of electron j with respect to
center A4, and r;, the position of electron k referred to

22 R, J. Beuhler and J. O. Hirschfelder, Phys. Rev. 83, 628 (1951);
85, 149 (1952).
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center B. The position of the nuclei are designated by
r, and ry, respectively.

The quantities Y?(0,., ¢;) and r;* which occur in
the tensor forms of the Breit-Pauli Hamiltonian must
be expressed in terms of the variables of the two
coordinate systems. To generalize Eq. (3.1) to two
centers, one makes use of the relations r, =r; —
r, =1; —r, — R. Then

‘yN(rzk) = [47(2N + 1)']'}2 z ( 1)N+L

C(L,N —L,N,K,/l— K)
[(2L + DI@N — 2L + D
Yy () Yi(ry), 4.1)
where on the right-hand side we have permuted r,
and r;, which introduces the phase factor (—1)V.

Since 1, = r; + R, Y475 (r,) can be expanded using
Eq. (3.1) to give

L N-L J

(r,k)—-4wz > 3 S (—)MEERN + )it

=0 k=—L J=0o=—J
X CL,N—L,N;k, s — x)
C(J,N—L—J,N—-L;w,,u—x—w)

[QL + 1)!(2J + 1)I(2N — 2L — 2J + DIt
x Yi(r) Y5 () Yy o/ (R). (4.2)

If R lies along the z axes, then®

Yoo (R
T 3
R ol WA CE)
and
Ylrs) = 15 Y ¥ O ®310)
—pseN + s 3 3 DT
=0 j=ox="L(N — L — J)!
« (N + ! (N — p)! ¢
QL + 1)2J + 1)L + «)! (L — «)!
XJ—p+)LJ 4+ p— k)
X r; ,JRN_L—JY (01, ‘P;)Y k(plc)
(4.4)

The two-center expansion of r;" for overlapping
charge distributions is in general very complicated.
For n = 1 the expansions have been done for the
overlap regions.?? ‘A method!® has been developed
that can be used for the general expansion of rp".
For the nonoverlapping region a useful expansion
has recently been derived by Sack.* In this case

23 p, R, Fontana, Phys. Rev. 123, 1865 (1961).
24 R. A. Sack, J. Math. Phys. 5, 260 (1964).
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electrons j and k are associated with centers 4 and B,
respectively. The following result is valid for R along
the z axes?:

1 (_ l)h(_ 1)*(h+l|+l;)
— =4n 2 Z E Rt 2et 2t

r;’k I1.l3l3 v a,t
I1+1g+13=even

K(ly, Iy, Iy; %)

X Gy ly, Ly, Iss g, 75, 17)

x Y305, )Y’ (6%, @1,

G(n, ll’ 125 la; qa t; ri’r;c) =
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where

K(lla 121 ls; 'V)
_ B+ L+ B!
B0y + L — DI B+ I — DI B + I — ]!
[(211 + DQlL + DRl + 1) + 1, — 1! ]*
X

X (ll + 13 - 12)! (lz + ls - ll)!
L+ L,+14+ 1)

X C(llyly; —v, %) (4.6)
(4.5) and
2ll+lz+v+tr[%(n + 11 + 12 + ls) + q + t] (4.7)

F(g)r[;(n — IRl + 29 + D! @l + 20 + Dt gl 1!

xThn+hL+bL—-L-1)+q+ t]l‘f'aH‘(r;:)th'.

In Eq. (47) I'(x) is the Gamma function and the
double factorials are defined in Sec. 3. The two
center expansion for the orbit-orbit, spin—spin, and
spin—orbit Hamiltonians can now be obtained by
substituting Egs. (4.4) and (4.5) in Egs. (2.15), (2.17),
and (2.20), respectively, and coupling the various
spherical harmonics. In the resulting equations?® the
variables associated with centers 4 and Bare separated.

The Wigner-Eckart theorem!? when applied to the
angular parts of the matrix elements of H;;, Hgg,
and Hg; yields selection rules for these Hamiltonians.

5. MATRIX ELEMENTS

The one- and two-center expansions of the Breit—
Pauli Hamiltonians Hy;, Hgg, and Hg; are of the
general form

Hy; ~ Z { }Y;(O,-, )Y (O, )T T1(Pr)s

(5.1
Hgg ~ ): { Y0, @) Y0, )T (s,)T1"(sy),
(5.2)
Hgp ~ Z { 1Y30;, )Yi(0k, )T (P)T1(S0)-
) (5.3)
If the wavefunction ¥ is of the type
Y=>3c, H {va(r:, 5)}, 5.4
where !
(1, 8) = ©(r)Y [ 0;, eI, (s), (5.5

25 The result for n = 1 agrees with the previous work of R. C.
Carlson and L. S. Rushbrooke, Proc. Cambridge Phil. Soc. 46,
626 (1950) and Refs. 17 and 22.

¢ See appendices 1.A-1.C of W. J. Meath, The University of
Wisconsin Theoretical Chemistry Institute Technical Report
WIS-TCI-75, April, 1965. For explicit expressions through (1/R3)
see W. J. Meath and J. O. Hirschfelder, J. Chem. Phys. 44, 3197
(1966).

then the matrix elements of the Hamiltonians can be
calculated in a straightforward manner. In Eq. (5.5)
7,,(8;) is a two-component spinor (x4, = +3}).

In H,; and Hg; one first has to operate with
T7°(p;) on the wavefunction. Application of the
gradient formula [Eq. (3.18)] yields

T, “(pp¥(r,) Yr 0;, ¢;)
%Z C(Itu; m, —w)C(11u; 00)

1 u

X Y370;, ¢)A;(r), (5.6)

20+ 1\tae 1
= ]
2+3) \dr, 1,

20+ 1o 141
Aya= ( + ) ('—‘ + (D), (X))
21 — 1/ \dr; r;

)

where

with all the other A’s vanishing because of the tri-
angular condition in C(/, 1,u;00). The angular
integrations in Hy;, Hgg, and Hg; are now all of
the same form, namely?’

(Y,’f“'(ﬂ,-, e YH0;, @) |Ylm(0,-, D)
_rei+neq+1t. Nl o
- [—_4ﬂ(2t' = } C(lql'; m, », m)C(lql'; 00).

(5.8)

The selection rules for this angular integration can be
directly obtained from the Clebsch—Gordan coeffi-
cients. The integral vanishes unless /+ 7' <¢ <
[l = I'| and the sum / + ! 4 q is even. Also m’ =
m+ .

27 See, for example, Ref. 4, p. 62.
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The integration over the spin variables is given by
the expression?

@) TT(s,) m,(s,))
3
= \/7 C(313; 1, —o, 1)
= (=DM — g+ ) (A +p— @) (5.9

28 See, for example, Ref. 4, p. 89.
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The remaining radial integrals depend on the
particular choice of ®(r;) and cannot be done in a
general manner.
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Complementary variational principles are developed for the solution of Fredholm integral equations
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The integration over the spin variables is given by
the expression?

@) TT(s,) m,(s,))
3
= \/7 C(313; 1, —o, 1)
= (=DM — g+ ) (A +p— @) (5.9

28 See, for example, Ref. 4, p. 89.

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9, NUMBER 9

P. R. FONTANA AND W. J. MEATH

The remaining radial integrals depend on the
particular choice of ®(r;) and cannot be done in a
general manner.
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®, U, and r. T' is the adjoint of T in the sense that
f U(T®) dr = f (T U)® dr, )

the integrations being taken over the whole configura-
tion space. If we define the functional

1@, U) = f W(r, ®, U) dr — f UT®)dr  (3a)

= f W(r, ®, U) dr — f (T'U)® dr, (3b)
then the following results can be derived!:

Stationary property: I(®, U) is stationary at (¢, u)
if Egs. (1a) and (1b) hold simultaneously at (¢, u).

First variational principle: Choose a trial ® close
to ¢, and determine U(®) so that (la) is satisfied
identically.

Then, if (1b) holds at (¢, u), we have
G(D) = I(®, U(D)) = I(p, u) + 3}A(D) + O — ¢),
©)

where

2@ = [[@- w)[;;?w:l

_ [U@) — "FBZZL,H} dr. (5)

Second variational principle: Choose a trial U
close to u, and determine ®(U) so that (1b) is satisfied
identically.

Then, if (1a) holds at (¢, u), it follows that

J(U) = (O(U), U) = I(p, u) + $Ay(U) + O(U — u)’,
(6

where

20 = - [ |190) - "’]BFWJ

— (U - u)Z[ZzT";] M} dr. (1)

If terms of higher order than the second are ne-
glected (or vanish), we see that the functionals G(®)
and J(U) furnish complementary upper and lower
bounds for I(g, ) when A, and A, do not have the
same sign. If A, and A, do have the same sign, then
G(®) and J(U) become different one-sided bounds.
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B. Integral Equations with Symmetric,
Positive-Definite Kernels

These variational principles are immediately appli-
cable to integral equations of the type

m(®) = f Ko(r, s)®(s) ds, 8)

whenever
&)

and it is assumed that the functional » has an inverse.
We may write (8) and (9) together as

m(®) = K = T'T,

R, s) = f B, YS(s, t) dt

(10)

where K, T, and T" are now integral operators. [If T
corresponds to the real kernel G(r, s), then the adjoint
T corresponds to the kernel (s, r).] Condition (9)
clearly implies that X(r, s) is a symmetric kernel (or,
equivalently, that K is a self-adjoint operator, assum-
ing always that orders of integration can be changed).
It also implies that J(r, s) is a positive-definite kernel,
since, for an arbitrary real function y(r), we have

fprw dr =f1pTT Ty dr =f(T¢)2 dr>0. (11)

Further discussion of the kernel J is given in Sec. 5.
If we take

W = }U* 4+ M(®), (12)

AM[d® = m(®), 13)

then it is easy to see that Eq. (10) is equivalent to the
pair of simultaneous equations

where

ow
TO = U = 2=, 14
35U (14a)
ow
T'U = M@) = 22 . 1
(@) o0 (14b)

The function g is to be the solution of Eq. (8) for @,
and u is Te. On substituting from (12) and (13) into
the various formulas of Sec. 2A, we obtain the
expressions

G(®) = f (—}TD® + M@)}dr (15

= f {—3OK® + M(®)}dr,  (16)
J(U) = f (31U + M(m™(T'U))

—(T'Om T U} dr, (17)
and

I(p, u) = f (—tom(g) + M(@)}dr.  (18)
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It is interesting to note that expression (15) for
G(®) does not involve the T operator explicitly. A
similar expression for J is obtained if we restrict
ourselves to trial functions U of the form

U=T0, (19)

when (17) becomes
J(TO) = f (}0KO + M(m~(K©))

— (KOm(K®)}dr. (20)
From (5), (7), and (12) it is evident that, if

o*w dm
=|—| L0,
[a¢2:|¢.u l:dq):|(p_

then G(®) is a lower bound to I(gp, v) and either J(U)
or J(T®) are upper bounds which are complementary
to G(P).

3. NONHOMOGENEOUS LINEAR
INTEGRAL EQUATIONS

A. Basic Formulas

1)

The nonhomogeneous linear equation

o) = f(r) + 4 f K(r, s)(s) ds (22)

provides an example of the foregoing theory with

m(®) = AP —f) (23)

and

W=3jU?+ 1'(30* - fD). 24)

The various functionals become

G(®) = f {—}OKD + 173D — fO)} dr, (25)
J(U) = f (U — 17 + AT dr, (26)

J(TO) = f (}0KO — 17 + AKOP} dr, (27)

and
I, u) = =43~ fﬁp dr.

It should be noted that W is merely a quadratic
functional of ® and U, so that in this case there are
no third- or higher-order terms in Eqs. (4) and (6).
Thus the condition that ® and U should be close to
the exact ¢ and u can be dropped.

(28)

B. Complementary Bounds for Negative 1

Whenever A is negative, condition (21) holds and we
obtain complementary lower and upper bounds

GLILI. 29)
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The quantity 7 acts as a measure of the accuracy of the
solution of the integral equation (22). In situations
where [ fo dr is of physical interest, this technique is
particularly advantageous.

C. Bounds for Positive 4

If A is positive, a closer examination of the func-
tionals A;(®) and A,(U) is required. From (5), (14),
and (24) we have

A(®) = f (@ — ) — [T@ ~ @)} dr

= f @ — P)At — KX® — g)dr  (30)

and
A(U) = — f ATV — Wt = (U — w)?} dr
= +1f(U — W — K)(U — wydr. (31)
Thus the

positive-definiteness of (1! — K) (32)

is a necessary and sufficient condition for both A,(®P)
and A,(U) to be nonnegative.

In this situation G(®) and J(U) are each upper
bounds to (g, u), and the question arises as to which
is the less. In general, we cannot say, but in the partic-
ular case when

U=To, (33)
it is not difficult to see that J is less than G. From (4)
and (6) we have

G(®) — J(TD)
= $A,(D) — $A,(TD)

=it f @ — g)(1 — 2K + K@ — ) dr

= f (=K@ — pPdr>0. (34
The evaluation of J(T®) requires only a single applica-
tion of the K operator, as does G(®); in principle we
have a better bound.

When KX satisfies the Hilbert-Schmidt condition

f f KXr, 5) dr ds < oo, (35)
we note that (32) is equivalent to the condition
0< A<y, (36)

where 4, is the smallest eigenvalue of K (these eigen-
values are all positive, since K is positive-definite).
This follows from standard integral-equation theory,
which tells us that, as y varies, the quantity { yKy dr
has greatest value A, { 32 dr.
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D. Systematic Improvement of Bounds by Iteration

When 1 is positive, condition (36) is precisely the
one required in order that the Neumann series for the
solution of the integral equation (22) by iteration
should converge. Thus, if @, is an approximation to ¢,
we expect @, defined by

D=1+ KP,, 37

to be a better approximation. From (34) it follows
that

G(®,) 2 J(TD,). (38)

Moreover, since

A1(®n+1)
= f (f + AK®D, — )(A~ — K)f + AK®D, — ¢) dr

= f (@, — PIK(A — K)AK(@, — ¢)dr,  (39)

we have
J(T®,) — G(D,y)
= i‘Az(T(I)n) - %Al(q)n-t—l)

=3 f @, — o)(K — 24K® + ZKH®, — ¢) dr

=1 f {(1 = AK)@, — PIK{(l — AKX®, — p)} dr
>0, (40)

from (11). Thus, starting with any initial function @, ,
it follows from (38) and (40) that, when condition
(36) is satisfied,

G(®) 2 J(TD,) 2 G(Dy) = J(TDy)

2G(@) 221, u). (4D
If 4 is negative and satisfies
1Al < 44, (42)
then the result corresponding to (41) is
G(@) <G L - < I, w)
L S J(TD) S H(TDY. (43)

E. Improvement of Bounds by Scaling and Ritz
Procedures
Because of the quadratic nature of the functionals
G and J, they can readily be improved by scaling
procedures. For example, if « is a parameter, it
follows from (25) that

G(a®) = 3o f O — K)D dr — ai f O dr. (44)

Let «, be the value of « which optimizes (44), chosen
by setting 0G/0u equal to zero. The optimum func-
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tional is

o]

G(®) = G(o,®) = —
22 f O — K)D dr

(45)

For a given @, G(®) is a best lower bound when 1 is
negative and a best upper bound when (41 — X) is
positive-definite. Similarly, from (26) and (27) we

obtain R
{ f Tty dr}

2fU(1 — JK)U dr

{ f KO alr}2

2 f (KOX! — AK)O dr
(47)
When (At — K) is positive-definite, we can extend
the result (34) to give
G(®) > J(TD).
This follows because
G(®) = G(xe®) > J(Tog®) > J(TP).

However, results (40), (41), and (43) do not necessarily
hold for individually optimized G’s and J’s.

Instead of introducing a single scale factor we can
adopt a Ritz procedure and set

JU) = =31~ f f2dr — (46)

and

HTO) = —3it f 2 dr —

(48)

(49)

in (25), where the y’s are m linearly independent
functions. The consequent optimized functional is

G (D) = —}B'A'B

®=a1’l’1+“z%+"’+°‘mfl’m

O B, B - B,

B, Ay A Ay

Bz Azl A22 to Azm
= +§(det A)7| . .,

Bm Aml Am2 Amm
(50)

where

B, = 1" ffzp,- dr, (51)
A=Ay = f w7 =Ky, dr,  (52)

4 is the square symmetric m X m matrix with ele-
ments A,;, B is the column matrix with elements B,
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and B’ is the transpose of B. A similar result is obtain-
able for J. When (4! — K) is positive-definite, we
have

Gn(®) 2 T, (TD),

analogously to (48). Also it can be proved that?
G 2G(®) 2 2 G @) 2 2 I(p,4)
(%)

(53)

and
L2221, 2 2 p,u). (55
For negative A the result is
Gi(@) < Gy(@) < - -+ < I(p, w)
< L H0) L I(U). (56)

4. COMPARISON WITH A RESULT OF
STRIEDER AND PRAGER

In a paper on bounds for Knudsen flow rates,
Strieder and Prager® discuss an integral equation like
= (22), subject to the conditions

A>0, (57)
H(r, s) = K(s, 1) 2 0, (58)

and
it~ f ®(r, s) dr > 0, (59)

which arise naturally from physical considerations.
They show in effect that G(®) and also G(®) are
upper bounds to I(g, #) under conditions (57)—(59).
(They actually take 2 to be unity, but we need not do
50.)

These conditions are in fact stronger than our
condition (32) (which is both necessary and sufficient),
as the following argument shows. Condition (32) is
equivalent to stating that, for an arbitrary (r),

z4w@@—memmmm@2amm

Since X(r, ) is a symmetric kernel, the left-hand side
of (60) can be rearranged to give

f{ﬂ_l —J-J()(r, s) dr} v¥(s) ds

-wJMmmm~mwmm<m

If the Strieder-Prager conditions (57)-(59) hold,
expression (61) is never negative and thus our con-
dition (60) [i.e., (32)] is satisfied. To show that (60)

7 See, for example, 1. M. Gel’fand and. 8. V. Fomin, Calculus of
Variations (Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963),
Chap. 8.
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can be satisfied when (59) is not, it is enough to
consider the simple example

H(x,y) = 5xy/24, 2>0, 0<x,y< 1. (62)

This kernel is positive-definite and has the single
eigenvalue (64/5); thus condition (60) holds [cf. (36)].
However, condition (59) is not satisfied when 0.8 <
y< 1.

Strieder and Prager do not obtain the bound J(T'D),
which is, in principle, superior to G(®); it appears to
be new. Our methods do not reveal certain lower
bounds derived by these authors when 4 is positive.

5. DISCUSSION

The foregoing analysis has dealt with variational
principles for certain integral equations. The derivation
was based on the generalized canonical Euler equa-
tions (1a), (1b) to emphasize the complementary nature
of the results, but it should be noted that the principles
obtained in Secs. 3B and 3C are actually independent
of the decomposition of the operator X into the form
T'T. Thus, for 2 < 0, the principles G <1< J in
(29) hold for any symmetric positive-definite kernel
J(r, s), while for A > 0 the principles I < G, I <J
hold by (30) and (31) if, in addition, (A~ — K) is
positive-definite.

The decomposition K = T'T, although not strictly
necessary, can give useful insight into the properties
of K and it does permit a somewhat more flexible
J bound. If X(r, s) is a function of (r — s) only, the
kernel G(r, s) can be found in principle by Fourier-
transform convolution techniques; Laplace trans-
forms serve to this end when J(r, s) depends only on
(r + s). More generally, if there is an expansion

Kr, s) = 2, 0,0,(r)8,(s) (63)

in terms of any orthonormal set {0,(r)}, it follows
that, formally,

B, 5) = 3, 020,(00,,(5).

The case of negative A has applications in potential
theory,® in bound-state quantum-mechanical per-
turbation theory, and possibly also in time-series
analysis.?

(64)
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The explicit form of the projection operator for constructing antisymmetric wavefunctions for N
fermions in the approximation of no spin-orbit coupling is developed. Projection is applied within the
one particle approximation. It is shown that if the orbitals associated with the minority spin can be
completely expanded in terms of the orbitals associated with the majority spin, then the projected
Hartree-Fock scheme is completely equivalent to unprojected Hartree-Fock theory. In the unrestricted
case, deviations from this condition are not expected to be large, and integral properties such as energies
calculated in the projected scheme should not be significantly different from unprojected results. How-
ever, for such properties as spin density at the nucleus in atoms or ions with nominally closed s shell,
there may be significant differences between projected and unprojected schemes.

INTRODUCTION

For a system of N interacting but indistinguishable
fermions the Pauli principle requires that the system
wavefunction transform antisymmetrically under
permutations of the particle coordinates. This imposes
additional correlations ameng the particles, which is
evident by noting that the wavefunction must be
identically zero in any region of phase space where the
spatial and spin coordinates of any two are the same.
This has important physical consequences, some of
which are well known. Owing to the difficulties intro-
duced by the many-body interactions, calculations
and much of the theoretical development are inevit-
ably carried out within some approximational scheme.
Thus much of our theoretical understanding: of the
consequences of the Pauli principle is intrinsically
linked to these approximating schemes. In the much
utilized Hartree-Fock one-particle self-consistent
field scheme, antisymmetry of the wavefunction gives
rise to the so-called “exchange terms.” If relativistic
effects can be neglected, the one-particle functions are
considered to be a product of separate spatial and
spin parts. Exchange is effective only between particles
with the same spin projection due to the orthonorma-
lity of the spin functions. This form of the exchange
term has been the basis for postulating strong magnetic
correlations via Coulombostatic coupling (as in the
Heisenberg theory of magnetic interactions). More
recently the exchange interaction has been the basis
for developing the spin-polarized Hartree-Fock
scheme (SPHF), which admits to different orbitals
for different spin, in contrast to the usual (restricted)
scheme in which a given orbital may be occupied
twice corresponding to the two possibilities for the
fermion spin. Contact hyperfine interactions in the
iron-transition series and in somer are earths have
been analyzed using SPHF calculations and theory.!
In most of these cases surprisingly good results are

obtained. However, for the lighter elements such as
nitrogen and oxygen, SPHF calculations have not
been reliable for predicting such electronic properties
as the spin density at the nucleus.? The question then
arises as to how much the SPHF results represent
physical consequences of the Pauli principle and to
what extent they are influenced by the ad hoc restric-
tions introduced in the approximation scheme. The
question, of course, is appropriate to any of the
various schemes for solving approximately the many-
fermion problem.

In this article we treat two subproblems of this more
general question. If relativistic effects can be ignored,
then the intrinsic and extrinsic angular-momentum
operators (S% and L?) commute with the Hamiltonian
and can be simultaneously diagonalized along with
the energy. The Pauli principle requires that the per-
mutation symmetry of the spatial parts of the
wavefunction match the permutation symmetry of the
spin parts of the wavefunction so that an antisym-
metric linear combination of their products can be
formed. The problem can be exactly formulated in
group-theoretical terms using the permutation group
of N items. This is done in Sec. I, and the explicit
form for antisymmetric projection assuming no
spin-orbit coupling is deduced.®* The form of this
operator allows significant reductions to be made

*Present address: Department of Physics and Astronomy, South-
ern Illinois University, Carbondale, Illinois.

1 R. F. Watson and A. J. Freeman, Hyperfine Interactions, A. J.
Freeman and R. B. Frankel, Eds. (Academic Press Inc., New York,
1967), p. 53.

2 C. M. Moser, Hyperfine Interactions, A. J. Freeman and R. B.
Frankel, Eds. (Academic Press, Inc., New York, 1967), p. 95.

3 Since this work was completed, articles by W. A. Goddard
[Phys. Rev. 157, 73, 81, 93, (1967)] have appeared in which he also
obtains the antisymmetric projection operator assuming no spin—
orbit coupling. The method presented here is independent of his
derivation, although our final result is the same. The form of our
reduced matrix element (2) is equivalent to his Eq. (15). The other
results and discussions of this paper are different from the work

reported there. See also R. D. Poshusta and R. W. Kramling, Phys.
Rev. 167, 139 (1968).
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when one considers the diagonal matrix element of an
operator completely symmetric under the permutation
of the particle coordinates. When the operator is also
completely symmetric under permutation of the
spatial coordinates alone (e.g., the system Hamil-
tonian), a further reduction can be made. These
reduced matrix elements are given at the end of
Sec. I.

Having solved for the explicit form of the anti-
symmetric projection operator assuming no spin-
orbit coupling, we can ask how does a one-electron
self-consistent field scheme incorporating this projec-
tion (often called projected or extended Hartree-
Fock) compare to the SPHF scheme. Consideration
of the projected one-electron approximation is made
in Sec. II. It is shown that the projected scheme will
be different from SPHF only when the intersection of
the orbital spaces nominally associated with spin up
and spin down does not exhaust either space. This is
invariably the case when one allows different orbitals
for different spins, as is strikingly illustrated in con-
sidering the singlet He ground state* or in using
SPHF to consider spin density at the nucleus for
atoms or ions with nominally closed s shells.!

Some consequences of using antisymmetric pro-
jection for no spin-orbit coupling are discussed in
Sec. I1I.

1. ANTISYMMETRIC PROJECTION OPERATOR

In this section the antisymmetric projection operator
assuming no spin-orbit coupling isdeveloped. Reduced
forms for the diagonal matrix elements of operators
completely symmetric under the exchange of identical
fermions are presented.

It is well known that the antisymmetric representa-
tion of the permutation group 8y is contained only
and only once in the Kronecker product of conjugate
irreducible representations. It is easy to symbolically
construct operators corresponding to a given spin
value S that will project out of general spin and
orbital spaces a spin space and a conjugate orbital
space that are irreducible under permutations of Sy.
The difficulty in this projection method is that the
linear combination coefficients involved in the
projection operators are, in general, unknown. How-
ever, out of all the possible linear combinations of the
products of the two representations, one needs only
that unique combination that is antisymmetric in Sy.
This allows an explicit evaluation of the coefficients

4 C. A. Coulson, Quantum Theory of Atoms, Molecules and the
Solid State, P. O. Lowdin, Ed. (Academic Press Inc., New York,
1967), p. 97.
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of interest and the desired antisymmetric projection
operator.

The projection operator that will project out of any
space a function that transforms as the rth row of the
A irreducible representation of 8y with irreducible
matrix elements UA(P) is defined by®

8
=19

N! pcCsy

e, PUAPH =22 3 PUX(P) = e
N! PC Sy

r,s=1,-*",n,.

These operators are the primitive elements of the
group algebra and have the usual orthogonal multi-
plication rule

e;}se;v = 6Av68ue:v'

In the N many-electron problem the irreducible repre-
sentation associated with the spin angular momentum
S can be uniquely designated by the bipartition of
N, [(N]2) + S, (N/2) — S). The conjugate representa-
tion for the orbital function is designated by the
partition [12¢, 2V/®-S], Although in this paper we are
directly concerned with the many-electron problem,
a number of the propositions made here are applicable
or easily extended to Fermion problems involving
other than bipartition representations, such as the
nuclear-isospin problem.

We can symbolically write our desired antisym-

metric projection operator as {4}(e5)[e5], where
1
{4} =— 2 (=DF{P}
N! pSsy,

is the antisymmetric projection operator operating
in both orbital and spin space, [e5] is the projection
operator associated with the internal angular momen-
tum Sh, and operates in spin space only, and (e5) is
the projection operator for the irreducible representa-
tion conjugate to S defined by the relation

(=DPUS(P) = US(P)

and operates in orbital space only. The derivation of
the following identities for this projection operator is
straightforward:

{A}(efj)[efz] = V:\'Séik;l— 2 (ergnj)[ersnz] = 6;S6ik{A}[eJSl]'
s m

In general, the coefficients US(P) are unknown;
however, as shown below, one can explicitly derive
all the coefficients that enter into the final antisym-
metric projection operator.
A well-known theorem states that, in an irreducible
5 D. F. Johnson, Rept. Progr. Phys. 23, 66, (1960). See the general

theory of Part 1, and especially Sec. 4 of Part 1I that treats the N-
fermion problem.
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space transforming under the permutation group Sy
as the [4;, 4,, - - ] irreducible representation, there
always can be found one and only one vector S,
symmetric, that is, invariant under the permutations
of the subgroup 8, = 8;; x §;3 X :+-. Or equiv-
alently, there can always be found one and only one
vector 4, antisymmetric, that is, antisymmetric under
the permutation of the subgroup 8,.® This S, sym-
metric vector is chosen to be the first member of the
basis for the invariant spin space. Consequently the
A; antisymmetric vector is the first member in the
basis for the conjugate invariant orbital space. Let
Q be a coset of the subgroup §; with respect to the
full group 8y:
Sy =08, = 8,0

(More exactly, Q is a set of coset representatives g of
the subgroup 8, with respect to the full group §y.)
The spin projection operator can be written as

[e5,] = %% S S US(9lq] 3 US(h)h).
LeCQ n r<S§;

Let S; and A4, be, respectively, the symmetrizer and
antisymmetrizer on the subgroup §;:

S,=2h and A;= Y (—1)*h
IASE-3Y hE§,

Because there is one and only one S; symmetric

vector in the spin basis and it is chosen to be first in

order, the spin projection operator can be written as

ng I ny!
[ea] = ——— 3 US\(@laliS]
N. CQ

By an entirely equivalent argument the orbital
projection operator can be written as

S (~ DU (@) a)(4y).

N! . Zo

To obtain the desired antisymmetric projection
operator, one takes the product of the above two
operators and sums on m. Because all ¢ are chosen
to be self-inverse (see below) and the elements of the
subgroup 8, have the property

Usi(h) = 8,0 = US(h)
by construction, the problem is completely resolved

¢ A. Messiah, Quantum Mechanics(John Wiley & Sons, New York,
1962), Vol. II, Appendix D,p. 1119.

? R. Gouavne, Theory of Groups in Classical and Quantum Physics,
translated by T. Kahan (Oliver and Boyd, London, Edinburgh,
1965), Theorem 9, p. 287.
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if the coefficients US (g) of elements belonging to the
coset Q are known.

The coset Q can be uniquely constructed in the
following manner. The permutations of the coset Q
correspond to all distinguishable ways of selecting j
indices from the first (N/2) + S indices and j indices
from the last (N/2) — S indices, both arranged in
numerical order, and then interchanging the two sets.
The elements of Q thus are jth-order products of
mutually commuting transposes, i.e., they belong to
the class (1¥72/, 27). The index j varies from 0 to
(N/2) — S, and there are

N N
—+S\{--—S
J J
. . Y. s
elements of Q with the same index j, where (2 )

J
represents the binomial coefficient. It is convenient to

define the operator Q, = ) ¢ with the same index j.
The coset Q constructed in such a manner has the
following useful properties:
(1) Q, commutes with S, and 4,

[Q;, il = 0= [Q;, 4;]);

(2) Any product ¢Q contains one and only one
element from each coset;
(3) The coefficient US(g) depends only on the

index j of ¢ and is
Ny s)

Un() = (=1y (2
J

The proofs of these statements are given in Appendix

A.

The desired antisymmetric projection operator in
the approximation of no spin-orbit coupling is

(AR = X 3 (~1FUSaa XA TS,

where N’ is an unimportant normalizing constant.
Let X be a spin function that has maximum projected
spin value along some axis M, = S. The function is
chosen to have spin up in the first (N/2) + S positions
and spin down in the remaining (¥/2) — S positions,
and thus is already S; symmetric.

Consider the antisymmetric state projected from the
product of this function with a general orbital function
®. The expectation value with respect to this state of
an operator symmetric under the permutation of the
spin and orbital coordinates and which does not
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cause spin flip can be reduced to

w-s (N ‘N -
P (2 *S) (2 ”) (Q ) ADPI(E] 0,12 (@) AND)
TN J

JOHN J. SULLIVAN

®

N (N/2)—8
N LTS +
5 - nS j=0 ]

where the group orthogonality relations and the
relation

(9’121 0, llg] Z) = 3,(9)Z] 0, |Z)(q)
have been used to accomplish the reduction. If the

operator is purely orbital (e.g., the assumed Hamil-
tonian), one has the further reduction to

wo-s|N -t
> (2 + S) (A0

=0 .
J

(N/2)-8 [ LY
%

Op orb I(QJ)(A).)(D>

)

+ S) (A0 [ (Q;)(4,)D)
J

In the numerator and denominator of (1) and (2)
above, one of the (4,;) may be simply eliminated as
this operator commutes with all the other operators.
It is included here because in the next section (4,)®
is treated as a unit.

J=

II. THE ONE-PARTICLE APPROXIMATION

In this section the projection formulas developed
above are applied within the one-particle approxi-
mation where the starting orbital function @ is assumed
to be a simple Nth-order product of one-particle
functions. If the one-particle orbitals are determined
by making the expectation value of the Hamiltonian
an extremum, this is the projected Hartree-Fock
scheme. We use the notation

(AJ.)(D = d‘pin’,in’ d(pimin’

where d signifies “the determinant of,” i} is the numer-
ically ordered set of the first (N/2) + S indices, i, is
the numerically ordered set of the last (N/2) — §
indices, and ¢, ; is the matrix of one-electron
orbitals ¢,(r;) where the row indices denote the states
and the column indices denote the coordinate vari-
ables (ie., dg, , isa Slater determinant).

Because of the determinantal form, the orbitals
within the same determinant can be assumed to be
orthogonal.® Nothing is inferred as to the orthog-
onality of orbitals occurring in different determinants.

8 In the variational calculation of the projected Hartree-Fock
scheme, the ““matrix” of Lagrange muitipliers introduced by this
orthonormality condition can be put in diagonal form, as can be
shown by arguments identical to those used in the conventional
Hartree-Fock scheme.

s

S) (A)D | (2,)(A)D)

Because of this lack of orthogonality, a special
formalism for bookkeeping purposes is needed. Let

{6;},i=1,---, N, be an orthogonal set that spans an
N-dimensional space such that
eiE(pia i=1"",ﬁ+s,
2
zUwas l=%+s+1, -, N.
Orthonormallty requires
N
S UjUs; = 0y, % +S<i, and k<N.
j=1

The second Slater determinant may be expanded in
terms of the U,;’s and the 0,’s by®

d‘Pi,.,i,, = Z au,, x dok,in’
k

where k sums over all distinguishable sets of (¥/2) —
S indices chosen from the NV indices. The essential step
for the analysis is noting that (Q,)(4,)® corresponds
to Laplace expansions of the two determinants by j
columns and can be changed to a Laplace expansions
of the two determinants by j rows. The sign factors
involved in these expansions exactly compensate.
Thus one can equivalently think of the permutations
as acting on the coordinates or the state indices, and
can write
(Q )(A}.)(D z dUz,, k E dezn "+Hw—w’),in’ d6k+(w '—w),15 3
w,w’

where w is summed over all distinguishable sets of j
indices chosen from the set k of (N/2) — S indices;
w' is summed over all distinguishable sets of j indices
chosen from the set i/; and the notation (w — w')
means the set w' is substltuted by the set w and vice
versa.

If we make the ad hoc restriction that all orbitals
@, are completely expandable in the first (N/2) + §
orbitals, a nonzero result is obtained only when the
set k and (thus) the set w also are contained within the
set i’ . For such choices the determinant d@,-n/ o) i,
is nonzero only when the set w is identical with the
set w'. Summing on w and w’ multiplies the original
determinants by an unimportant numerical factor
which will cancel for normalized expectation values.

® G. Kowalewski, Determinantentheorie (Chelsea Publ. Co.,

London, 1948), Sec. 36.
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We may conclude that if the orbitals associated with
the minority spin [¢;; i= (N2)4+ S+ 1,:--, N]
are restricted so as to be completely expandable in
terms of the orbitals associated with the majority spin
[p;i=1,-+-,(N/2) — S], then

(Qj)(Aa)‘D = ‘N’j(A}.)(D'

With this restriction a projected Hartree-Fock
scheme is completely equivalent to an unprojected
Hartree-Fock scheme.

While such an ad hoc restriction may not be serious
for average properties such as one-electron energies,
it would be untenable for investigating properties such
as spin polarization, which depend strongly on the
possibility that the minority spin oribtals cannot be
completely expanded in terms of the majority spin
orbitals.

Further reduction in the more general case can be
accomplished by noting that the usual Hamiltonians
contain, at most, two body operators. Only three
cases for the set i/ + (w — w’) are of interest:

Case 0: The set i 4+ (w — w') is identical to the
set i’ ;

Case 1: The seti] + (w — w') differs from the set i/
by one index ij + (W —w) =i, + (x —f), fei,
and k €i,;

Case 2: The set i/ + (w — w') differs from the set
i’, by two indices i, + (w —w) =i+ (a + f —
f—ghgei,and fei,.

Reduced forms for these cases are given in Appen-
dix B.
III. DISCUSSION

While the forms we have presented for the anti-
symmetric projection operator assuming no spin-orbit
coupling are complicated, they are, in principle, no
more difficult than antisymmetrizing when spin-orbit
coupling is significant. Correct projection seems
desirable in order to distinguish results which follow
due to the Pauli principle from those due to spin-orbit
coupling. With modern computers the use of the forms
presented here should not prove to be impractical.

The explicit factorization of the antisymmetrizer
(4;) clearly shows that arguments based on the
properties of this operator still are valid. Two particles
associated with the same spin cannot occupy the same
orbital position. The occurrence of the operators (Q,)
implies additional correlations in orbital space, but
we can offer no simple interpretation for this at
present. In the one-particle approximation the invari-
ance of a Slater determinant to linear combination of
its rows and columns has been used to argue that only
the introduction of orbitals previously vacant can
effect expectation values based on Slater deter-
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minants.® This is important in comparing an ionic
situation with a covalent situation when the latter is
described by linear combinations of the atomic
orbitals (LCAO) used for describing the ionic con-
figuration. Such qualitative arguments are seen to be
unaffected by projection.

Because exchange is of secondary importance in
determining the one-particle orbitals and their ioniza-
tion energies in a variational scheme, one would
expect that the orbitals associated with the minority
spin could almost be expanded in terms of the orbitals
associated with the majority spin. It follows from the
results of Sec. 11 that SPHF or even restricted Hartree—
Fock should not give results significantly different
from projected Hartree-Fock for those properties
that represent an average over all space, such as the
one-electron ionization energies. However, in the
SPHF theory a nonzero spin density at the nucleus in
the transition elements is a direct consequence of the
fact that the occupied spin-down s orbitals cannot be
completely expanded in terms of the occupied spin-
up s orbitals.! For a problem such as this, it is possible
that the present scheme will give quantitative results
significantly different from those of SPHF.1!

Lastly, we wish to note that it seems desirable for
qualitative reasons that a one-particle approximation
scheme be such that the one-particle spatial symmetry
group is the same as for the N-particle problem.
Symmetry classification of the one-particle functions
would significantly reduce the number of nonzero
expansion coefficients that have to be considered in
the expansions given in Sec. 11.
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APPENDIX A: PROPERTIES OF THE COSET Q

Let g; be an element of Q with index j and # any
element of the subgroup §, .

(a) The transformation hghi~' = gq}h' is merely a
substitution instruction for the indices appearing in
¢;. The element ¢; must have the same index as ¢; and
h" must have even parity, because the transformation
can neither change the index nor the parity of the
permutation.

10 R. E. Watson and A. J. Freeman, Phys. Rev. 134, A1526 (1964).

1 In Goddard's work (Ref. 3) his calculations of the lithium atom
seem to support this conjecture, although the major part of the spin

density is due to the single 2s orbital. The S ground state of nitrogen
would provide a more unambiguous test.
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(b) By examining the possible results of multiplying
g; by a transpose contained in Q, one can conclude
that

9;9; = W'h~* implies ¢; =g, and A’ =h.
(c) Because the group is closed we have

Sy = ¢Sy =q08, = 08,.

From these statements one can conclude that the
elements ¢, do generate mutually exclusive right or
left cosets, that the symmetrizer and antisymmetrizer
of the subgroup commute with the operators @;

S:0;=0;S; and 4,0, = Q;4,,

and that gQ contains one and only one member from
each coset.
One can deduce the coefficient US(g;) as follows:
(d) By statement (a) above we may infer that, for
all g, ¢; with the same index j, there exists some
element £ of the subgroup such that

USi(g)) = 3 USnu(h HU (g Uni(h)

= Up(q,) = UL

This proves that the coefficient depends only on the
index j.

(e) In our specific representation the basic group
orthogonality relations take the form

N!
- alsaiua:iv = z U;sm(q)uin(q)sz Ui:(h)Uﬁv(h)’
A

s Q.m,n

where we have used the real and unitary property of
the permutation group. For A being the completely
symmetric representation this becomes

N N
(N/2)-S |1 __ s\[— S .
2 (2 )(2 + )Uﬁ(;)= 0.
RN j

For 2 being the representation corresponding to S this
becomes

N
—+S+1
_s[N N 2 2
N2-8{~ _ § —4+ S US i) = ———
O OV R
J J

Both these relations are satisfied by
N —1
. =+ S
Un() = (—1)’(2 ) :
J
Although this cannot be strictly considered a proof, it

JOHN J. SULLIVAN

can be shown by independent arguments that the
formula is valid for j = 0, 1, and 2.

APPENDIX B: REDUCED FORMS IN THE
ONE-ELECTRON APPROXIMATION

Let X, be the number of indices of the set k that
come from set {,. Then we can write for

wva-s (N -

—4+ S

g(f*)@mm¢
- j

the following!?:

Case 0:
z dUin.k[l
k

- —Xk——] doi,.’ in’ dek in?
25+ X, + 1 ' '

ogngg—&

Terms coming from the factor unity in the square
bracket are entirely equivalent to unprojected Hartree—
Fock. All other terms and those of Case 1 for one- and
two-body operators and those of Case 2 for two-body
operators are additional and particular to the pro-
jected Hartree—Fock scheme.

Case 1:

S dv,., 25 + 1
P (S + X, + DQS + X,)

N
X A0 iia—p)in Wrrir—arins 1 < X S 57 S,

N-—2

where the sum on k is over the (g ) sets k that
2

-85 -1

contain « and do not contain f.

Case 2:

S du, 2125 + 1)
&R OS + X+ D2S + X)Q2S + X, — 1)
X A0, (atp—p-a) in’ BOrttr19—a—p) in>

2sns%—&

N -4
where the sum on k is over the (g s 2) sets k that
2

contain « and 8 and do not contain fand g.
12 The sum formulas used can be derived from the identity
=2 HLT)
no2 N-—1 j

given in M. Boll, Tables numeriques universelles (Dunod et Cie., Paris,
1964), 3rd. ed., p. 539.
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For all possible extensions ¢ of the compact simple Lie groups G, such that G be a subgroup of §
of index 2, we determine those corepresentations of G in which unitary operators correspond to the
elements of the subgroup G, antiunitary operators to its coset. We find that any irreducible unitary
representation of G can be extended to an irreducible corepresentation of G in various ways summarized

in Table IV.

1. INTRODUCTION

Consider a compact simple Lie group G and another
group § such that G is a subgroup of § with index 2.
The elements of G will be called the unitary operators
and denoted by the letters u, v, ---. The elements
of the coset of G in § will be called the antiunitary
operators and denoted by the letters a, b, --. A
set of unitary matrices D(g), g an element of G, is
said to form a corepresentation of § if the following
equations are satisfied:

D)D) = D(w), D(uwD(a) = D(ua),
D(a)D*(u) = D(au), D(a)D*(b) = D(ab),
where D* denotes the complex conjugate of D. The

corepresentation D(g) is said to be reducible if for a
fixed matrix o, the matrices D'(u), D'(a),

D'(w) = D)o, D'(a) = atD(a)o*,
all have the reduced structure

&0

07

& and 7 being nonzero submatrices. If no such « can
be found, D(g) is said to be irreducible. In the above
discussion, the matrix « may be assumed to be
unitary.

An irreducible unitary corepresentation D(g) of §
may belong to one of three possible categories!:

(i) D(w) is irreducible. The corepresentation is
said to be of type I

(ii) D(u) reduces into two irreducible equivalent
representations. The corepresentation is said to be of
type II.

(iii) D(w) reduces into two nonequivalent irreduc-
ible representations of equal size. The corepresenta-
tion is said to be of type III.

1E. P. Wigner, Group Theory and Its Applications to the Quantum

Mechanics of Atomic Spectra (Academic Press Inc., New York,
1959), Chap. 26.

The above three categories may also be enumerated
as follows. We choose an arbitrary fixed antiunitary
operator a, and denote an irreducible part of D(u) by
A(u). Then:

A. If D(u)is of typeI, D(u) = A(u), then A*(a; ua,)
and A(u) are equivalent, A*(a;'ua,) = p~*A(u)f, and
BB* = +A(a}). These equations are valid for all a
if they are valid for one of them, a,, though § depends
on the choice of a;. Moreover, § can be assumed to be
unitary.

B. If D(u) is of type II, then D(u) may be trans-
formed to

Alw) O

pw = %0 o)

A*(ag'uay) and A(u) are equivalent, A*(a;luay) =
7A(u)pB, and pB* = —A(a2). The remark made
before about the choice of g, applies in this case and
in the following one, also.

C. If D(uw) is of type III, it may be transformed to

[A(u) 0
0 A*(a;luao)]’
where A*(ag'ua,) and A(u) are not equivalent.

Note that the reducibility of only D(u), u an ele-
ment of G, is considered in the above; the D(g) is of
course taken to be irreducible. The A(g) is defined
only when g is an element of G and a symbol like
A(a,) is neither defined nor used anywhere in this
article.

The irreducible unitary representations A(u) can
again be classified into three categories as follows?:

A. The representation A() is not equivalent to its
complex conjugate A*(u): A(u) ~ A*(u) (type C).

B. It is equivalent to its complex conjugate but
cannot be made real by any similarity transformation

(type Q).2

* A. Loewy, Trans. Am. Math. Soc. 4,171 (1903); G. Frobeniusand
L. Schur, Sitzber. Deut. Akad. Wiss. Berlin, KI. Math., Phys. Tech.
186 (1906); E. P. Wigner, Ref. 1, Chap. 24.

3 F. J. Dyson, J. Math. Phys. 3, 1199 (1962).
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C. It can be made real by a similarity transforma-
tion (type R).?

The letters C, Q, and R correspond, respectively,
to complex, quarternion, and real.®

For any compact simple Lie group G, all irreducible
unitary representations A(x) are known.* In what
follows we have tried to answer the natural question
that for each possible group § having G as a subgroup
of index 2, what is the type of the irreducible co-
representation D(g) such that the irreducible part of
D(u), u an element of G, is equivalent to a given A(u).
In other words, we try to answer the following
question: For a given group § having G, any compact
simple Lie group, as a subgroup of index 2 and a
given irreducible representation A(u) of G whether
A(u) and A(u) = A*(azlua,) are equivalent, and in
case they are, A(u) = fA)B, whether BB* =
+A(@) or fB* = ~A(a)).

2. INNER AND OUTER AUTOMORPHISMS

Let a,, as before, be a fixed antiunitary operator
and u € G. Then u— F(u) = a;'ua, is an automor-
phism of G, which we shall call the automorphism
induced by the antiunitary operator a,. It may be an
outer automorphism, i.e., no element v, € G can be
found such that aj'ua, = v;'uv, for every u€G.
Or else the automorphism may be inner, i.e., there
exists a v, with the above property. If the automor-
phism induced by one antiunitary operator of § in
G is outer (inner), then the automorphism induced by
any other antiunitary operator of G in G is also
outer (inner). Any automorphism of a compact
simple Lie group is either an inner automorphism or
an inner automorphism together with one of a
particular finite set of outer automorphisms.®? For
any given group this finite set of outer automorphisms
is generated by those permutations of the simple
roots® of its Lie algebra which preserve their scalar
products: o; — o}, (a;0y) — (ajoy) for every j and k.
In other words, an outer automorphism of a semi-
simple Lie algebra is defined uniquely, except for an
inner automorphism, by a symmetry operation on
its Dynkin diagram.” The image of any other element
of the algebra may be inferred from the commutation
rules and the linearity of the automorphism. The
following result is useful.

4 E. Cartan, Bull. Soc. Math. France 41, 53 (1913); H. Weyl
Math. Zeit. 23, 271 (1925); 24, 328, 377 (1925).

5 E. Cartan, Bull. Soc. Math. France 49, 361 (1925); E. B. Dynkin,
Dokl. Akad. Nauk. SSSR 76, 629 (1951); N. Jacobson, Lie Algebras
(Interscience Publishers, Inc., New York, 1962), p. 281, Theorem 4.

8 E. Cartan, Oeuvres complétes (Gauthiers-Villars, Paris, 1952),
Pt. 1, Vol. 1, p. 193, Theorem XI; E. B. Dynkin, Usp. Math. Nauk
20, Ser. 2, 59 (1947) [Am. Math. Soc. transl. No. 17 (1950), paras.

6 and 7]; N. Jacobson, Ref. 5, Chap. 1V, Secs. 3-6.
7 E. B. Dynkin, Ref. 5; N. Jacobson, Ref. 5, Chap. 1V, Sec. 5.
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Theorem 2.1°: For the groups 4,, B,, C,, E,, Es,
F,, and G,, all the automorphisms are inner. For the
groups A, (n > 2), D, (n > 5), and Eg, there is an
outer automorphism, unique up to an inner auto-
morphism. For the group D, there are five distinct
outer automorphisms.

Thus for any fixed a, we have a;'ua, = v;tiv,, for
all u in G where v, is a fixed element of G, i = u if
G is any of the groups 4,, B,, C,, E;, Es, F;, G,,
and # is either equal to u or obtained from u by a
symmetry operation of the Dynkin diagram if G is
any of the remaining simple groups A4, (n > 2),
D, (n>4), E;. A glance at the Dynkin diagrams,
Table I, shows that for all compact simple Lie groups,
except possibly for D,, # = u. The five outer auto-
morphisms of D, correspond to the interchanges
(12), (23), (31) and the cyclic permutations (123),
(132) of the simple roots. For the first three auto-
morphisms, we have # = u. For the last two, # # u,
but they correspond to even permutations of the
simple roots and therefore cannot be induced by
antiunitary operators; in other words, there is no
group § having D, as a subgroup of index 2 corre-
sponding to these two automorphisms.

Thus, for all the cases we have to consider, & = u.
Putting ay = aw;* and calling it again a,, we see that
it satisfies the equations

aylua, = 4, agiua: =1 = u, 2.1
so that a? commutes with all the elements of G.
Also, a is an element of G, since G is a subgroup
of index 2. Thus a2 is an element of the center C =
{¢;} of G, say a} = ¢;, where ¢; = ¢;. If we put q; =
age, with ¢ any element of C, then this a, satisfies
Egs. (2.1) and a? = (a4¢,)? = ai¢ 0, = ¢,6,¢;. Thus
the choices a2 = ¢; and a2 = ¢;é,c, lead to the same
group §. On the other hand, if two elements ¢; and ¢,
of the center C are such that ¢; = ¢;, & = ¢, and
¢; # ¢y for any element ¢, of C, then one can
convince oneself that the choices a3 = ¢; and a2 = ¢,
lead® to distinct groups S.

In the following, we take for G the groups obtained
by exponentiation of the Lije algebras corresponding
to the Dynkin diagrams given in Table I. For example,
A, denotes SU,.,, the (# + 1)-dimensional uni-
modular unitary group, while B, denotes the universal
covering group of the (2n + 1)-dimensional orthog-
onal group.

8 L. Michel, Group Theoretical Concepts and Methods in Ele-
mentary Particle Physics, F. Giirsey, Ed. (Gordon and Breach,
Science Publishers, Inc., New York; 1962).
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TasLe I. Dynkin diagrams for the simple Lie groups. On a par-

ticular diagram, the simple roots denoted by dots'are all equal

in length, so also are those deno_ted by crosses, while the length

of a root denoted by a dot is V2 times that of the one d_enoted

by a cross. For the group G, the ratio of the lengths of its two
simple roots is V'3, as indicated.
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The elements of the center of G can be written® as

¢; = exp (4will; - Hia; - o), 2.2)

where a; is one of the /, /-dimensional simple roots,
II; the fundamental dominant weight corresponding
to it, defined by

2AL; - oy = (o - 0)05, k=1,2,---,1, (2.3)

and H is the /-dimensional element of the commuting
subalgebra of the Lie algebra of G. If for every irre-
ducible representation A(u), A(c;) = A(c;), then ¢; and
¢, represent the same element of the center. The
multiplication table and the behavior under outer
automorphisms of the central elements c; can all be
inferred from their form (2.2). The fundamental

dominant weights for various groups are listed in
Table II.

®J. P. Serre, Seminar Sophus Lie (Ecole Normale Supérieure,
Paris, 1954/55), exposé No. 23.
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3. CLASSIFICATION OF COREPRESENTATIONS

The classification of all the irreducible corepresenta-
tions of a given group is greatly facilitated by the
following theorems, which we give here without proof
as they follow in much the same pattern as for the
classification of irreducible representations.'®

Theorem 3.1: Let Aj(u), j=1,2,3 be three irre-
ducible representations of G satisfying

A(u) = Af(az'uay) = B7Aw)B;, j=1,2,3,
with
BiBi =eAfad), ¢ = %1, j=1,23.

Let Ay(u) occur in the reduction of the direct product
A(u) X Ay(u). Then €665 = +1.

Theorem 3.2: Let two irreducible representations
A;(u) and Ay(u) of G be such that A,(x) and A, () =
Af(ag'uay) are not equivalent, while A,(x) and A,(x)
are equivalent, i.e., Aj(ag'uay) = f1A,u)B. If Ay(u)
occurs in the reduction of A,(u) x A,(u), then pg* =
+4,(ap).

An irreducible representation A(x) of any compact
simple Lie group can be characterized by / non-
negative integers A, - - -, A, so that

l
I =30,
j=1

is the highest weight of A(x), and A(u) occurs in the
reduction of the direct product
Ai»l xAé-z NEEE XA;'I,
where
AV =A; x A; x - x A,
A; times
and A; = A,w) is the irreducible representation
having the highest weight II;, the fundamental dom-
inant weight defined by Eq. (2.3). In view of theorems
3.1 and 3.2, we need to study only the fundamental
irreducible representations A,() in order to make a
statement about any irreducible representation A(u).

Theorem 3.3'%'1: Any irreducible unitary representa-
tion A(u) of G falls into the following three classes

depending on 2, and G. These results are also summa-
rized in Table III.

10 M. L. Mehta, J. Math. Phys. 7, 1824 (1966); M. L. Mehta and
P. K. Srivastava, J. Math. Phys. 7, 1833 (1966).

LA, I. Maltéev, Izv. Akad. Nauk SSSR. Ser. Mat. 8, 143 (1944)
[Am. Math. Soc. transl. No. 33 (1950)]; E. B. Dynkin, Tr. Mosk.
Mat. Obs¢. 1,39 (1952) [Am. Math. Soc. transl. 6, Ser. 2,245 (1957)];
N. Haruo, Sci. Rept. Tokyo Kyoiku Daigaku A9, Nos. 202-208,
p- 32 (1965).
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TasLE II. The fundamental dominant weights for the simple Lie groups corresponding to the simple
roots as marked in Table I. They are expressed as linear combinations of the simple roots themselves
and possess the property that 2(IX; < &) = (& * )05, where the dot means the scalar product.

G Fundamental Dominant Weights

i—1 n .
4, H,=—ll{zk(n+1—j)ak+2j(n+1—k)ak,j=1:2,"‘,n
n+ 1S k=i

n
B, I, = jna, + 4 Z k — Doy
k=2

i=1 7
o, = (j — De, +k§‘é(k — D +kz(j— Doy, j=2,3,--*,n
= =j

i1 n=1
Cn n!='}jan+zkak+zjakrj=172,..'!’1
k=1 k=j

Dh M= inoy 44— e + 4 3 (k ~ eu
k=3

I = 1 — 2, + dn0s + 1 3 (k — Dty
k=3

i=1 n
o=} - +a)+ 3k —a+ > (-, j=3,4,--,n
k=3 k=]

E, II, = 44, 5,6, 4, 2, 3) = }(40, + Sa, + 60; + 4o, + 205 + 3d,)
II, = 4(5,10,12,8,4,6), II;=1(2,4,6,4,2,3)
II, = 1(4,8,12,10,5,6), II, =1(2,4,6,5,4,3)
I, =(1,2,3,2,1,2)

E, I, = (2,3,4,3,2,1,2) = 20, + 30, + 4o, + 30, + 205 + a5 + 20,
II, = (3,6, 8,6,4,2, 4), I, = (4,8,12,9,6,3,6)
I, = 46,12, 18, 15,10,5,9), I, =(2,4,6,5,4,2,3)
n6= %(2) 4’ 6’ 5) 4) 3) 3)’ I-I7= 5(4) 8: 12)91 67 3a 7)
E, I, = 4,7,10,8,6,4,2,5) = 4a, + Ta, + 100, + 8a, + 6as + 4as + 20, + 5a,

II, = (7, 14,20, 16, 12, 8,4,10) II, = (10, 20, 30, 24, 18, 12, 6, 15)
I, = (8, 16,24, 20, 15,10, 5,12) II, = (6, 12,18,15,12,8,4,9)
II, = (4,8,12,10,8,6, 3,6) II, = (2,4,6,5,4,3,2,3)

II, = (5, 10, 15, 12,9,6, 3, 8)

F, o, = (2,3,2,1) = 2a, + 30, + 203 + o
I, =(3,6,4,2) II,=(4,8,6,3) II;=(2,4,3,2)
G, I, = 20, + o, II, = 3e; + 201,
A. 1tis of type C, A*() % A(u); if G is: (ii) or By,y1 OF By, With 4; odd;

(iii) or C,,and A; + A3 + 4; + - - - is odd;

(i) either A, (n > 2) and 4; # 4,,,_; for some (iv) or Dyp,z and 4, + A, is 0dd;

(i j;r Duss and 2 5 du: (v) or E;and 4, + 4, + A, is odd.
2k+1 1 2 . . .
(iii) or Eg and at least one of the equalities 2, = C. Itis of type R, if G is:
45, Ap = A, s not satisfied. (i) either of the B,,,, By, 1> Dux> Gy Fy, Es;
. . (i) or Ay, with 4, = 45,4 ;,j=1,2,+-,2n;
B. Itis of type Q, if G is: (i) or Ag,y with A, = 2y, 5, j=1,2,---,
(i) either Ay, ,, 4, =125,,;, j=1,2,---, 2n — 1, and ni, even;

2n — 1, and nd,, is odd; (iv) or By, or By, ., with 1, even;
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Taste 111. The types of the irreducible unitary representations of a simple Lie group having the highest weight ¥ A11;,
where II; are the fundamental dominant weights listed in Table 1I and 4; are nonnegative integers.

Representation Types

G
R Q C
Asn_y h=lyny, j=1,2,"",n Aj=2gny, j=1,2,-",n A; # App_;, for some j,
and nd, even and 74, odd j=1,2,"-,n
Azn }'J' = }"ani—l-i, ] =1,2,"-+,n No j'i # 12n+1+:i for some j;
j=1,2,""",n
B, n(n + 1)4; even in(n 4+ 1A, odd No
<}n+1 <#n+1
C, z Ay_1 even 251 odd No
1 1
D,y A=A, No Ay # Ay
D, n(d, + 4;) even n(d, + 4;) odd No
E, hi=2y, j=1,2 No either A, # 1, or 1, 4,
or both
E, A+ 2 + A, even A+ A+ 4, odd No
Eq Yes No No
F, Yes No No
G, Yes No No

(v) or C, with 4, + A3 + 4; + - - -.even;
(vi) or Dy, with 4, + 4, even;

(vii) or Dy, with 4; = A;;

(viii) or Eg with 4, = 4; and 4, = A,;
(ix) or E,; with 4, + 25 + 4, even.

This list exhausts all possibih:ties for G.

The discussion in Sec. 2 gives us the possibility of
defining all the group extensions § of G, and classifying
their various corepresentations. One of the possible
extensions is always defined by adding an a, which
induces an inner automorphism on G and a2 = 1.
For this case one may make a general remark,

Remark 3.1: For those group extensions § of G,
where aj'ua, = u and a? = 1, the reality classes R, Q,
and C coincide with the corepresentation types I, I,
and IIl. Henceforth we leave this case from our
discussions; the summary in Table IV, however,
includes all these results as well.

A, , or SU,: Let G be SU,, and let the auto-
morphism induced by the antiunitary operators be
inner. We choose g, such that i = a;'ua, = u. The
center of SU, is the discrete cyclic group Z, and

consists of the elements

1 and ¢, = exp [4=i(IT, - H)/(et,. - &,)],

k=1,2,---,n—1, 3.1

(3.2)

For finding the number of distinct group extensions
we have to find the order of the factor group Z,/Z2.

For n odd, Z2 =Z,, i.e., every element of the
center C is the square of some other element of C;
Cy; = €}, Ca51 = €5 4(,_1)- Thus from the discussion
after Eq. (2.1), there is only one group extension §
for SU,, n odd, and may be characterized by a2 = 1.
For n even, there are two such possibilities character-
ized by af = 1 and @} = ¢, ; every other element of Z,
can be written either as c? or as ¢,c. The cases a? = 1
are covered by remark 3.1. For the case n even,
n=2m and a} = c,, the corepresentation is of type
IILif A(u) is of class C. If A() is of class R or Q, i.e.,
if A = Agpy, j=1,2,- -+, m, then A(c;) = (—1)*m,
Thus the corepresentation is of type I or II, accordingly
as (m + 1)4,, is even or odd, provided that A, =
Aomeis j=1,2,-++,m.

A familiar example in this case is G = SU,. The
automorphisms are all inner. The group A{(1)

G =ck, =1



TaBLE IV. The types of irreducible unitary corepresentations D of a group § such that a compact simple Lie group G is a subgroup of § with index 2, while an irreducible part
of the representation obtained by restricting D to G is equivalent to a given irreducible unitary representation A of G. The highest weight of A is 3} AII; as in Table IIL The
words “inner” or “outer” refer to the automorphism of G induced by any of the elements of the coset of G in §. The automorphism induced by an operator a,, given by a sym-
metry operation on the Dynkin diagram, and the value of 4§ fix S. In particular, for G = D,, the outer automorphism inc}uced by a, is a, <> a,; the results for the automorph-
isms o, < &z and o; <> A, can be simply obtained by cyclically permuting the indices of 4.

Corepresentation Types

Auto-
G Center mor- g a,
phism I I I
AR M) 1 A, even i, odd No
Ay 1,¢, = -1 inner
ASV(1) ¢ Yes No No
ADCn — 1) 1 A= dgngyj = 1,2, ,m; A =haugoj=1,2,+-,n; A3 # Ayny for some
and ni, even and nk, odd SHi=12,n
inner
AL Q2n — 1) [ )\5 = lzn—j,j= 1,2,---,n; A; =}'2ﬂ—.’i9j= 1,2,---,nm; A; # Agn_; for some
. and (n + 1)A, even and (n 4 DA, odd Ji=1,2,,n
Azny 1, C15 €257 " " 5 Con—ys
n>2 ¢ =¢,c"=1 » n
AL — 1) 1 > A3y even D Ay odd No
1 1
outer
A (2n — 1) Ca Yes No No
inner A2 (2n) 1 A =ldanpsosnf=1,2,--,m; No A; # Aynyq_;, fOr some
Asp 1,c1,¢5, ", Caps l,j=l,2,'“’n’
I e 2n+l __
n21 a=c6,a" =1 er AL 1 Yes No No
B (n) 1 $n(n + 1)2, even $n(n + DA, odd No
B, 1o =—1 inner
<in+1 <in+t1
BV () ¢ n+ DA+ 2 Ay even  dn(n+ DA+ D Ay odd No
1 1
<intl <in+1
Cia'(n) 1 2 Asiq  €ven Z Agim1 odd No
1 1
Cs l,¢, = -1 inner .
Cia'(n) ¢ Yes No No

08¢l

VAVLISVAINS ‘Y 'd ANV VIHIW 1 '



DE2n — 1) 1 Ay = Ay No A Ay
inner
K2 n
DR — 1) ¢ A= Ay, z Agy_y even A=A, Z Az odd Ay 7 Ay
D;,, 1, ¢, 5,0, 2 P)
n>3 i =c} = ¢y,
e =ci=1 DIL2n — 1) 1 (n— D(A; 4+ 4,) even (n— DGy + 1) odd No
outer
DI (n — 1) ¢ n(A, + 1) even n(i, + %) odd No
DiA(2n) 1 n(A, + ;) even n(A, + 4;) odd No
nv n
DI () o Jo+ 2 Ayy even Jo + 2 Joiq odd No
2 2
inner
n n
Dig2) (2n) ¢ i+ D Ay even M+ 2 Ay odd No
2 2
D,, 1,¢y,04, 45 DY (2n) s (n + (A + 4) even (n+ D@, + 1) odd No
'l_>_2 C;—':C%SC?;:],
€,¢5C5 = 1 outer DL (2n) 1 A=Ay No Ay # A,
inner &i2)(6) 1 Ay = dggyj =1,2 No either A4, # 4; or
E, 1, 61,0 =ck. Ay 7% A4 or both
3
ci=1 outer &1(6) 1 Yes No No
§4(D) 1 Ay + A + 4; even Ay + A¢ + 4, odd No
E, Ley=~1 inner
850(T) s Yes No No
E, 1 inner §i2(8) 1 Yes No No
F, 1 inner Fih@4 1 Yes No No
G, 1 inner S(2) 1 Yes No No

SdNOYD 40 SNOILVINHSHAIdIIOD FT4IDNATIAI]

I18€1
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consists of the elements u, agu, where u is the set of all
2 X 2 unitary matrices with determinant 1. The
multiplication table is

Uy ol
Uy | ugly | gl 3.3)
Qoly | Golhllp | Uty

and has the 4m X 4m irreducible unitary corepresenta-
tion of type II:

=[5 5} o[} ] oo

where A(u) is the 2m x 2m irreducible unitary
representation of SU, and the 2m x 2m matrix § is

ﬁ:ik = (“ 1)j6j+k,2m+l .

It is easy to convince oneself that it is a corepresenta-
tion. To see that it is irreducible, let, if possible, o
reduce it. Writing o also in the partitioned form of
2m x 2m blocks, we have

_[a b:'
o*L = ¢ d.

This means that the nonsingular « satisfies

& Al sl =19 sl

3.5

(3.6)

and
Ta b][& 0] _ [0 —f[a* b*]
[c d} [0 77] - l:ﬂ 0 j”:c* d*]’ 37
or
aA(u) = A(wa, cA(w) = A(u)c, 3.8)
bB(u) = A(w)b, dB(w) = A(u)d, 3.9
aé = —fc*, c& = fa*, (3.10)
by = —pd*, dn = pb*. (3.11)

As A(u) and A(u) are irreducible representations of
the group SU,, we see by Schur’s Lemma that c is
either nonsingular or zero. The same statement is
true for the matrices a, b, and d. If ¢ = 0, then from
Egs. (3.10) @ = 0 and « is singular. Thus ¢ is non-
singular. Similarly, each of the matrices a, b, and d
are nonsingular. Now from Egs. (3.8) one sees that
ac™* commutes with every A(w) and therefore, by
Schur’s Lemma, a = kc, k a constant. Substituting
this in Eqs. (3.10), one gets after a little manipulation
kk* = —1, an absurdity.

M. L. MEHTA AND P. K. SRIVASTAVA

The multiplication table for A{V(1) is

Uy Ggly
Uy Ulhy | Golyliy
Aoty | QolhyUs | — Uyl

and can be realized by choosing a, = K, where X is
the complex conjugation operator and

g = [0 1]

1 0

is an element of SU,. It is well known?! that all co-
representations of this A{'(1) are of type I.

Consider now the possible group extensions with
the outer automorphism, which we take as the
reflection of the Dynkin diagram a;=a, ;, j=
1,2,:-+,n— 1. The elements of the center (3.1)
undergo the same automorphism and ¢; = ¢,_;. In the
case of n being odd, there is no invariant element in
the center besides 1, and hence the value of 42 can
only be 1. However, for n even, n = 2m. In addition
to 1, ¢, is invariant. Also, as &, = €y 30, = 1
for allk, a2 =1 and 4} = c,, give rise to different
extensions of SU,, . We now determine the corep-
resentation type for the irreducible n-dimensional

representation with the highest weight II,. The »
weights II¥ of the representation are given by

(3.12)

k
=1L, I =1,—-Ya,, k=1,2,""+,n~ L
=1

We choose a basis so that the matrices of H and E,,
are

H)y = nkékk" (Ea.-)kk' = 80 ip;  (3.13)

the other matrices of the representation can be found
by calculating their commutators. We want to
determine whether there exists a nonsingular § such
that

BAT (a5 uag) = Ayw)p. (3.14)
This implies for the matrices of E, the following:

—BEL =E,,_B. (3.15)

Using explicit expressions for (E, ), we get the
following relations:

Bowna = —Brn2=Pepns="""= (_1)(n—1)ﬂn—l.0’

Bin=0, if j+k#n—1. (3.16)

Thus 8 is symmetric or antisymmetric, accordingly

as the sign (—1)"? is even or odd. Also, as § is

unitary,
pp* = (=), (3.17)
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Thus if @ = 1, we have
BB* = (—1)" V(). (3.18)

For n = 2m the value of the center element c,, can be
calculated in the above representation as

Ay(cp) = exp2m (2L, - M/, - &,)] = (—1). (3.19)

Using these two facts, one gets that all the co-
representations are of type I, when n is odd (a} = 1)
or when n is even and &2 = ¢,. For n =2m and
a® =1, the corepresentation containing A(u) is of
type I or II accordingly as (4, + A3+ 45+ - *) is
even or odd.

Remark 3.2: The above result seems to be in
contradiction with what one may have naively guessed.
The outer automorphism may have been defined as
that of complex conjugation; then one would have
immediately implied A¥(@) = A,(w), A,(w) being
identical to u. Thus A is of type I for a2 = 1 regardless
of n being even or odd. This apparent contradiction
is easily removed by the following consideration.

Let ay and @, be two antiunitary operators of the
same group § and let a;'uag, = i and a;'ua, = o,
with # = 4" = u. The element v, = a;'a, belongs to G
and vjtiv, = ' for every uin G. Also, a} = (ao,)* =
azv v, - Thus, if there is an element vy of G such that
Byve» an element of the center of G, is different from
unity, then one may choose a? different from a2. For
n even, this is the case, because there exist antisym-
metric unitary matrices v, with v§v, = —1. One can
in fact verify that the reflection of the Dynkin diagram
and complex conjugation of the self-representation
of A4,_, or SU,, differ exactly by such a transformation.

B,: For these groups all the automorphisms are
inner and the center consists of two elements 1 and
¢, . The representative of ¢, in A(u) is

A(cy) = (—1)yrhitdetdet e, (3.20)

For a? = 1 the case is covered by remark 3.1, and

for a2 = c,, the corepresentation is of type I or II
accordingly as

e = (_1)%n(n+a)11+12+z,.+~--

is +1 or —1.

C, or Sp,,: For these groups all the automorphisms
are inner and the center consists of two elements, 1
and ¢,. The representative of ¢, in the representation
with highest weight > A,IL; is

A(cy) = (—1)rrthatist o (3.22)

Combining with the results in Table III, we see that

for the case a3 = ¢,, all the corepresentations are

of type I, while the case a = 1 is covered by remark
3.1

321
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D,.: The center consists of four elements 1, ¢;, ¢;,
and c;. The representatives of these in a representa-
tion with the highest weight 3 2,II, are

A(ey) = exp [i3m(Ayn + Ay(n — 2PU—D)le+H+7,

A(ey) = exp [iFm(Ay(n — 2) + An)(—1H*7,

A(cg) = (=D, (3.23)

The multiplication laws for n even and n odd are

different, as can be verified from Egs. (3.23). For n
odd the group is Z,,

E=c, I=c, ci=1, (3.24)
and for n even, the group is Z; X Z,,
ct=cd=cl=1 and ce;=1. (3.25)

First consider the inner automorphisms. Let » be
odd. From (3.24) and the discussion after Eq. (2.1),
one sees that there are two extensions §, characterized
by a2 =1 and a2 = ¢;. The case a4} = 1 is already
covered by remark 3.1. For a2 = ¢;, A(u) and A*(w)
are equivalent only when 4, = 4,. Thus, if 4, # 4,,
the corepresentation is of type IIL. If A, = 4,, then
A*(u) = AP with fp* = 1,A(c;) = (—1)stist
and therefore the corepresentation is of type I or II
accordingly as A3 + 45 + -+ is even or odd. Now let
n be even, n = 2m. All irreducible representations
A(u) satisfy A*(u) = 7A(u)f with

ﬂﬂ* — (_.l)muﬁ-lg).
As the square of each element of the center is 1,
each one of them used as aZ gives a different extension
G. Comparing ff* = (—1)m"1+4) and A(42), we see
that the corepresentation is of type I or II accordingly
as e, as given below, is +1 or —1:

a(?) — ], € = (_l)m(ll+iz)’

(13 =, €= (—1);'2+)'a+}'5+'”, (3.26)
a(2) =c,, €= (_1)11+la+l5+"',
a(Z) =g, €= (_1)(m+1)(}q+lz).

Next consider the outer automorphisms. We take
i to be obtained from u by interchanging the simple
roots «, and a,, so that ¢; = ¢, and &, = ¢,, while
¢y =c3, 1 = 1. In case n is odd, aZ can be chosen to
be either | or c;, giving different group extensions G.
On the other hand, when 7 is even, é,¢,c; = ¢y¢,053 = 1
and there is only one extension S, characterized by
al = 1.

Now we have to see whether A*(a;'ua,) and A(u)
are equivalent and, in case they are, A*(a;lua,) =
B1A@)B, what is the value of ff*? As any A(u)
occurs in the reduction of a direct product of certain
direct (or Kronecker) powers of A,(x), A,(w), and
As(u), in view of Theorems 3.1 and 3.2, it is sufficient
for the above purpose to study only these last three
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fundamental representations. Let us begin with
Ag(u) with the highest weight

II; = oy + &) + o,

=3
All the weights are simply calculated to be

n

nk=%(a1+a2)+2aj’ k=1’27.'.’n'—'2’

Jekr 2
n;l-l = }oy + ay),

nt+k __ n~—k+1
Hs = —Hs ’

I3 = §(a, — o),
k=12,---,n
(3.27)
Setting a representation in which H is diagonal, the
representatives of E; = E, can be simply written as
Edp=1, if Ij-MOf=a,,
=0, otherwise. (3.28)

The automorphism a, <> a, just interchanges IL?
and II7t!. The equations BA*(a;'uay) = A(u)f in
terms of the E; read

—~BET = E,f, —PE¥ = E,p,
B 3 2P . PE; 1B (3.29)
—BE; =E;f, j=3,4,-"",n
Equations (3.27)-(3.29) give
Bu-tinya = lgn+2,n—l = —f,, = —187:+1,n+1’

Bion—ss1 = —Birr,en—ss
j=1,--,n—2,n+4+2,---,2n — 1.
All other elements of 8 are zero. Thus fg* = 1.

The representations A;(#) and A,(u) are conven-
iently given in a basis labelled by Je) = |e;, €3, , €,),
where ¢; = £1 independently of each other except
for their product ¢, -, €, , which is +1 for A, and —1
for A,. Thus
(e] H, le) = %63'6(63 €) = %6,-5(61, Gi) R AN €2

j=12-- (3.30)

(6] El l€’> = 6(51 ’ E;) e ‘S(En—z, 6;;-»2)

s 1y

X 6(571—1, E;z-—l + 2)6(61” eln + 2)’ (331)
(e| E, [€) = 6(61 > e;) e 6(671——2’ E;;-Z)
X 6(€n—1’ E;v—l + 2)6(6,,,, G;L - 2)3 (332)
(€| E;le) = d(er, €1) = - €z, €55 + 2)
X O(e;_ys €11 — 2) - (e, €),
=34, n (3.33)

The automorphism a; <> a, interchanges E; and E,
and, as a consequence, the matrices for H;, given in
terms of the commutator of the E’s, change as

H, = a(TIHnao =-H,, H; = HJ"

j=1329'."n_1- (3.34)

M. L. MEHTA AND P. K. SRIVASTAVA

The equation fA*(a;'ua,) = A(n)f implies for the
algebra

—IBHn = —Hnﬂ, -ﬂHJ = Hjﬂ’
j=l’2’.."n'—1, (3.35)
—BET = E;p, —PEf =E,8,  (3.36)
—~BEf =Ef, j=34,-,n (337

From (3.30) and (3.35) one sees that the only possible
nonzero elements of f are
Bei-- enéy - ayens (3.38)

where €; = —¢;. As the product of all the ¢, is fixed,
this implies that # = 0 unless » is odd. When » is odd,

we indicate the element (3.38) by f(e, - -, ¢€,)
Equation (3.37) then shows that
ﬁ(el’ Tty €j g, 1’ _1’ €415 """ ’en)
= —ﬂ(elﬁ €59, -1,1, €ir1s " " " €n) (3.39)
and (3.36) gives
/3(61’ s €y 0 1’1) = —/3(61’ T, €p 2, —ls _1)
(3.40)

These equations give after a little manipulation
Bl &) = (=D} DBE, - s e, (341)
ie.,

g7 = (_l)é(n—l)ﬁ or Bf* = (_l)i(n—l)’ (3.42)
taking # unitary. Thus for n» odd, n = 2m + 1, the
representation A(w) satisfies A*(ay'ua,) = f71A(u)p
with

Bp* = (=)™ Ht4A(ag), if af =1,
and

Bp* = (™A, i af = . (3.44)

For n even, the automorphism a, < a, interchanges
A, and A,. Thus the corepresentation is of type III
unless 4; = A,. When 4; = 4,, it is of type L.

For D, and the outer automorphism a, <> a,, the
above conclusion holds. For the automorphism
o; «> ag(ot; <> o), the corepresentation is of type III
unless 4, =24, (4, = 4;). In case 4 = A3 (4, = 1y)
it is of type L.

E,: For the group Eg, the center consists of three
elements Z; = {1, ¢;, ¢, = ¢2; ¢;¢, = 1}. As ¢ = ¢,,
there is only one extension § for inner automorphisirs,
characterized by a3 = 1. This case is covered by
remark 3.1. The outer automorphism may be taken
as 135,24,3>3,6—>6.As¢, =c¢;, G, = ¢y,
there is only one extension characterized by a2 = 1.
Therefore the outer automorphism may also be taken
as the complex conjugation of the 27-dimensional

(3.43)
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representation A;(1) without any complication of the
type encountered in SU,,. All the corepresentations
are of type I, since A(u) occurs in the reduction of
some direct product of direct powers of A,(x) and
A;(u), both being of type 1.

E;: All automorphisms are inner. The center has
two elements, 1 and ¢;. The representative of ¢, in
A(u) is

A(C4) = (_1);—(+As+17.

Thus, for the choice a2 = ¢,, all corepresentations are
of type I. For the choice a2 = 1, see remark 3.1.

Eg, F,, G,: For these groups, all automorphisms
are inner and the center has only one element, the
identity. Thus a2 = 1. See remark 3.1.
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Remark 3.3: A glance at Tables IIT and IV shows
that class ITI, C occurs only when the automorphism
induced by a, is inner. Hence, in accordance with
Dyson,*2 using his notation, only class CC2 (and not
CCl1) occurs when G is a compact simple Lie group.
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In a previous paper the first few terms of the adiabatic invariant of a particular class of dynamical
systems were found by solving Liouville’s equation. The system considered was a periodic motion to
which small perturbations were applied. The period of the unperturbed orbits was a constant and the
perturbations were time-independent. In this paper similar methods are used to find the invariant for the
more general system, in which the period of the unperturbed orbits is a function of the coordinates and in
which the perturbation varies slowly with time. The results are applied to a simple example, the Lorentz

pendulum.

1. INTRODUCTION

In a previous paper® (referred to in the text as I) a
study was made of a dynamical system with a Hamil-
tonian of the form

H=p, +. €Q(qi,pi), (L.1)

where ¢; and p, (i = 1,2, -, N) are canonical co-
ordinates, Q is periodic in ¢, period 27, and € is a
small parameter. When e is zero, the orbits are curves
along which g, varies linearly with the time and the
other coordinates remain constant. If ¢, is an anglelike
variable, then the orbits form closed loops, the time
taken to pass once around being the same for all
loops. The dynamical system with € nonzero then
consists of a slow drift superimposed on these periodic
motions. Such a nearly periodic system possesses an
adiabatic invariant and the first few terms in the
series representation of it can be found.! Examples of

1 B. McNamara and K. J. Whiteman, J. Math. Phys. 8, 2029
(1967).

this kind arise in the study of nonlinearly coupled
oscillators and in various problems in celestial
mechanics.

A more general system with somewhat similar
properties is one with a Hamiltonian of the form

(1.2)

where, as before, Q is periodic in ¢, period 27. ¥ is a
function that is independent of g,, depends on p,,
and varies slowly with all the other coordinates and
time ¢. Q depends on all the coordinates and varies
slowly with time, i.e.,

‘P =‘F(5921' :

H=Y 4+ Q,

(1.3)
(1.4)

T Gq,\"P19 €P23 T, GPN: 6’)5
Q = Q(‘h, ct ,qN’pl’ ct 5PN5 6[).
When e is zero, the equations of motion are

dg, = (A)eg, Where 1= Q\I—f ,

dt op;
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and
du_,
dt
where
U={(qz, "GN P1>" "5 PN)-

Along the orbits u is constant and g, varies with a
rate that is a function of p;. (It is assumed in the
following that 4 s 0.) Again, if ¢, is an angle variable,
the orbits are closed loops, but now the periodic time
varies from orbit to orbit. This system, too, possesses
an adiabatic invariant and it is the purpose of this
paper to obtain the first few terms in its series. Exam-
ples arise in the study of the motion of charged particles
in a slowly varying magnetic field and the motion of a
satellite about a slightly nonspherical earth, The
question of whether magnetic fields possess magnetic
surfaces can also be posed in a similar canonical
form.?

In I two methods were used to calculate the invari-
ant. In the Poisson-bracket method, Liouville’s
equation was solved by expanding in € and using an
algebra of operators to reduce the equations to forms
which had an obvious solution. In the second, Krus-
kal’s averaging procedure® was used to evaluate the
action integral as an asymptotic series in e. Both
methods have again been used to calculate the invar-
iant for the more general system discussed here. In
Sec. 2 the Poisson-bracket method is outlined and
the modification to Kruskal’s method indicated in
Sec. 3. Section 4 contains some general comments.
In Sec. 5 the invariant is calculated for a simple
example, the Lorentz pendulum.

2. THE POISSON BRACKET METHOD

A constant of the motion J is sought for the dynam-
ical system described by the Hamiltonian (1.2)-(1.4).
J must satisfy Liouville’s equation

dJ _oJ
—=—-—-[J,Hl =0, 2.1
=g WA 2.1
where the Poisson bracket is defined by
0A 0B 04 0B
A Bl=—"—"+——— 22
.51 0p; 09; 04, 0p; @2

In this paper no attempt is made to find a general
solution of (2.1), as this would depend on the precise
form of H(q, p, ¢), which is not specified. What can be
found is a particular solution making use of the
known properties of the Hamiltonian. Following I,

2 B. McNamara and K. J. Whiteman (to be published).
3 M. Kruskal, J. Math. Phys. 3, 806 (1962).
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J is first expanded as a power series in e:

0
J=3e"J,. (2.3)

n=0
Furthermore, J is required to have the same depend-
ence on the coordinates as the Hamiltonian H.
That is, J is to be a function of ¢; and p;, but only a
slowly varying function of the time, varying as et.
H is periodic in g, period 27 and J is required to be
periodic also. This latter restriction on J has important
consequences, since it prevents the occurrence of
secular terms (like g7 sing,, for example) and leads
to a series that can be an adequate representation of
the invariant even for large values of g; .

The expansion scheme is complicated by the slow
variations of y, and therefore of J, and the most
compact expression of the scheme is achieved by
regrouping the expansion of J as

J=J=0 4oenJ 4 O(ent),

where
n—1
JrV =S emy (2.4)
m=0
Equation (2.1) becomes
(n—1)
edn o gy 0 oy (25
q, ot

The condition that J, be periodic is that no constant
terms appear on the right-hand side of (2.5), i.e.,
a](n—l)
ot

As in paper I, the average f of a periodic function of
q is

— [J(n—l)’ H] — O(en-l-l)_

(2.6)

_ 1 27
f=— fdq,.
2m Jo

Also, as before,
f-—~f(f—f') dgy,

where the constant of integration is chosen to make
f = 0. Equation (2.5) can now be integrated to give

/\
/\ (n—1)

e'an = l [J(n—l)’ H] - l aJ
A A ot

where the G, are constants of integration, i.e., they can
depend on all the coordinates except ¢,. The J, and
G,, are found by solving Eqs. (2.6) and (2.9) order by
order. From (2.5), J, is independent of g, and so the
lowest-order periodicity condition (2.6) becomes

aJy
ot

Q.7

(2.8)

+€G,, (2.9)

— [Jo, H] = 0(). (2.10)
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The only obvious solution is Jo = Jo(p,), since H
is independent of ¢,. As any function of an invariant
is also invariant, the solution can be chosen to be
Jo = p,. The same solution for J, could have been
chosen in I, but in that case would merely have
added the constant Hamiltonian to the invariant
found. In order to pursue the expansion scheme
further, the operator algebra of I [Eqs. (3.11)—(3.19)]
is required. Complications arise in the general case
because A is a function of the coordinates and is
outside the Poisson bracket in Eq. (2.9). The following
additional relations are useful and easily demonstrated
from the definition (2.2):

g, bl = flg, k] + glf. k1 = [f. ghl + [g.fh] (2.11)
and Uz /1= 4g. /2. 2.12)
Using (2.9) and (2.4), one now finds
JV=p +e Q_0 + G, (2.13)
and the first-order periodicity condition gives
aGl [ s ]+ (Q Q) [Q—Q,H:]=O(€3)
A A
2.19)

The last term can be rewritten, using 1(3.18), 1(3.16),
and (2.12):
Q2 — (2

E[Q;Q,Q]m[%,_z 1= o

The third term is zero, using I(3.12), and so (2.14)
becomes
9G,

5 — G H] = 0(<).

This is the same equation as (2.10) and the appropriate
solution is G, = Gy(p,) =0. The methods now
become much harder to operate than in I, and a
further operator has to be introduced to handle the
slow variations of y and 4. We define the slow bracket
of p with f = f(p,, ¢;, t) by

=9
v, f1= laql + f{w,f}-

Using (2.5), one now ﬁnds
€d/Q 2
] 2 at(z) + G

2J2——[p1,H]+ [
R

(2.15)

(2.16)

2.17)
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The only new relation needed to solve (2.6) for G,
is for the average of the Jacobi identity involving a
slow bracket:

Hy.f} 8l + e v} f1+ {[f gl 9} = {l,faa?g}.

(2.18)
The equation for G, can now be rearranged to read

9 17rQ Q QQ .
=G —={=,=|) -G —= = O(¢%).
@z al) ~ [T A Ao
(2.19)
As before, the particular solution of this equation is

chosen to be
1[9 Q]
20472

The adiabatic invariant correct to O(¢?) for the Hamil-
tonian of (1.2)~(1.4) is therefore

J=p1+e(Q;Q)

oo+ [ - 2]

19 (Q Q O 3
15 (3) Y3l A]) +0(). 221
The slow dependence of y and A on the coordinates
greatly increases the work involved in using this
method. It would be a lengthy task to obtain higher-
order terms, but we believe that no further operator
algebra would be needed.

Gy, = (2.20)

3. KRUSKAL’S AVERAGING METHOD
Kruskal® deals with a set of equations

dx
x,=—=F®x,¢ 31
= (x, €) (3.1)
such that for ¢ = 0 the point x(¢) traces out closed
curves as ¢ increases. He has shown that one can
introduce a transformation to new coordinates

X—(y, )
such that (3.1) becomes
Y: = eg(y, v) (3.2)
and
v, = x(¥) + (¥, v), (3.3)

where f and g are periodic in » period 27 and y is
independent of ». In I the particular case was consid-
ered where y was a constant (taken equal to umty) and
the averaging method was applied. That is, the
transformation of coordinates

Y; vz, 9
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was found (as far as terms of second order in ¢€) such
that z, and ¢, were functions of z alone and not of ¢.
Taking y = 1 was sufficient to allow the adiabatic
invariant to be found for the dynamical systems
considered in I. For the more general systems con-
sidered in this paper, it would seem necessary to carry
out the averaging procedure for the general case
where y = x(y). However, we remark that if one
changes the independent variable from 7 to s where

ds

;t = X(Y),
then (3.2) and (3.3) become
Ys = e(g/x),

v, =14 e(f]).

These are now of the form considered previously.
The equations of motion for the Hamiltonian
system described by (1.2)-(1.4) are

d
—‘}qt—l =1+ eQ,,
‘—‘;% m (Yo, + Q) P (3.4)
d .
f = _G(qu,- + Qa.v)’ i=1,2,--+,N.
Choosing ds/dt = 4, Egs. (3.4) can be written as
ay = a 4 G, (3.5)
ds
Where Y=(@p ), (3.6)
a=(,0,0,---,0), 3.7
and
G=

Q.1 1 1
(_ﬂ.—m ,E("Psm + Qm)’ T, E("Peqs + qu)’ e ’_Z_)
(3.8
Denoting the averaged coordinates by

Z = (Q, P’ eT)’

the averaging transformations are given as before by
1(4.25) and 1(4.26). The only change arises when
representing these expressions in terms of Poisson
brackets.

Using the notation of I(Sec. 4), one finds

3

G-sy=i—[5,S],

— ~
.

1 a§ 1 ~ 1 A
=—-—+7 Qy S+~ s S},

Y= 0% 2 [ | 3 {v, S}

and so on. It is now possible to make calculations

similar to those in I(Sec. 4) and evaluate the invariant
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§ p - dq taken around a curve on which @, varies and
the other coordinates Q;, P;, and T remain constant.
The working is not reproduced here, but gives the
same expression as (2.21) of this paper.

4. DISCUSSION

The important feature that allows an invariant to be
found by the methods of this paper is that the domi-
nant term in

Va, H)

is the term containing the derivative 0/,/0q, . Another
form of Hamiltonian different from (1.2) to (1.4)

that has this same property is one with
v = p(eqs, " * "y epys €f) (41)

and

‘> €4NsP1sP2s €P3 s "

Q=9(41,692,%,"',qN,Pu"',PN,ﬂ)- (4-2)

That is, y depends both on p; and p, instead of p,
and ep,, and Q depends on eg, instead of ¢,. The total
Hamiltonian is a function of eg, and we therefore
seek an invariant having the same dependence. As a
result, the lowest-order term in (2.1) is just A0J,/0q; .
The analysis proceeds exactly as above and the
invariant can be found. In fact,  can be allowed to
depend on any number of the ¢; and p;, as well as on
P15, provided that the total Hamiltonian varies only
slowly in the conjugate coordinates; an invariant can
still be found and it has precisely the form given in
(2.21).

The motion of a charged particle in a magnetic
field has a Hamiltonian that can be written in this
form. One finds that y = Bp, + p,, where p; =
v% /B, p, = v}, and B is the magnitude of the magnetic
field, where v and v | are the components of particle
velocity along and perpendicular to the field. Provided
that B is assumed to vary slowly in the direction of the
field (as eq,), an invariant can be found. The lowest-
order invariant from (2.21) is just p, = v® /[B. The
next term,

Q-9
€ —
A

gives the usual form* of the first-order correction to
the magnetic moment.

5. THE TIME-DEPENDENT OSCILLATOR

An example for which the adiabatic invariant is
simply found by the methods described is the oscillator
with a time-dependent frequency, the Lorentz pen-
dulum. (The frequency of the lowest-order orbits is
constant, but the perturbations are time-dependent.)

4T. G. Northrop, The Adiabatic Motion of Charged Particles
(Interscience Publishers, Inc., New York, 1963).
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The Hamiltonian for this system can be written
H = }(3* + o), G.D
where
o = w(et).

Defining a canonical transformation to new co-
ordinates (PQ) by means of the generating function

3
W(x, P) = §(2wp — o) + Psin (Eazia) x (52)

[found by solving the Hamilton-Jacobi equation
H(x, dW/dx) = wP), one obtains

X = (25)% sin Q

and
% = (2Pw)t cos Q. (5.3)
The new Hamiltonian H* is given by
H*=H + ow
at
= oP + ¢ = Psin 20, 5.4)
2w

where ' = dwjdet. This is of the standard form
(1.2)-(1.4) and the invariant is, from (2.21),

PP NPY I A
(5.5)
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since = 0 and A is independent of P and Q. Evaluat-
ing this, one obtains

’ 2 ’
J=P+59-Psin2Q+f—(-°f’-§)P
2w 8 \w

+ 2(“’)) + 0 (56)
(0

9.1’_02522(w’

2 w?

_ (*2 + w2x2) (1 + ((1)')2) + f.?).: i
@

2w w?

2x2) ( i

To lowest order this is just Hfw, the familiar form of
the invariant for the Lorentz-pendulum problem. The
result of (5.7) to second order agrees with an expression
given by Littlewood?® [there is a typographical error
in Eq. (11) of Ref. 5]. Although H/w varies as
varies slowly in time, one can see that the change in
H/w between two states for which ' = 0 is zero.
This result has been obtained to all orders by Kulsrud.®

FEe - ow(% - 220) 4 o). 67
8 o°
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In this paper, we consider the problem of determining logarithmic, as well as polynomial, asymptotic
estimates for certain convergent integrals contamlng parameters. We state and prove an asymptotic
theorem which gives the logarithmic asymptotic behavior of a convergent integral where any subset of
the parameters becomes large while the remaining parameters remain bounded. This theorem is then

applied to the photon and electron self-energy graphs of quantum electrodynamics.

I. INTRODUCTION
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for integrals which was proved in a paper by Wein-
berg.® In addition to stating and proving conditions
under which a Feynman integral converges, Weinberg
developed a method for determining a polynomial
bound on the value of the integral as subsets of the
external momenta become large, provided the usual
rotations of energy contours can be performed. The
value of his technique is that one need not evaluate

the integrals under consideration. The bound on the
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H(x, dW/dx) = wP), one obtains

X = (25)% sin Q

and
% = (2Pw)t cos Q. (5.3)
The new Hamiltonian H* is given by
H*=H + ow
at
= oP + ¢ = Psin 20, 5.4)
2w

where ' = dwjdet. This is of the standard form
(1.2)-(1.4) and the invariant is, from (2.21),

PP NPY I A
(5.5)
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since = 0 and A is independent of P and Q. Evaluat-
ing this, one obtains

’ 2 ’
J=P+59-Psin2Q+f—(-°f’-§)P
2w 8 \w

+ 2(“’)) + 0 (56)
(0

9.1’_02522(w’

2 w?

_ (*2 + w2x2) (1 + ((1)')2) + f.?).: i
@

2w w?

2x2) ( i

To lowest order this is just Hfw, the familiar form of
the invariant for the Lorentz-pendulum problem. The
result of (5.7) to second order agrees with an expression
given by Littlewood?® [there is a typographical error
in Eq. (11) of Ref. 5]. Although H/w varies as
varies slowly in time, one can see that the change in
H/w between two states for which ' = 0 is zero.
This result has been obtained to all orders by Kulsrud.®

FEe - ow(% - 220) 4 o). 67
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for integrals which was proved in a paper by Wein-
berg.® In addition to stating and proving conditions
under which a Feynman integral converges, Weinberg
developed a method for determining a polynomial
bound on the value of the integral as subsets of the
external momenta become large, provided the usual
rotations of energy contours can be performed. The
value of his technique is that one need not evaluate

the integrals under consideration. The bound on the

® 8. Weinberg, Phys. Rev. 118, 838 (1960).
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integral is determined simply from the asymptotic
properties of the integrand alone.

Weinberg’s analysis, however, does not determine
the logarithmic asymptotic behavior of convergent
integrals. A method which provides some clue to the
logarithmic asymptotic behavior of the photon and
electron self-energy graphs of quantum electro-
dynamics is the renormalization group approach
(cf. Bjorken and Drell,® Bogoliubov and Shirkov,’
and Landau®). The renormalization group is, by def-
inition, the group of transformations which, when
applied to the propagators, charges, and masses of a
theory, yields new propagators, charges, and masses
which do not change the expressions for observable
quantities. The arguments of the renormalization
group approach rely upon several fundamental
assumptions which lead to anomalous results which
in turn make one suspect the original assumptions.

In this paper, we develop a technique for deter-
mining the logarithmic asymptotic behavior of a cer-
tain class of convergent integrals and apply it to
various Feynman integrals of quantum electro-
dynamics. We use Weinberg’s results® as a basis,
although we are required to modify and extend them.

II. ASYMPTOTIC THEOREMS FOR INTEGRALS
A. Introduction

In this section we are concerned with extending the
results of Weinberg.® Before undertaking this task,
however, we briefly summarize his results and, in so
doing, we use essentially the notation used by Wein-
berg.

B. Summary of Weinberg’s Results

Let f(p;,* * * , p,) be a complex-valued function of
the n real variables p;, - - -, p,. We will consider the
variables p;, - " -, p, as the components of a vector
P in R", and we will be concerned only with those
functions f(P) which belong to a certain class 4,
defined as follows:

Definition: A function f(P) is an element of the
class 4, if and only if, for each subspace S = R",
there exist coefficients «(S), #(S) such that, for any
choice of m < n independent vectors L, -, L,
and bounded region W < R", we have

J@m N+ Lane 9 + - + Ly + ©)
= 0{7]:((1"1})(]03 ?h)ﬂ({Ll)) N 7]1:(("" ,o o, LmD
X (log nm)ﬁ({h, e ,Lm))}

¢ J. Bjorken and S. Drell, Relativistic Quantum Fields (McGraw-
Hill Book Co., New York, 1965).

7 N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory
of Quantized Fields (Interscience Publ., Inc., New York, 1959).

$ 1. D. Landau, in Niels Bohr and the Development of Physics, W.
Pauli, Ed. (McGraw-Hill Book Co., New York, 1955).
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when #,, -, 7, tend independently to infinity and
C e W. The notation {L,, - -+, L,} denotes the sub-
space spanned by the vectors L;, <+, L,.

Let 7 be a subspace of R™ spanned by some set of
orthonormal vectors L;, -+, L;, and consider the
integral

1@ ="y an,
X f® + Ly + -+ Liyy)

= L, Id"P’f(P + P).

Provided this integral exists, f;(P) is a function which
depends only on the projection of P along the sub-
space I; that is, f;(P) depends only upon the com-
ponent of P in the subspace complementary to /.
The following theorem was proved by Weinberg.®

Theorem . 1: Suppose f(P)e€ A, with asymptotic
coefficients «(S) and B(S) for any nonzero subspace
S of R". Let f(P) be integrable over any bounded
region in R* (local integrability), and let

D; = max {«(S’) + dim S'},
s'cr

where dim S’ is the dimension of S’. If D; < 0, then:
(a) f1(P) exists;
(b) f;(P) € A,_; with asymptotic coefficient o;(S)
for S < E, where R* = I ® E, given by
a;(S) = max {«(S’) + dim S’ — dim S}.
ADS'=8
A() is the operation of projection along the subspace

I and max means that the maximum is taken over
ADS'=8
all those subspaces S’ which project onto S.

C. Definition of the Subclass B,

Let f(P)e A4, with asymptotic coefficients «(S)
and B(S). Let L;,---,L,, be m < »n independent
vectors and W a finite region in R”. We arrange the
logarithmic asymptotic coefficients B({L.}), - -,

p{L,, -, L,}) in increasing order, and suppose
that
ﬁ({Ll’ T Lﬂl}) S ﬂ({Ll’ Tt Ln})
s e S ﬂ({Ll, Ve ’Lﬂm})’
where m;, -, w, is a permutation of the integers
1, -+, m.

Definition: A function f(P) is an element of the
subclass B, if and only if f(P) € 4, with asymptotic
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coefficients «(S) and B(S) such that (S) is a non-
negative integer for all S < R" and

f(Llﬂl"'nm+L2772"'77m+°“+Lm"7m+c)

=0 nalz((Ll)) v ,)7::{14, ERILIN P}

x 3 (logr,)"(log )", - -, (log n,,,ym},
‘yl' Lot !7m

when #,, ", 9,, tend independently to infinity and
C € W, where the sum ranges over all nonnegative
integers y,, - * , Y, satisfying

7 < ﬂ({Ll’ T, Ln}),
’)’1 + 72 S ﬂ({LI’ Y Lﬂz}),

nt -+ ra< ﬁ({Ll" : 'aan})-
Since B, < A,,, Theorem 1 applies to the subclass
B,.

D. Generalization for One-Dimensional Integrals

Our goal is to obtain a formula for §;(S) for inte-
grable functions in the subclass B, similar to the
formula for «;(S) given in Theorem 1 for integrable
functions in 4,,. We begin with a definition based on
this theorem.

Definition: A subspace S’ is said to be a maximizing
subspace for the I integration (relative to a given
subspace § < E) if

ADS'=S and o;(S) = a(S) + dim §' — dim S.

The proof of Theorem 1 given in Ref. 5 shows that
maximizing subspaces always exist.

Let us first consider the case when dim I = 1. For
this case, the maximizing subspaces fall into two
categories—those for which dim S’ = dim S and
those for which dim §" = dim § + 1. Let p be the
number of nonempty categories of maximizing sub-
spaces; that is, p = 1 if all maximizing subspaces have
the same dimension and p = 2 otherwise. By repeating
the proof of Theorem 1 for the subclass B, , we arrive
at the following theorem:

Theorem 2: Let f(P) € B, satisfy all the conditions
of Theorem 1 and suppose that dim 7/ = 1. Then
f1(P) € B,_, with asymptotic coefficients «;(S) given
by Theorem 1 and 8,(S) given by

Bi(S) = max B(S"y + p — 1,
S'eM

where M is the set of all maximizing subspaces.
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E. Generalization for Two-Dimensional Integrals

In order to generalize this result when dim 7 > 1,
let us next examine the case dim J = 2. We write
I =1 &I, where dim I, = dim I, = 1, and integrate
first with respect to the I; variable and then with re-
spect to the variable in I, and vice versa. Since we will
be dealing only with integrable functions in B, in the
following, Fubini’s theorem applies and we conclude
that the integral is independent of the order of inte-
gration and of the particular choice of I; and I,.

Let us perform the I, integration first and then the
I, integration. We have

0,(8) = max {«(S") + dim S” — dim §'},

AT)8"=S"

afS) = max {«;,(S) + dim S’ — dim S}
AIDS'=S

= max {«(S”) + dim S” — dim S},
ADS"=S

where
ScE with R"=IQ®E,
S’ < E2 With R" = [2 @ Eg,
S” < R*.

Let S, < E, be the maximizing subspaces for the
I, integration relative to § after performing the I,
integration. For each S, let S| < R" be the maxi-
mizing subspaces for the I, integration relative to
S, . We have the relations

AU)S,, =S,, a5,(S,) = «(S},,) + dim S,, —dim S,
AUYS, =S8,  a[S) = a;,(S,)+dimS, —dim S.

We now want to determine the maximizing sub-
spaces for the full I integration relative to S; that is,
we want to determine the subspaces S” < R™ for
which A(DS" =S and «x(S) = «(S") + dim §" —
dim S.

Lemma 1: The S,, are precisely the maximizing
subspaces for the I integration relative to S; that is,
each S, is a maximizing subspace for the I integration
relative to S and any such maximizing subspace for the
I integration relative to S must be one of the Sy, .

Proof: To show that each S, is a maximizing
subspace for the I integration relative to S, we note
that A(DS;, = S and

@/(S) = 07,(S,) + dim S, — dim S
= «(S;,) + dim S, — dim S,

+ dim §; — dim S
= «(S},) + dim S, — dim S.

Conversely, suppose that S is a maximizing sub-
space for the 7 integration relative to S and let
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S = A(l)S; . We have

S = AI)S = A(D)Sg,
oz(S) = a(Sg) + dim S; — dim S.
Now

«i(S) = max {«;,(S) + dim S’ — dim S}
AlT)S'=8

> a;(Sy) + dim S; — dim S

= max {«S") + dim S” — dim S}}
AlI3)8"=80’
+ dim S; — dim S

> a(Sy) + dim S — dim S

= o)(5),

where the last equality follows from the assumptions
on S, . Since the first and last terms in this chain are
the same quantity, all inequalities must be equalities,
and hence

o,(S) = «7,(Sg) + dim Sg — dim S, A(I)S; = S,
ar,(So) = a(Sg) + dim S§ — dim S;, A(I,)S; = Sg.
Thus, S, is a maximizing subspace for the / integration
relative to S after performing the I, integration and
so must be one of the S’,. Sy is a maximizing subspace

for the I, integration relative to S (which is one of the
') and consequently must be one of the S, .

We observe that Lemma 1 does not depend upon
the fact that we are assuming dim I; = dim I, = 1.

Let p, be the number of different dimensions among
the maximizing subspaces for the I, integration
relative to S after performing the I, integration, and
let p,, be the number of different dimensions among
the maximizing subspaces for the /, integration relative
to S, .

Lemma 2: p,, is independent of u.

Proof: Suppose not. Then there exist two maximiz-
ing subspaces for the /; integration relative to S after
performing the I, integration, say S and §;, such
that py; = 1 and py, = 2.

There are several cases to be considered. We work
out the details for one case only because the others are
all similar.

Let S;, be maximizing for the I, integration relative
to S, and let S;, and Sy, be maximizing for the /,
integration relative to S, . Suppose dim S| = dim S, =
dim S}, = dim §;, = dim S;, — 1. Performing the
I, integration first and then the I, integration, we
obtain

BA(S) = max {B,(SD, B1.(SD)}
= max {ﬂ(sfl)’ max {ﬂ(slzll)s ﬁ(Sg2)} + 1}
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On the other hand, reversing the order of integration
gives

B(S) = max {H(S11), B(S), B(Sz)} + 1.
These two expressions are not equal for all nonnega-

tive integral values of B(S”) and hence we have a
contradiction.

Since p,, is independent of u, we will denote it
simply by p,.

Now let 7, and I, be two one-dimensional subspaces
of I different from I; and I,, respectively, such that
I=] @I Just as with I, and ,, we let T be the
maximizing subspaces for the I, integration relative to
S after performing the I, integration, and, for each
T,, we let T,, be the maximizing subspaces for the
I, integration relative to T, . Let 5, be the number of
different dimensions among the maximizing subspaces
for the I, integration relative to S after performing
the [, integration, and let j, be the number of different
dimensions among the maximizing subspaces for the
I, integration relative to T),. By Lemma 2, p, is
independent of p and we have the following lemma:

Lemma 3: Let I=I, @I, and I = [, ® I, be two
decompositions of the two-dimensional space of
integration I into one-dimensjonal components.
Let p;, pa, 1, and j, be defined as above. Then

Pi+ pa= P+ P

Proof: Consider the decomposition I =1, @ I,.
Performing first the I, integration and then the I,
integration, we obtain, by Theorem 2,

Br(S,) = max f(S,,) + p — 1,
B(S) = max Br(S) + pr— 1.

Combining these two expressions,
By(S) = max {max B(SL) + o — 1} +p—1
n v
= n‘lla;x .B(S:v) +pit+p—2

since p, does not depend upon u. L
Similarly, for the decomposition I =1, @ I,, we
have

BA(S) = max B(T}) + i + pa = 2

By Lemma 1, however, the S, are precisely the maxi-
mizing subspaces for the I integration relative to S
and so are the T, . Consequently, the 7, are merely
the S, relabeled. Thus,

max f(S,,) = max B(T,s)
n,v p,c

and we obtain the desired result..
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We see that the proof of Lemma 3 provides us with
a formula for 8,;(S) when dim 7 = 2.

Theorem 3: Let f(P) € B, satisfy all the conditions
of Theorem 1 and suppose that dim 7 = 2. Then

B:(S) = max 8(S") + p; + p: — 2,
S'eM

where M is the set of all maximizing subspaces for the
I integration relative to S.

F. General Asymptotic Theorem
The generalization to the case dim /= k is now
reasonably straightforward. We write /=1, ® - @
I, where each component subspace /; has dimen-
sion one.

Definition: Let I =1, ® * -+ ® I, with dim I; = 1.
The dimension numbers p,,-- -, p, are defined in-
ductively as follows: p, is the number of dimensions
among the maximizing subspaces for the I, integration
relative to S after performing the L, @ - @I
integration. p;,j=2,--+,k, is the number of
dimensions among the maximizing subspaces for the
I; integration after performing the I, @ - @I,
integration relative to any one of the maximizing
subspaces for the I,_, integration after performing the
I, ® - - - @ I integration.

By definition, the dimension numbers p; can take on
only the values 1 and 2. The definition of p;, j =
2,--+,k,appears to be ambiguous, however, be-
cause it does not specify the maximizing subspace for
the 7,_; integration relative to which p; is computed.
The next lemma shows that this ambiguity actually
does not exist.

Lemma 4: The dimension numbers p;, j = 2, , k,
are independent of the maximizing subspaces for the
I,_, integration relative to which they are computed.

Proof: The result for dim/ = k = 2 was proved
already as Lemma 2 in Sec. IIE. Therefore, if k > 2,
we assume that the p;, j=2,-+-,k — 1, are inde-
pendent of the maximizing subspaces for the I;_,;
integration relative to which they are computed.

Suppose that p, does not enjoy this property. Then
there exist two maximizing subspaces S; and S, for the
I,_, integration after performing the I, integration for
which p, = p,;, = 1 and p, = p;, = 2. Using Lemma
I, 87 and §; are maximizing subspaces for the
I, ®- - @I_, integration relative to S after per-
forming the I, integration. Let S|, and S, be the
maximizing subspaces for the I, integration relative
to S] and S;, respectively.

Since we are assuming that S; and S, are two
different maximizing subspaces for the I, @ - - - @ I,_,
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integration relative to S after performing the I
integration, there exists a one-dimensional subspace
Jyof , ® - ®I,, and its orthogonal complement
Jo in Lo ®L, (LO 0L ,;=/0J)
such that the subspaces A(J,)S; and A(Jp)S, are
different. (See Proposition Al of the Appendix.) We
now integrate out the J, subspace leaving the J;
subspace. Let

A(J9)S, =T, AUDSy, = Th,,

A(J2)Sé = Té’ A(JZ)ng = T,2’v
By Lemma 1, 7} and T} are maximizing subspaces for
the J; integration relative to S after performing the
I, ® J, integration, and T, and T,, are maximizing
subspaces for the I, integration relative to 7] and T},
respectively, after performing the J, integration.

Let p,, and p;, be the numbers of different dimen-
sions among the subspaces T, and T, , respectively.
Then p;, = p,, and p;, = pio. Therefore, pyy # prs
implies that p;, # p;,, which contradicts Lemma 2
because dim J; = dim [, = 1.

Lemma 5: Let I=L oL, ®---®1, and I=
LoL® - ol be two decompositions of the k-
dimensional space of integration I into one-dimen-
sional components. Let p;,p,, - ,p, and pj,
Pa>**, Pr be the corresponding dimension numbers
as defined above. Then

k k 5
Zpi = El’z
i=1 i=1

The proof of this lemma is almost identical to that of
Lemma 3, where it is assumed that dim I = 2.

The proof of Lemma 5 now gives us the general
asymptotic theorem.

Theorem 4: Let f(P) € B, satisfy all the conditions
of Theorem 1 and suppose that dim7=k. Let
P1s> P2 Pi be the dimension numbers correspond-
ing to any decomposition of 7 into one-dimensional
components. Then f;(P)e€ B, , with asymptotic
coefficients o;(S) given by Theorem 1 and f,(S)
given by N
BAS) = max B(S) + 3 p, — k,

S'eM =1

where M is the set of all maximizing subspaces for the
I integration relative to S.

III. ASYMPTOTIC ESTIMATES FOR SELF-
ENERGY GRAPHS

A. Introduction
We now apply Theorems 1 and 4 to photon and
electron self-energy graphs in order to obtain asymp-
totic bounds for the corresponding renormalized
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Feynman integrals. We remark that, although our
discussion centers around photon self-energy graphs,
the same results apply to electron self-energy graphs
with the obvious modifications.

B. Degree of Divergence of a Subgraph

Weinberg shows in his article® that the integrand of
any Feynman integral corresponding to a certain
Feynman diagram is an element of the class Ay,
where N is the number of independent four-momenta
in the diagram, provided the energy contour can be
rotated from the real to the imaginary axis. Thus, if
¢ is a four-momentum, the hyperbolic metric

=4 -a—-4-4

becomes negative-definite for g, purely imaginary.
We therefore assume that this well-known energy-
contour rotation®® has always been carried out.
Furthermore, since the logarithmic asymptotic co-
efficients of any Feynman integrand are zero, the
integrands belong to the subclass B,y , defined in Sec.
Ic.

For a detailed discussion of the connection between
subgraphs of a Feynman graph and the corresponding
subspaces of R*Y, where N is the number of independ-
ent four-momenta in the Feynman graph, we again
refer to Weinberg® and also to Bjorken and Drell. In
the following, the subspace S of Theorems 1 and 4 i
always the subspace associated with the external
momenta of the Feynman diagram, which, for the case
of a photon self-energy graph, is simply the photon
four-momentum ¢. The maximizing subspaces §’ €
M correspond to those subgraphs of the original
Feynman graph with maximum degree of divergence.
For a subgraph g’ corresponding to a subspace S, the
degree of divergence D;(g’) is defined as

Dy(g) = «(S) + dim §' — dim S, (1)

where «(S’) is the asymptotic coefficient for the inte-
grand corresponding to the original graph. In re-
normalizable field theories, it turns out that
Dy(g) = 4 — 1F(g) — B,

where F(g') and B(g') are the numbers of fermion
and Boson lines, respectively, attached to the subgraph
g', including external lines belonging to g". (See, for
example, Dyson? and Bjorken and Drell.¢)

Rules for determining the degree of divergence of a
subgraph in which there are subtraction terms are
given in Bjorken and Drell.® By a simple counting
technique, we can determine the degree of divergence
D,(g") of a subgraph g’, which, according to Eq. (1)
and Theorems 1 and 4, is the quantity we need to

JAMES P. FINK

know in order to calculate the asymptotic coefficients
oz(S) and B;(S) of the integral.

In order to calculate the logarithmic asymptotic
coefficient £,(S), we must first determine the dimen-
sion numbers p; defined in Sec. IIF. Before we can do
this, however, we need some facts concerning maxi-
mizing subspaces of convergent Feynman integrals.

C. Irreducible Subspaces of the Space of Integration

Suppose that the space of integration / of a con-
vergent integral has dimension 4k, as is the case for
Feynman integrands. Let /=1L ® - ® Iy be a
decomposition of I into one-dimensional components
I, and let I,- - -, I be the four-dimensional sub-
spaces of I defined as

I{=Il®12®13@j49
L=LolgoI,®l,,

=I5 @Iy @Iy @Iy

Furthermore, suppose that the maximizing subspaces
for the I integration relative to S are of the form

S,
Sel,,
sern el,,

J
S@@I,’i,
i=1
where
j=15' Lk, I;=1""9k9

I, <l if i <i.

Definition: Suppose that the maximizing subspaces
for the I integration relative to § are of the form just
given. A direct sum

i
J=®I,
i=1
where j=1,--,k, l,=1,--+,k, and t".1<1’,.2 if
i, < iy, is called an irreducible subspace of I if every
maximizing subspace for the I integration relative to
S which contains one or more of the components I,
of J actually contains the entire sum J.

For example, if I=IL®L,®I; with I and
I,® I irreducible, then the possible maximizing
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FiG. 1. The subgraph of a photon self-
energy graph corresponding to the sub-~
space S.

[AVAVAVAVAVAVAVAVAVAVAV)

subspaces for the I integration relative to S are
S, Sel;, SeLal,,
SeLelhiel;=S&l

The subspace S @ I}, in particular, could not be

maximizing because, by the irreducibility of I, ® I,

the subspaces I} and I; cannot be split up.

D. Maximizing Subspaces and Dimension Numbers of

Convergent Feynman Integrals

We begin with a lemma which applies to any
photon self-energy graph.

Lemma 6: For any renormalized photon self-energy
graph, the subgraph shown in Fig. 1 has degree of
divergence equal to 2. In other words, the subspace S
is itself maximizing for the I integration relative to S.

Proof: Clearly, A(I)S = S.

For a given photon self-energy graph, let the corre-
sponding Feynman integral be denoted by

Huv(q) =fdPIRuv(Pl) ‘1),

where P; denotes the integration variables in the space
of integration I. Suppose that R, is the integrand
which results after all subtractions have been per-
formed with the exception of the overall subtractions.
Performing the overall subtractions, we obtain

H;v(q) =fdPI{Rp.v(PI: q) - Ry.v(PIs 0)
—q aRuv(Pla 0) — qpqa azRuv(PI, 0) .
’ g, 2 aqpaqd
For this new integrand, we have that
a(S) + dim S — dim S = «(S)
=2,

which is equal to «;(S) for a photon self-energy graph.
We recall that § is the subspace associated with the
external momentum g. In §, all the variables denoted
by P; are zero.

Thus, S is maximizing for the I integration relative
to S.

The counting technique for determining the degree of
divergence of a subgraph gives the value of the
expression

Di(g) = a(S") + dim " — dim S,
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and hence we can determine the maximizing subspaces
for the I integration relative to S. In order to calculate
the dimension numbers p;, however, we must be able
to determine the subspaces which maximize subinte-
grations of the full I integration.

We again write =1, ®---@® I;, where dim
I = 4k, and define the four-dimensional subspaces
Ii,---, I, as in Sec. IIIC. Let p;, j=1,---,4k
be the corresponding dimension numbers defined in
Sec. ITF.

Theorem 5: Suppose there exists a decomposition of
the space of integration I such that the irreducible
subspaces of I can be written as
I’{:I{@"'G—)I,:l,

L=5n® @l

I’f’n=17::m_1+l®..'®17:?m’ k1<k2<"'<km=k,

for some integers m, ky, ks, -, k, = k. In other
words, we assume that the maximizing subspaces for
the [ integration relative to § are of the form

s,
Selr.,
ser ol

S® é I,
where =
j=1,-",m, li=1""’m:
L, <l;, if i <i,.
Furthermore, suppose that the subspaces

S, SoI, Sellall,- -,
Selle @l =Sal

are included in the set of all maximizing subspaces.
Then

4x

dp; =4k + m,

=1
where m, defined implicitly above, is the number of
irreducible subspaces of 1.

Proof: The proof of this theorem, although some-
what long, is not difficult. It amounts to calculating
each of the dimension numbers p,, and this is done by
determining the maximizing subspaces for the sub-
integrations of the I integration.
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Consider the sequence of maximizing subspaces

S, Sel;, SelL®l, -,
Selje--ol,=Sal,
and take any two adjacent subspaces from this se-
quence:
Solie - @I and Sel;® - - @I,,
0<r<m-—1.
In terms of the I, these two subspaces are

Seli®-- 0L, and Seolio - -ol,,,
and in terms of the 7;, they are

SeL® -0l and SOL® - ®ly,,.
(Forr = 0,wedefinek, =0.ThenSa@ I, ®---® I,
and S® I{ @ - - - @ [;_refer to the subspace S.) Set
So =S,
S;=SeoLe &L, j=1,-,4k

The two maximizing subspaces we are considering
are then denoted Sy, and Sy, . Now

AU 4k,.+1)S4kr = S4k, s

Al 4k,+1)S4k,+1 = S4k,- @)

Also,

alS) = max {a a1 ® - - @T0(S")

AlL®: - @IM,)S'=S
'S 8uky

+ dim S’ — dim S}
2 ahk,“@ e @ng(s4k,) + dim S4;¢r — dim S

1A
= max {“Iu,.u@ s @qu(s )
Alapy+1)8" =84k,

8" 8apr+1
+ dim §” — dim Sy, } + dim S, — dim S
Z aldk,-+2® ve @ng(s4k¢) + dim S'lkr —dim S

= max {«(S") + dim S
Allgrp 2@+ +* @I)S =84k,

— dim S} + dim Sy, — dim S
> a(Sy,) + dim Sy, — dim S
= aI(S)’

where this last step follows because Sy, = S®I; @
-+ + @ I is a maximizing subspace for the I integration
relative to S. Thus,

Uy 10 -+ 070 (Ser)

= aIak,+2@ e @ILk(S'lkr) + dim S4kr _— dlm S4kr . (3)
Similarly,
aI(S) 2 d].errl@ v @I‘k(sﬂtr) + dim S‘”Cr - dim S

2 Ay so® - -016(Sa,11) + dim Sy y — dim S

JAMES P. FINK

= max {«(S") + dim S”

Ak, 42® - - O Iap)S"=S sy 11
— dim Sy 1} + dim Sy, — dim S
> «(Sy) + dim S, — dim S
= oy(S)
by the maximizing property of Sy, = S @ I. Hence,

allk,-d-l@ oo @Iak(s4kr)

= aI4k,+z® .. .@1“(S4kr+1) + dim S4k,+1 — dim S4Ir,~'
4
Relations (2), (3), and (4) together imply that both
Su, and Sy 4, are maximizing subspaces for the
I 1, integration relative to Sy, after performing the
Iy ,s® @I, integration. Since dim Sy ., =
dim Sy, + 1, the corresponding dimension number

has the value 2; that is,

P4k,+1=2s r=0,1,--,m—1.

We next consider the dimension numbers py ., for
r=0,--,m—1land /=2, -+, 4k, , — 4k,. Our
task is to determine the maximizing subspaces for the
I ., integration relative to Sy ., , after performing
the Iy .1 @+ @ Iy integration. Sy ., is such a
subspace because

A 4k,+z))54k,+z = S4k,+z~—1
and

a/(S) > 1 AT RE 013 (Sak,41-1) +dim Sy, ; —dim S
2y 0@ 01 (Sar) + dim Sy, — dim S
> u(Sy) + dim Sy, — dim S
= o;(S).

Since dim Sy 4, = dim Sy, ; + 1, any other
maximizing subspace for the Jj, ., integration relative
to Sy, .1 after performing the I ., @ - @ Iy
integration must have the same dimension as Sy;1 -
Let 7 be such a subspace; that is, assume that 7T is a
maximizing subspace for the I, ., integration relative
to Sy, 411 after performing the 7 ;.3 ® *** @ Iy,
integration with

T S,y and dim T =dim Sy 4, ;.
Then T is also maximizing for the [y © -+ ® Iy 4y
integration relative to S after performing the /4 4.1 ®
-+« @ I, integration because
Al @ I4k,+l)T =5,
al(S) =or, .- o16Suk41-1) + dim Sy —dim S
=1y e or(T) +dim T — dim S.

Now take any maximizing subspace 7" for the
I PRIREC IR CY ) integration relative to 7. By
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Lemma 1, 7' is a maximizing subspace for the full
I integration relative to S.

By assumption, T does not contain the subspace
Iy ., and, consequently, neither does T ‘. Since
Iy < Iy, for I =2, -, 4k, — 4k,, the hypoth-
eses of the Theorem 5 imply that we can write T” in
the form

T"=S or T'"=So®I, %)
i=1
forsomej=1, ", m,wherel/, =1,--- ,m,[, <[,
ifi, <iy,and I, #r + 1.
Now we also have that

A(I4k,+z @ @D IYT' = A(I4k,+L)T

= S4k,+z—1 P

(6)
and we recall that
S4k,+z—1 =S® 1'1’ CRERNCE M) I4k,+1 @D I4k,‘+l—1'

Thus, if 2 < / < 4k,,; — 4k, , Sy, 11—y contains a non-
trivial part of ;. The statements (5) and (6) are,
therefore, not compatible for 2 <1< 4k,;, — 4k,
because no /, in the direct sum in (5) can take the
value r 4+ 1, and we have a contradiction.

Hence, there are no maximizing subspaces for the
Iy, 4+, integration relative to Sy i,y after performing
the Iy 101 @ - - - @ Iy, integration other than Sy ;.
Thus,
for r=0,1,---,m—1,

[=2,---, 4k, — 4,.

Pax 1 = 1

Therefore, we have that

4% m—1 dky 41—3kr
EPJ' = Z (p4k,«+1 + 122 P4k,+z)
i=1 =

r=0

m—1
= 2 (4kppy — 4k, + 1)
r=0
= 4k + m.
E. An Asymptotic Theorem for Self-Energy Graphs

We now turn to the case of an arbitrary photon or
electron self-energy graph of electrodynamics.

Definition: The order of a self-energy graph is de-
fined as the number of vertex points in the graph.
With this definition, the order of a photon or electron
self-energy graph is always an even number.

For photon self-energy graphs, we have the follow-
ing theorem:

Theorem 6: Any nth-order photon self-energy graph
with m irreducible insertions (m < n/2) has asymp-
totic coefficients

alfgh) =2, B{gh =m,

where g is the momentum of the photon.
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Fic. 2. Examples of photon self-
energy graphs.

Proof: The fact that «y({g}) = 2 follows directly
from Theorem 1.

Consider a photon self-energy graph with m irre-
ducible insertions. Using Lemma 6, the counting
technique for determining the degree of divergence
of a subgraph, Theorem 4, and Theorem 5, we obtain

. Ak
Ar({q}) = max B(S") + 3, p; — 4k
S'eM =1
=044k + m — dk

= m.

Thus, the logarithmic asymptotic coefficient of the
graph shown in Fig. 2(a) is f,({g}) = 2, and the
logarithmic asymptotic coefficient of the graph shown
in Fig. 2(b) is f;({g}) = 3. However, the graph
shown in Fig. 2(c) has the logarithmic asymptotic
coefficient 8;({g}) = 2 due to the irreducibility of the
vertex insertion shown in Fig. 3.

An analogous theorem for electron self-energy
graphs is the following:

Theorem 7: Any nth-order electron self-energy
graph with m irreducible insertions (m < n/2) has
asymptotic coefficients

afgh) =1, B:({g)) =m,

where g is the momentum of the electron.

Theorem 7 for electron self-energy graphs is proved
in exactly the same way as Theorem 6 for photon
self-energy graphs. The only difference is that the

FiG. 3. Irreducible vertex insertion
in the graph shown in Fig. 2 (c).
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maximum degree of divergence of a subgraph is 1
instead of 2.

IV. SUMMARY AND CONCLUSIONS

A. Conclusions about the Perturbation—Expansion
Parameter

In Sec. ITI we showed that if

(a) the energy contours of the Feynman integral
corresponding to a photon or electron self-energy
graph are rotated from the real axis to the imaginary
axis, and

(b) the momentum ¢ of the photon or electron is
replaced by 7q, where ¢ is a real scalar,

then the asymptotic behavior of the photon or electron
self-energy graph as t — oo is given by

ct*(log 1),
where ¢ is a constant, « = 1 for electron self-energy
graphs and 2 for photon self-energy graphs, and
p = m, the number of irreducible insertions in the
graph. For a given order n, the maximum value of the
logarithmic asymptotic coefficient g is n/2. Conse-
quently, in a perturbation expansion of the total
photon propagator or electron propagator, we would
expect the expansion parameter to involve, not only
the square of the charge 2, but the quantity
2

LA

Vil

where renormalization is carried out by subtracting at
the point g% = 12.< 0. In perturbation expansions
and renormalization-group arguments, one usually
assumes that the expansion parameter is 2 log (¢%/4%).
(See, for example, Bjorken and Drell,® Bogoliubov
and Shirkov,” and Landau.?) That this assumption is
the correct one is supported by our results.

e’log

B. Summing Different Graphs

Although the maximum value of the logarithmic
asymptotic coefficient  for nth-order self-energy
graphs is n/2, it may be that the sum of all the nth-
order graphs has a logarithmic asymptotic coefficient
less than n/2. For example, consider the three fourth-
order photon self-energy graphs in Fig. 4. Each one

F1G. 4. Fourth-order photon self-

energy graphs.
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of these graphs has logarithmic asymptotic coefficient
B =2, but when the three graphs are summed to-
gether, the log? (¢%/A%) terms cancel (see Bjorken and
Drell®). Thus, the total fourth-order photon propa-
gator has logarithmic asymptotic coefficient § = 1.

The arguments of the renormalization group predict
this cancellation at least for the fourth-order and sixth-
order graphs in the perturbation expansion of the
photon propagator (cf. Bjorken and Drell,® Bogo-
liubov and Shirkov?), and perhaps a similar cancel-
lation occurs for the graphs of other orders. (There is,
of course, no cancellation for the single second-order
self-energy graph.) This question is unanswered by
our results as they stand. We are able to give the
asymptotic behavior of any self-energy graph of
arbitrary order, but we do so without regard for
multiplicative constants.

The problem of summing and determining asymp-
totic estimates for the entire perturbation expansion
remains open. In the first place, it is not even clear
that the perturbation series of quantum electro-
dynamics actually converge. Assuming they do con-
verge, it may turn out that the individual terms have
an asymptotic behavior quite unlike that of their sum.

C. Graphs Other than Self-Energy Graphs; the
Problem of Unphysical Momenta

We point out that the general theorems of Sec. II
and the theorems about maximizing subspaces in
Sec. III are applicable to any convergent Feynman
integral, Although we have concentrated on self-
energy graphs, one could just as well determine the
asymptotic behavior of a graph like that shown in
Fig. 5, a contribution to eighth-order electron-proton
scattering. Three of the four external momenta are
independent, say p, , p., and p; . Therefore, the asymp-
totic behavior of this graph will depend upon which
subset of p;, p,, and p; becomes large.

In all of these results there remains one undesirable
feature, the necessity of performing energy-contour
rotations in order to avoid the singularities associated
with the hyperbolic metric. Quantities of the type

N

PR FiG. 5. A contribution to eight-
P+ order electron—proton scattering.
! 2
NN
P P
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pr—m=pt—p}—~pl—pl—m? where m is a
constant, appear in the denominators of Feynman
integrals; however, if the energy contours can be
rotated from the real up to the imaginary axis
(po — ipo), then the expression p? — m? never vanishes.

By performing this rotation, we are restricting
ourselves to unphysical momenta. It would be useful to
determine the asymptotic behavior of graphs like that
shown in Fig. 5 when a certain subset of the external
momenta remains on the mass shell while others
become large. In other words, one would like to apply
asymptotic estimates to real physical experiments.
This more difficuit problem is not yet solved.
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APPENDIX
In this appendix, we prove a statement which was

used in the proof of Lemma 4. Let S and I be two
subspaces of R" whose direct sum S @ I is R™.

Proposition Al: Let S; and §, be two different
subspaces of R" satisfying A()S; =S, i=1,2,
where A(I) is the operation of projection along the
subspace I, and suppose that dim 7 > 1. Then there
exists a one-dimensional subspace J, of 7 such that
A(Jp)S, # A(Jy)Sy, where J, is the orthogonal com-
plement of Jyin I ({ = J, @ J,).

The proof of this proposition will follow from the
next three lemmas.
If o is a point in S, we let

Ay o = {x:x e R*, A()x = o}.
Lemma Al: Suppose A(DS, =S, i =1, 2. Then

Sy = S, if and only if AUy e NS, = A() e N S,
foralloeS.

Proof: Since A(I)S,; = S, then
Ss=U{ADens), i=1,2.
oeS

If §;, = 8§, then clearly
Ao NS =AD" NS, forall geS.

Conversely, if A(l)0 N Sy = A(I)ta N S, for all
o € S, then we obviously have §, = S, because

Ss=U{AD NS}, i=1,2
oeS
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Lemma A2: Suppose c €8 and A(DS; =S, i =
1, 2. Then

Ao NS ;=AW NS,
if, and only if,
AEHAD) o N 8} = ASHAW) 1o N Sy}
Proof: If Ao NSy, =A()lo NS,
clearly
ASHAD o N 8} = ASKA(D) o LU Sy}

Conversely, suppose that A(SHA(DH o NS} =
ASHAD o N S3). Let xe A(D ¢ N S;. Then x
has the same S coordinates as . Now

AS)x e AGSHAW o 0 S} = AGSKAU "o N Sy},

Thus, there exists a point y € A(l)"e¢ N S, such that
A(S)y = A(S)x. Since ye A(I)"lo N S,, y has the
same S coordinates as ¢ and hence as x. Since
A(S)y = A(S)x, y has the same I coordinates as x.
Consequently, x = y and so x € A(D)"¢ N S,. Thus,
we have that Ay e N S; < Ao N S,. A simi-
lar argument gives containment the other way.

then

Now suppose that dim 7 = k and write
I=Lo oI,
S=L,® @1,
where each of the component subspaces I;, j =1, -,
n, is one-dimensional.

Lemma A3: Let I, be one of the component sub-
spaces of I; that is, take j=1,--+ k. Let S, be a
subspace of R™ for which A(I)S, = S. Then for any
ces,

ALY AD o N S} = {AT)AUI) 0} N A(L)S,.

We remark that, in general, if f maps X into ¥ and
4 and B are two subsets of X, then

S4 0 B) < f(4) N f(B).
Lemma A3 says that, in our special case, we actually
have equality.

Proof: Let xe A(L){A(I)o N S,}. Then there
exists a point y € A(/)~c N S, such that A(f;)y = x.
We have

() y e A(D) o,
() yeS,,
(i) ALy = x.
Now (i) and (ii) imply that x e A(Z)A(I)"o, and (iD)
and (iii) imply that x € A(Z,)S,. Thus

x € {(AIDAWI 6} N AT)S,.
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Conversely, suppose that xe{A(I)A() 16} N
A(I)S,. Then xe A()A(I)o and xeA(l)S,.
Since x € A(1;)S,, there exists a point z € Sy such that
A(L)z = x. Then

PN
Az = AU -+ ALY+ AUDAL)z

N
= Ay - AWy -+ - A,

where the hat over A(Z;) means that A(Z,) does not
appear in the product. But since x € A([)A(I) o, we
have that A(J)z = ¢, and so z € A(J)o. Thus,
ze Ao S,
and
x = M)z e AIY{AIT) e N S}

We can now prove the proposition,

Proof of Proposition A1: Since S; 5% S,and A(J)S, =
S, i=1,2, Lemmas Al and A2 imply that there
exists a point o € § such that

ASHAWD) e N 8y} # ASHAW) o N S}
Thus, there exists a point

x € A(SH{AD o N Sy},
but

x ¢ ASHAI) ™o N Sp}
(or vice versa). We can, therefore, find a point
y € A(S){AD) o N S,} such that the J; component
of x is not equal to the /; component of y for some
j=1,,k

P. FINK

Now consider S @ I;. Since the J; components of x
and y are unequal,

PN
A+ AT - - - ABIAS){AD) o N Sy}
#= AL) - XEL\) s AGASHAD e 0 S
or
N
ASAWL) - - ATy - - - ARAWD o N Sy}

AN
# MSALY) -+ - AT) - - - ALY{AD o O Sy}
Using Lemma A3,

AN
ASHAUY o O AL -+ Ay - -+ AL)S}

: PN
# ASHAW) o N AL - -+ Ay - - - A(L)Ss}.

By Lemmas Al and A2 again, this last statement
implies that

P
A(Il) e A(Ip‘) e A(Ik)Sl
PN
# AL A - AYS,

oY
A, ® - 0L@® - ®L)S,
#A(Il@"'(@]j@"'@Ik)Sg.

Therefore, we can take J; = I; and

Jz=11@"'@lj@"'®]k-
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A scalar product is defined which results in the single- and double-valued spherical harmonics span-
ning a seminormed linear vector space that carries all of the irreducible unitary representations of the
group SU(2). The possibility of defining such a scalar product was indicated in a previous paper. A
Hilbert space is derived from the seminormed space through a further construction involving equivalence

classes of vectors.

INTRODUCTION

In a previous paper,' hereafter designated I, one
of us showed that the double-valued spherical har-
monics provide a basis for the irreducible spinor
representations of the three-dimensional rotation
group O(3), or, more precisely, its covering group
SU(2). Two difficulties arise when such a construction
is attempted. The first difficulty is that the vector
space V; spanned by the double-valued spherical
harmonics Y, is not closed with respect to the
generators J, of O(3); to be specific,

JY, ;=05 1 (1)

does not vanish and is not a linear combination of the
Y,n. This difficulty was met in I by observing first
that, although one can be led out of V; ac_cording to
Eq. (1), one cannot be led back in since

JY, ; =0, @

and, secondly, Q;_,_, is orthogonal to all Y, so
that, in the spirit of Dirac,? @; _, , is in some sense a
“representation” of the zero vector.

The second difficulty which arises is that the usual
scalar product consisting of an integration over the
unit sphere is not well defined for all of the Y}, due
to existence of nonintegrable singularities at 6 = 0, 7.
This difficulty was only partially met in I by observing
that a proper scalar product must exist® and giving an
outline of how such a scalar product might be found.

The purpose of this paper is to explicitly display
a scalar product which is well defined not only for the
Y;n, butalso for Q; _; ; and the additional functions
obtained from it by further applications of the
lowering operator J-. This scalar product has the
desirable property of producing Hermitian generators
J., thus insuring unitary representations for all half-

1 D. Pandres, Jr., J. Math. Phys. 6, 1098 (1965).

2 P. A. M. Dirac, Quantum Mechanics (Oxford University Press,
New York, 1958), 4th ed., p. 20.

3 1. M. Gel'fand and Y. Ya Sapiro, Trans. Am. Math. Soc. No. 2

(1956).

integer j values. In addition, it turns out that all
functions of the type Q;_; ; have zero norm, giving
a precise meaning to the statement that the functions

Q=Y m=—j— 1L —j =2, (3)

“represent’” the zero vector.

THE SCALAR PRODUCT AND ITS
PROPERTIES

The double-valued spherical harmonics are defined
iteratively as follows:

Y;; = N(sin 6)’¢"%,

Yi,m—1=N:i_1}LJ—ij’ m=.]’]—1s9—]+1’
Npw =[G +m( — m + D )
N L2424

T o 1.3.02f

The constant N; was chosen so that
27 T
f d(pf sin 6 dOY (0, 9)Y;;0, 9) = 1.  (5)
0 0

The complex vector space spanned by the Y, defined
above has already been denoted by V. It is convenient
also to designate the vector space spanned by the Q;,,
defined in Eq. (3) by W;, and by P, the combined
vector space

V=V, UWw,. ©6)

All of these vector spaces have a fixed angular
momentum j. The scalar product will actually be
defined for the larger space ¥ defined by

V=V, UV, uPu---. @)

The definition of the scalar product is as follows:
Let V" and ¥’ be any two functions in V; the scalar
product of ¥ and ¥ denoted by (¥, ¥”) is then

(P, V) = L ”de[sin 6 L " 4GPHO, V6, ¢) — f(@)],
(®)
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where f(6) is a singular function of the form

FO) = an(sin 6™ + cos 8 S b,(sin 6™, (9)
m=1 m=1

chosen so that the term in brackets in Eq. (8) becomes
integrable. Speaking loosely, one expands the odd
and even part of the usual integrand ¥*¥" sin @ into
powers of sin 8, drops those terms in the expansion
which would give divergent integrals, and then
integrates the remaining integrand over the sphere.
This modification of the usual scalar product is
reminiscent of the renormalization formalism for the
removal of divergences in electrodynamics. The
functional (¥',¥") satisfies the following identities
necessary for a scalar product:

w,¥) >0,
(¥, ¥) = c*(¥,¥),
¥, ¥)* =¥, %),
(‘P‘ +1F'1‘F’) = (KF’\F”) + (lYl!lF”L

forall'¥', ¥, and ¥ in ¥ with ¢ an arbitrary complex
constant. The last three of these identities follow in a
straightforward manner from the definition of the
scalar product in Eq. (8). However, the first relation,
stating that the scalar product is nonnegative, is not
so easily proved. In fact, it is not even true if 1" is not
restricted to lie in ¥ (for example, take ¥ = cot 6).
We shall therefore postpone its proof until the scalar
products of the basis functions of ¥ are determined.

To be precise, the bilinear functional (¥,¥")
should not be called a scalar product, since positive-
definiteness is usually taken as a necessary require-
ment.* For the same reason, the vector space ¥ taken
with the “scalar product” (¥,¥") is not precisely a
Hilbert space. It is what mathematicians call a semi-
normed® vector space. However, since these slight
inadequacies will be cleared up presently by a further
construction, we will retain the name “scalar product”
for the bilinear functional.

The scalar product (¥, ") has the following two
important properties: When ¥ and ¥’ are non-
singular, the scalar product reduces to a simple
integral over the unit sphere; J* and J— are mutual
Hermitian adjoints

YY) =, 7Y (1
for all'¥ and ¥ in V. This latter fact is proved in the

Appendix. Armed with the Hermitian property of
Eq. (11), we can prove a number of important facts.

(10)

4 P. R. Halmos, Introduction to Hilbert Space (Chelsea Publishing
Co., New York, 1957), p. 13.

5 A. E. Taylor, Introduction to Functional Analysis (John Wiley &
Sons, Inc., New York, 1958), p. 143.
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For example, consider the scalar product of Qj—11
and Q.

Qims Qs

=[()"™Y, _p, IY, )

= ™Y T Y] =0, (12)
when use is made of Eq. (2). This can be easily
extended to the more general result

(Qjm’ Qi'm’) = 0: (13)

so that each Q,,, is a nonzero function of ¥ with zero
norm, proving the nondefiniteness of the scalar
product. Using the same technique, the following
further identities may be derived:

(Y:fm’ Y!’m’) = 6!1’6mm" (14)
(Yims Qym) = 0. (15)

The scalar product therefore has the necessary prop-
erty of producing orthonormal Y,,, (with the usual
choice of constants N,,), thus yielding the usual
unitary representations of SU(2) when the matrices

(ij ’ J«Yim’)

are formed. Also, Egs. (13)-(15) immediately lead to
the validity of the nonnegative condition in Eq. (10).

According to Eqs. (13) and (15), the Q,,, are
orthogonal to all ¥ in V. This strongly suggests that
all of the Q;,, are essentially zero. We shall now
proceed to show in just what sense this is true and,
at the same time, construct a Hilbert space with a
strictly positive scalar product.

We begin by defining an equivalence relation in P:
Two functions ¥ and ¥’ in ¥ will be called equiv-
alentif V' —¥isin W= W, UW, U---.

Let |¥) denote the set of all functions in 7 which
are equivalent to 'V, called the equivalence class of ¥
(the class could also be labeled by any other function
equivalent to ¥). Consider the set of all equivalence
classes in V7, usually denoted by P/W. It is easy to see
that P/W is in fact a vector space spanned by the
vectors |Y,,,), which consists of all functions in 7
equivalent to Y, . A scalar product can be defined
for the vector space of equivalence classes as follows:
Let |1) and |2) be vectors in 7/W with ¥, and ¥, two
elements of the respective equivalence classes. The
scalar product of |1) and |2), denoted by (1]2), is

defined by
1] 2) = (¥, ¥, 16)

Equations (13)-(15) insure that the scalar product is
independent of which representative elements ¥, and
¥, are chosen. The zero equivalence class {0} is pre-
cisely W, so that, again according to Eq. (13), (¥ |'¥)
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vanishes if and only if |¥') = |0), and the scalar
product (¥ |¥") is strictly positive. The statement
that W is the zero vector in the space of equivalence
classes is the precise way of saying that all Q;,, are
essentially zero.

The vector space /W along with the scalar product
(¥ |'¥) now constitute a Hilbert space

H=V|W, a7
which can clearly be decomposed into the subspaces

H; = V,|W,. (19)

Each of the Hilbert spaces H, are (2j + 1)-dimensional,
spanned by the orthonormal basis {Y;,), forming
the basis for irreducible unitary representations of
SU(2) with half-odd integer angular momentum.

Finally, we note that if one enlarges the space to
include the usual single-valued spherical harmonics
and modifies the scalar product defined in Eq. (8)
by integrating ¢ from O to 4=, one obtains a single
Hilbert space defined on the double sphere which
carries all of the irreducible unitary representations
of SU(2).

where

APPENDIX

In the main body of this paper, we gave no proof of
Eq. (11), which states that the matrices representing
J* and J~ are Hermitian adjoints of each other. Note
first of all that it is sufficient to prove this equation
when ¥ and ¥ are a pair of basis functions Y;,, or
Q,m- Secondly, if m and m’ are the J, values of ¥ and
Y, respectively, Eq. (11) will be trivially satisfied if
m’ 5% m + 1. Therefore, let us assume that m’ = m +
1. By examining the general forms for Y;,, and Q,,,,
it is easy to show that'¥" will be a sum of terms of the
form

® = c¢(cos §)*(sin H)*"meime (A1)

where ¢ is a constant, A = 0, 1, and » is a positive
integer. Similarly, 't will be a sum of terms of the form

@’ = ¢’(cos 0)*(sin G)*" +mHleitmiDe  (AD)

It is clearly sufficient to prove Eq. (11) with'¥" and ¥’
replaced by © and @', respectively.

Denote the right and left side of Eq. (11) by R and
L, respectively. Then substituting ® and @’ into the
defining Eq. (8) and using the standard forms for
J* and J- yields

R = 2mc*e’ J; WOLAG) — F®), (A3

L = 2mc*e’ Jo ”da[B(e) — f1(0)], (A4d)
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where
1 27
A(0) = —-—J. dp®*J~@’
2mc*c’ Jo

= [A'(cos O} — (2n' + 2m + 2)

x (cos 0)**#+(sin ) *(sin B),  (AS)
2r
B(O) = —1 f dp(J* DY D’
2mc*c’ Jo
= [—A(cos 0¥ + 2n(cos B+
x (sin 0)%(sin 6)Y, (A6)

where N =2n + 2n" + 2m 4 3 is an even integer.
In general, 4 + A’ = 0, 1, or 2. However, if 4(0) and
B(0) are odd functions of cos 6, R and L will both
vanish. Therefore, we may assume that 1 + 2’ = 1.
A(6) and B(0) can then be written in the form

A0) = [2n' + 2m + 3 — 2)
— (2n' + 2m + 2)(sin 6)"%](sin 0)",

B(6) = [—(2n + A) + 2n(sin 6)*)Gsin 6)Y. (A7)

There are now three separate cases to be considered.
(a) When N < —2, it is necessary that f, = 4 and
Sr=B,sothat R=L =0.
(b) When N =0,

fr= —Q2a" + 2m + 2)(sin 6)2,

1= @2n+ D)(sin §)72 {A8)
and
R = 2m%c*c'(2n" + 2m 4+ 3 — 4),
L = —27%*c'Q2n + 1), (A9)
so that
R =L =2n%*"'Q2n" + 2n + 2m + 3)
= 2n%c*'N =0, (A10)

and again R = L.
(c)When N> 2, fp=/fr,=0and

R — L = 2mc*c’ J " d6[N(sin 6)Y
— (N = Dsin O =0 (AL1)

by direct computation. [Actually, for this last case when
neither @ of @ is sufficiently singular, Eq. (11) follows
simply by integration by parts.]

Thus, for all three cases, R = L, so that Eq. (11) is
valid when ¥ and ¥’ are replaced by ® and @,
respectively, which, as explained above, is sufficient to
demonstrate the validity of Eq. (11) in general.
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Renormalized Feynman amplitudes are defined by a method of analytic continuation in subsidiary
parameters. The results are shown to belong to the class of renormalized amplitudes defined by Boguliu-

bov, Parasiuk, and Hepp.

1. INTRODUCTION

In the perturbation-series expansion of the S
matrix or the time-ordered vacuum expectation values
in a Lagrangian field theory, there occur formal
expressions of the form

H Ajp(xi, — %1), (L.1)

where £ is the collection of lines of a certain Feynman
graph G(Vy, -+ -, V,; £), with vertices {V;}, and V;,
and V;, are the initial and final vertices of the /th line.
Al is given in p space by

Ai(p) = iP(p)(p* — m; + 10y, (1.2)
with P,(p) a polynomial of degree r;,. In general,
however, (1.1) is not well defined (even as a distri-
bution) because the convolutions in p space diverge.
In the theory of renormalization, (1.1) is given a
well-defined meaning by a variety of methods,
among which that of Hepp! is distinguished by its
mathematical coherence.

In this paper we apply to (1.1) a method of defining
divergent quantities which was originated by Riesz?
and has been used in various contexts by many
authors.® To define a formally divergent quantity 7,
these authors introduce a function 7(4), analytic in
some region Q of the complex plane, and defined by
an expression which is formally equal to 7 for 4 = 4,.
I is then defined as the analytic continuation of /(%)
from Q to 2 = A,. In some cases I(4) has a pole at
Ao; an acceptable definition of / may then be obtained
as the constant term of the Laurent series of /(1)
about 4,.

To apply these techniques to (1.1) we find it neces-

* Supported by a National Science Foundation Graduate Fellow-
ship.

UK. Hepp, Commun. Math. Phys. 2, 301 (1966). See also N. N.
Bogoliubov and O. S. Parasiuk, Acta Math. 97, 227 (1957); O. S.
Parasiuk, Ukr. Math. J. 12, 287 (1960).

2 M. Riesz, Acta Math. 81, 1, 1949,

3 See, e.g., N. E. Fremberg, Proc. Roy. Soc. (London) A188, 18
(1946); T. Gustafson, Arkiv Mat. Astron. Fysik 34A No. 2 (1947);
S. B. Nilsson, Arkiv Fysik 1, 369 (1950); G. Killen, Arkiv Fysik 5,
130 (1951); E. Karlson, Arkiv Fysik 7, 221 (1954); 1. M. Gel’fand
and G. E. Shilov, Generalized Functions, Vol. 1 (Academic Press
Inc., New York, 1964), Chap. 3; and C. G. Bollini, J. J. Ciambiagi,
and A. Gonzalez Dominguez, Nuovo Cimento 31, 550 (1964).

sary to consider functions of several complex variables
Ay, 0, AL, one associated with each line of the
Feynman graph. The main difficulty is the extension
of the above treatment of poles to the more compli-
cated singularities which occur in several complex
variables. Such an extension is given and a re-
normalized value of (1.1) is defined. It is shown that
this definition is one of the class of renormalized
values of (1.1) defined by Boguliubov, Parasiuk, and
Hepp.!

We remark that we are interested only in defining
(1.1) as a tempered distribution in 8'(R*"). We
restrict attention to the case of m; > 0, and without
loss of generality assume that G(Vy,: -+, V,; D) is
connected.

2. ANALYTIC PROPERTIES
We generalize (1.2) by defining, for any complex

4
12

R (p) = PAp)=(p* — m} + i), (2)
and use Hepp’s regularization to write, for Re 4, > 0,

Al = lim lim A} __,
>0+ >0+

where
~fl;,5,r(p) = P(p)T'(A)™

xf doot 7 exp ioy(p® — m} + ie). (2.2)

7

The distributions A% and A} _ are entire functions
of A,. Moreover, when € > 0 and r > 0, A} _ isin
is in O4(R?) (the space of rapidly decreasing distri-
butions), and its Fourier transform A} _ s in O 3,(R*)
(the space of polynomially bounded infinitely differ-
entiable functions).® Thus we may define unam-
biguously

?3;'1'. ",lL,E,r(I/l’ ct Vn; f«) = ;[—‘!:Aig,e,r(xil - xfl)'
€
(2.3)

4See I. M. Gel’'fand and G. E. Shilov, Ref. 3, Chap. 3, Sec. 2.4.
This is a good basic reference for the properties of distributions
depending analytically on a parameter.

5 These spaces are discussed in L. Schwarts, Théorie des distri-
butions (Hermann & Cie., Paris, 1966), pp. 243-244.
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In this section we investigate the analytic properties of
(2.3) after the limit r— 0+. For convenience we
write (A, -, Ar) =A.

We remark that our results in this section would not
be changed if, in (2.1), we also generalized P(p) to
P(;, p). Here P(4,, p) is a covariant polynomial in p
of degree r,, whose coefficients are entire functions of
A, which satisfy Py (1, p) = P,(p). Consistent re-
normalization of a theory would require in addition
that P,(4,, p) depend only on the particle associated
with the /th line. Such a change in P, would resultin a
finite change in the renormalization constants.

Theorem 1: Let G(Vy, -, V,; L) be a connected
Feynman graph, as above. Define N=L —n 41
to be the number of loops of G, and Q ={A e CL|
ReA, > M,I=1,---, L}, where M = N2 + X7r).
For A € Q, define

Ex,s(Vla Y an; f—) = nrgi_‘ﬁx,e,r(Vl’ Y Vna 2)' (24)

Then: (a) The limit (2.4) exists [in 8(R*")] and
By (Vi o, Vy3 £) is holomorphic in €.

(0) Gy V1, "+, ¥y £) may be analytically con-
tinued to a function meromorphic in CZ. If we use the
same notation for the continued function, then

B lVis Va3 ) gr[lz(zl - M)]"l (2.5)

ed

is holomorphic in CL. Here ], is taken over all
subsets A of {1,---, L}.

We remark that a more detailed discussion of the
singularities of T, . is possible but is not needed in
this paper.

Proof: Let p; be the momentum dual to x;. We may
evaluate (2.3) in p space by attaching to each vertex
V; an external line directed into the diagram and
carrying momentum p;, and then applying the inte-
gration methods of Chisholm.® That is, we assign
paths through the diagram for the external momenta

and choose loops and loop momenta ky, -+, ky, s0
that the /th line is assigned momentum
N n
9= zlauki + _zlbul’a' . (2.6)
i= j=

Then (2.3) becomes
ﬁGx,c,r(VI: T Vn, f;)

7 L
=o(3 i) [k -ty TT B a). @)

87J. S. R, Chisholm, Proc. Cambridge Phil. Soc. 48, 300 (1952).
See, e.g., R. J. Eden, P. V. Landshoff, D. 1. Olive, and J. C. Polking-
horne, The Analytic S-Matrix (Cambridge University Press, Camb-
ridge, England, 1966), pp. 31-34.
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If we interchange the £ and « integrations and use
k; = —i(0/8S)eSq 5 _, in the factors Pygqy),
we may write (2.7) as a sum of terms of the form

© o L
(const)3(S. p,)A(p) f [T I o

N
X { f dky -+ dkyA'(—iVg) exp i[.‘z 0,,kk,

£,5=1

(2.8)

+ ﬁ(zqs,- + S)k+ v+ :ia]} |

Here 4 and A’ are monomials of degree <p = Y% r,,
and

S
il
Mo

a0, (2.92)
=1
L n
¢ = E a,a5by;p;5 5 (2.9v)
i=1;j=1

<

]

Mty
M |

L
lalbljblkpjpk - l; ami.  (2.9¢)

T
-
.

When all «, are positive, 6,; is positive-definite. Thus,
if we now do the k integrations, the bracket in (2.8)
becomes, up to a constant factor,

1 N
(det 0)*4(— V) exp i[w -3 3@+ 5)

%,j=1
L
X (071,24 + S,) + ie ; “z:|-

Using 6~ = 64%/det 6, where 649 is the transpose of
the matrix of cofactors, performing the S derivatives,
and setting $ = 0, we may finally write

‘Bx.e.r(Vl’ ey Vs £)
4 o | fo L
=Sz e)[" [ T1dnat—trayy

X B, (p, ))C(e)" ™ exp i[D(a, p)/C(x) + ie 3 at,],
(2.10)

where B,, is a polynomial, C(x) = detf, and
D(a, p) = det y, with

011 Oy

¥ = (2.11)
On én
¢ Py

The “ultraviolet divergences” occur in the limit
r — 0+ because C(«) vanishes when certain o, — 0.
We now investigate this behavior in a region 0 <
o, L+ < oy ; for simplicity, we consider

0y Lo Loy

1

(2.12)
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Within this region we introduce new variables

ty, o+, tr, defined by a, =17, ;- -1, so that
(2.12) becomes
0 S tL S o,
01l if I=1,---,L~1. (13

Let G, be the graph consisting of lines 1 through / with
their vertices, and let N, be the number of loops of G, .

Lemma 1: For o in (2.12),

L
Cl@) = TIVE®y, -, tr ), (2.14a)
1

L
= tL'_[:Itfv‘F(tl,"

where E and F polynomials, and E does not vanish in
(2.13).

Proof: Since Ny = 0, Ny, = N, and (N,; — N)) is
always 0 or 1, there exist integers 1 </ <+ <
Iy < L such that N, = N;_,y + 1. Thus we may
choose loop variables so that the ith loop is contained
in G,, that is, so that g, = 0 unless | < /; [see (2.6)].
From (2.9) and (2.11) we see that the ith row and
column (1 < i< N) of 0 and x contain a factor
ty* - t,, and the (N + Dth row and column of D
contain a factor 1, . We remove these factors from the
rows to produce new matrices 6’ and y’; this gives
(2.14) with E = det 6/, F = det y'.

To show that E does not vanish, we consider
instead of 6’ the matrix 6", obtained from 6 by re-
moving a factor (- - th)é from the ith row and
column of 6. 6" is symmetric, and E = det 6"
Suppose E(t) =0 at some point ¢ =+ in (2.13).
Then there exist numbers &,,--:,dy such that
2 8,60(n)9, =0, or

s [25% T TL%T ~0.

=1 i=1 ISU<y

(2.14b)

D(d, p) ] tL—l H P),

(2.15)

Each term in the sum over / must vanish. Let I =
max {i | 6; # 0} and consider the term with / =1I;.
d; = 0 for i > I, while a,, = 0 for i < . Thus we
must have ,a,; = 0. But §; 5 0, and the Ith loop
must go through the /;th line, so a,; # 0. This con-
tradiction proves the lemma.

Now consider an integrand of (2.10) in the region
(2.12) and change variables to ¢, --,7;. The
Jacobian of this change is J]X7}7, so that (2.10)
becomes a sum of terms of the form

6 p,-)J;wdtL J 1dtL_1 e f 1dt1

x T [(R) V0], (p, ()
1
X exp ity [FJE + ie(l+ 175 + L (216)
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where g, = 3! _ 4., and B, is a polynomial. The
lower limits of the ¢;_;,- -, # integrations in (2.16)
are complicated functions whose only relevant
property is that they approach 0 when r — 0+. For
AeQ, Re u; > (m + 2)N, so the integrand of (2.16)
is absolutely integrable in all of the region (2.13).
This justifies the limit r — 0+ in Q; the analyticity is
clear. Thus G, (Vy, -, V3 L) for A€ Q is a sum
of terms of the form (2.16) with 0 as the lower limit
on all integrals, and, in general, with u, = 3., 4,
for some 4 < {1,---, L}.

We now prove part (b) of the theorem. Given a
positive integer M’, we may construct a continuation
of (2.16) into the region

={;\€0:LIRell>XM" l=1,' "L}’
where
_{M—M’, M — M >0,
W MM = ML, ifM— M <o,

as follows. We do M’ integrations by parts with respect
to each of f,---,1;,, integrating the factor
¢l (mDNi-1) (or thc higher powers of ¢ arising from
this) and diﬁ'erentiatmg the rest. This is permissible
for A € ); in each partial integration the integrated
terms vanish as the lower limit. Finally, the ¢, inte-
gration may be done explicitly with the use of the
formula

f dt t+1eit = ML), (2.17)
0

valid for Re 4 > 0, Im « > 0. Thus G, (V1, "+, V,; L)
may be written as a sum of terms of the form

1 1L

H()\)f ‘e H {dtZt;[lll—(m+2)Nt+M’-—l]}G(t/, D, €)E(t')1~
0 0 =1

X [FIE + ie(l + t;_, + -+ )]U-Zw), (2.18)

Here {t,,- -+, 1.} is a subset of {#,, -, ¢, ,} (the

rest having been set equal to 1 during some partial
integration), G is a polynomial, i and j are integers,
and H(A) contains factors from (2.17) as well as
factors (4, — k)~ arising from the partial integrations.
Since [Re u; — (m + 2)N, + M’} > 0 for AeQ,,.,
(2.18) provides a continuation of G, (V1,* ", V,; £)
to the region Q;.; moreover,

-1

H@) T T3 - 0]
Ac{1-" L} 1eAd

is an entire function of A. Since Q,,. increases to CE

as M’ approaches infinity, part (b) of the theorem is

proved.
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3. RENORMALIZATION
It would now be natural to define (L.1) as

imB, .. (Vys s Vas 0

€0
however, Theorem 1 implies that G, . may have a
complicated singularity at A = (1,---,1). In one
complex variable we could discard the singular part by
using the constant term of the Laurent series. In this
section we generalize this procedure to several
variables.

Definition: Let U< CL (L 2> 1) be an open
neighborhood of (I,---,1). Let &, (V)= {f(d)|
T Tacq, - 0 [Zeald — DI™ is analytic in U for
some integer m > 0}, and let A, = U, (U), the
union taken over all neighborhoods U. Then a family
of maps F = {F,}7_,, F,:#4, — C, is a generalized
evaluator fat (1,---, 1)] if the following conditions
are satisfied for each L:

(1) 7, is linear;

(2) if fe, is analytic at (I,---,1),

F =0

(3) if £, € #,,(V), for

n=0,1,"-,8M8 =ML X G- D",
is analytic in U, and g, — g, uniformly on U, then
‘7'—11.,'7; g “FL/O;

(4) if o is a permutation of {l,---, L}, fed#,,
and f, € A, is defined by

fg(}'l’ R }“L) =f(z'a(l)’ )
then 7, f, = F.f;
(5) if fe s, depends only on 4,
L'< L, then F .f=F,f;
(6) iffy,/.€4,,,and fidepends onlyoni,, -+, i,
fooonly on 4.y, -, 4, then F,(fifs) =(FLfi)
X (F 1)

If fes,, we use Conditions (4) and (5) to write
without ambiguity Ff = 7, f = F,.fforany L' > L.
Conditions (1)-(5) are rather natural; the utility of
(6) will be shown in Sec. 5. It is this condition which
would be violated by setting 4, =--+ =4, =1 and
defining Ff as the constant term of the Laurent series
of f(A,A,-- -, Datd=1.

then

T }w(m)’

*, A, where

Example: Suppose f € /4, (U), and let U contain the
poly disc |4, — 1] <R Choose 0K R < -+ <
R, < R, in such a way that R, > Yi-! R;, and let
C; be the contour |z — 1] = R, oriented counterclock-
wise. Define

7o b
Fif= L!g

-
dAi, -
(2771')'4](;,,1, !

I
x f dfHTT G = 1) GD)
Cyilo) 1
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where z" runs over all permututions gof {I,---, L}
One easily checks that F is well defined, independent
of the choice of {R;}, and satisfies (1)-(6).

We want to be able to apply a generalized evaluator
to meromorphic distributions. Consider such a
distribution:

s =s® TI .M[ sa-n|"

AdS{1e te.d

where S’(A) is an analytic function of (4,,- -+, 4;)in
some neighborhood U of (I, - - -, 1), taking values in
8'(R*). Then the formula (F , S)(y) = F,(S(y)) defines
a linear functional &, S on S(R"). Now S": U — 8'(R")
is continuous [when 8'(R") is given the usual weak
topology], so that if K— U is compact, S'(K) is
(weakly) compact in 8'(R"), and hence is strongly
bounded.” That is, there is a constant C, and a norm
[| Il on S(R™) (one of the norms defining the topology)
such that [S'A)(y)| < Cy iyl for any A€ K and
any p € 8(R"). So for any sequence {y,} of elements of
S(R"), converging to- an element ,, the sequence
{S"(M)(y,)} converges uniformly for A € Kto S'(A)(w,).
Then property (3) of F implies that &S as defined
above is continuous.

Definition: The renormalized value of (l.1) is
defined to be

GV, Vs ©) =limFG, (Vy, -

=0+

, Vi) (3.2)

The existence of the € —» 0+ limit follows from the
theorem we prove in Sec. 5: the agreement of this
definition with that of Boguliubov, Parasiuk, and
Hepp. It may also be proved directly that:

(@) lim_,, G, . = T, exists and is a meromorphic
function of A with the same singularities as G, ;
(b) ©=FTC,. '

We remark that a change in the generalized evalu-
ator used in (3.2) is reflected in a finite change in the
renormalization constants.

4. BOGULIUBOV-PARASIUK-HEPP
RENORMALIZATION

We now review the renormalization methods of
Boguliubov, Parasiuk, and Hepp,! and extend their
results slightly. We follow the notation of Hepp.

Definition: A graph G(Vy, * - -, V,; L) is one-particle
irreducible (OPT) if, for any /ef and ' =¢{ — {/},
G(Vy, e, V,; L) is connected. Otherwise G is one-
particle reducible (OPR). A generalized vertex of G is a
nonempty subset U = {V|---V.} of {V;---V,}.

7 1. M. Gel'fand and G. E. Schilow, Verallgemeinerte Funktionen

11 (VEB Deutscher Verlad der Wissenschaften, Berlin, 1962),
Chap. |, Sec. 5.
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If v,---,U, are pairwise-disjoint generalized
vertices, with ur, U, ={¥ » Vi) the graph
G(u,, - U,;0i 1s obtamed f'rom G(Vl’, , Vi 0

by co[lapsmg each generallzed vertex U, and any
lines which join two vertices in U;, to a single point.
The superficial divergence of U= {V|,---,V,} is

defined by

Vi, V) =2 (n+2)—4m—1), 1)

where 3., runs over all lines of £ connecting different
vertices of {V], -, V,} We do not distinguish
between the vertex ¥; and the generalized vertex {V;}.

Definition: A finite renormalization is a map assign-
ing to each generalized vertex U = {V], ,Vita

distribution £ (¥, - -+, V/,; £) [also written 3c (U; 0]
in 8'(R™) such that
EVL VD

1, for m=1,

0, for IPRG(V], -, V,:L), (4.2)

6(2 p;) Pc(pl’a T, P:n)’ otherwise.
1

Here P‘ is a covariant polynomial of degree <
v(Vi---V,), whose coeflicients approach finite
limits as € — 0, and which depends only on the struc-
ture of the graph G(V7, VL)

. ~ . . . A.
Definition: Given a finite renormalization X,
Uy, -, U, pairwise-disjoint generalized vertices,

define recursively for {U{, -+, U, } < {U,,- -+, U,}:
xl.c,r(U{’ et U;ru i:)

X (UL, iftm=1, (4.3a)

= {0, for OPR G(U{, Ce UL L), (4.3b)

— MRy (UL, o, Ul L) otherwise, (4.3¢c)
R Uls oo Unif)

k)

= 2 ]__[l r W T(Ull’ JT(J)’L)]__[AAHN (44)
"R}‘,z,r(ul PER ma L)

= :R,,[,AU;, S UL 4 X (UL U ),

(4.5)

Here 2’, in (4.4) runs over all partitions of
{U;, -+, U} into k(P) > 2 disjoint subsets

h
{U;,(u' - U

and J]..., runs over those /€f which connect
different subsets of the partition. When

Gy, -+, )

I
J'r(jJ}

Ill ;

0’ ’
:K A,(,'r( Vl ’ ’ m 5

RaedVio s Vit
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is OPJ, and
UUi=1u7,
i=1
then R has in p space the form 6(3_, PF(L, L Py
and A is the operation of truncating the Taylor series
of F about the origin at order »(V{, -, V) [# =0
iEv(yy, o, V) <0l
In the case where each U, is a single vertex V;, we
also define

s Vi

X AV Vi)
1, ifm= 1, (4.32")
0, for OPR G(V{, Vi), (4.3b")

T MRV Vi 0

+£A£( Vi,*+, VL), otherwise, (4.3¢")

RierVist s Vs D)

k(1)

=TT XVii o Vi D TT B (449

KoV, Vi D
=:T<;,(,,(V1,~-- Vis O+ X5 Vi, Vi),
(4.5")

with 3., Tl and 4G as above. The following
lemma may be proved by straightforward manipula-
tion of these definitions.

Lemma 2: With the above deﬁnitiom, we have
Z “AcT(U T, U:::(l’); ‘:)’

Y - e I -
l;\,(,r( Via T m’ - z &A,c,r(ul s s U:n(l‘), L)’
T

and hence
= ;'.R'A,(,r(uf” L U ),

where 3, runs over all partitions of {V], -+, V,}
into m(P) generalized vertices {U/'}.

Now Boguliubov, Parasiuk, and Hepp define the
renormalized value of (l.1) to be

lim limRy, ... AV, L Vs )

0] 7120+

(4.6)

that is, they define a class of values of (1.1) which
depend on the finite renormalization used. The main
result of Hepp is the existence of the r —» 0+ limit in
(4.6); it may be generalized as follows.

Theorem 2: Let
={AeCl|ReADl —1)2L,1=1,---, L}
Then

:“;\.((Vla“' L)_'hn-‘ R)\(r(yla'

=0}

exists in 8'(R1") and is analytic for A € ().

, Vi) 47

N’



ANALYTIC RENORMALIZATION

Proof: Hepp actually proves the existence of
“m 5{1,. ‘e ,l.t.f(Vl s e 3 Vn; ’:)7

=0+
that is, the existence of (4.7) forA = (1, -+ -, 1) when
#’ is defined using zero finite renormalization. How-
ever, it is a trivial modification of his proof to show
the existence and analyticity in Q' of

limR, (U, -+, Ust),
=04
for any pairwise-disjoint generalized vertices

Uy, -+, U,. The theorem then follows from Lemma
2.
5. EQUIVALENCE OF THE
DEFINITIONS

In this section we show that our definition (3.2)
of the renormalized amplitude agrees with the Bogu-
liubov definition (4.6), calculated using a certain
finite renormalization.

Definition: We write

L= T T30 )

aci,...ny Liea
L
[rt:caii M= N(Z + 3 r,)}.
1

Let B(L, m) be the set of mappings ¢: CL — §'(R1™)
with the form

NP1, 2 pm) = a(z p,-) TN pis b,

(5.
where
(a) fe Co(RAASm);
(b) f'is analytic in A for fixed p;
(c) if D is a monomial in the p derivatives and
K < CF a compact set, there are positive constants
C; and C, such that

[DFA, pi, -0 pdl < Ci(1 4 [[p]1P)
uniformly for A € K.
For any integer », define ,: B(L, m) - B(L, m)
by

{JK‘V(‘#)K)‘)(I’I s T Pm)

= a(ﬁ p,.) JIVF, iy, ),

where ¢ is given by (5.1) and F, is the Taylor series of
S in p about the origin up to order v (AG, = 0 if
v < 0).

Lemma 3: Let & be a generalized evaluator. Then
F:BUL, m)— B(L,m), and F commutes with A6,
on B(L, m).
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Proof: ¥ is defined on an element ¢ € B(L, m) by
(Fo)(w) = Flp(p)], for any p e S(R™). We claim
that, if ¢ has the form (5.1),

4o = o(2p)FUNA DL (52
Note first that the difference quotient defining a p
derivative of f converges uniformly in A (on compact
sets), so that property (3) of & implies that

FUA A, )l e C°(R™).

Moreover, for A € K, f(A, p) x (1 + [[p||2y~C*D 0
as |pll — oo, so that (3) implies F[JA)f (A, p)]€e
0 ,,(R¥™), that is, (5.2) is indeed in B(L, m) (as a
constant function of A). Now

409 = IS0 D) dp,

and this integral may be approximated uniformly in
compact subsets of CX by Riemann sums. The
linearity and continuity of & then imply (5.2). The
fact that A, and § commute follows again from
the uniformity of the limit defining a p derivative.
The results of Sec. 2 imply that
G Vi, V9 9eB(L, m)

for any {V{,- -+, ¥, }. Thus we may define

i‘e(V{, Vs £)

1, for m=1,
=10, for OPRG(V{, --,V.;L), (5.3)
FMGy, (V1 -, VoD, otherwise.
Here M6 = Moy ..y .

Lemma 4:X.(V{,- " -,
finite renormalization.

Vs L) as given by (5.3) is a

FProof: X, clearly has the correct form (4.2); property
(4) guarantees that i%c depends only on the structure of
the graph G(V{,---, ¥V, ;£). The existence of the
€ —> 0+ limit follows from the explicit form of [
given in (2.18).

Now we may define X, ,(V;, -, V/:0),

R’ Tea..
J{'l,s,r(Vls > 4

ms £)s
and Ry (Vi, -+, V,;8) by formulas (4.3')-(4.5),
using (5.3) as finite renormalization. We have already

discussed the behavior of lim_,,, R}, ,.



1410
Lemma 5: Let  be as in Theorem 1. Then
XV Vs O =lim X, (Vy,-

r=0+

ﬁ;.,c(V' L,

s Vs O,

Vis ) =lim R, (Vi, -, Vi 0
r—=0+

exist for A € Q and may be analytically continued to

CX; they are in B(L, m).

Proof: Similar to Theorem 1. We note in particular
that X, (V] V! ;t) has the form

6 (m§ p}) 2

[i] <v(Fy e V')

o, op'®,  (5.4)

where (7) is a multi-index,

/o =TT,
i=1 u=0
and f;,(A, €) st
Theorem 3: Let R; . (V7,- V,;£) be defined

using (5.3) as finite renormalization. Then

37.8%,((‘/19 ‘ Vn; £) =lim :R{,'H.l,t,r(Vl’ T,

r—=0L

Vs £).
(5.5)
We remark that Hepp has shown that the € — 0
limit of the right-hand side of (5.5) exists This justi-
fies our definition (3.2) of B(Vy, -, V,; L), and the
€ — 0 limit of (5.5) is just the equahty of the two
definitions of the renormalized amplitudes.

Proof: We first show that, for m’ > 1,
Fx, Vi, -, Vs ©) =0. (5.6)

The statement is, of course, true (vacuously) for
m' = 1;weassumeit foralll < m' < m, and consider
an OPI graph G(V{, -+, V,; L)

From (4.3C'),

x?i,z.r(V;, N A D
f kP P l]
Z H X, AV VEL D HAJ
conn
+ X0, VD, (5.T)

Consider a term from X in (5.7) in which r(j) > 1
for some j, say j = 1 [note k(P) > 2, so we must have
r(j) < m}. From (5.4) this has the form in p space

= 3l & NEE PP+ V) (58)

WP(A, €, r)

where V is the Fourier transform of

k{P) P .
1%V, - ) 1A
J=2 conn

For A €Q, we can let r — 04 in (5.8). The bracketed

EUGENE SPEER

term converges to an element in $B(L,m), and
SR, €, r) converges to f,(A,e)eA,. Actually,
however f(z,(l ¢) depends only on those 4, such that
Ith line joins two vertices of {V7, -+, VE ,}, while
the bracket in (5.8) depends on those 4, such that the
Ith line has at least one end point outside this set.
Thus property (6) of F implies
&“[ fim WP} = 3 (52, e)][;r fim { }].
i) -0

r—0+
But by the induction assumption
ka e(Vll s T ler(l); f') =0,
so that 5f,,(A, €) = 0 and hence

y[lim We(h, e, r)] -

r—=0+

5.9)

Now, using Lemma 3,
\‘F%i,‘(Vl, e ’ Vm; £)

- —.M,SF(Z'[Hm WP:|) FEW, L V),
P | ro0+

(5.10)
since property (2) of 5 implies 2 = F. But by (5.9),
all terms of X’ in (5.10) vanish except for that
partition in which #(j) =1 for all j. However, this
term is exactly cancelled by X,(Vy, -, V,n; £); this
proves (5.6).

Equation (4.5"), defining R’, may be written

ﬂ;,e.r(Vl’ e, Vst
k(P)
—HAuer"l'z”Hxler(V:l"” Jf(])’ﬁ)HAl
conn
(5.11)

where >, is over all partitions of {Vy, -, V,} with
1 <k(P)<n For AcQ, we let r—0+ in (5.11)
and then apply F to both sides. Equatlon (5.6) and
another use of property (6) show that & annihilates
the second term on the right-hand side. But the first
term on this side is just G, (V;, -+, V,; L), so that
(5.11) becomes
FR;, (N, Vs ) =F6, (W, -+, V3 0).
Theorem 2 and property (2) of 7 show that
FRxVey s

Vs ©) = Ri,.one(Vis -5 Vs £

this completes the proof of the theorem.
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A general definition of hidden-variable theories in terms of the dual structure of states and propositions
is proposed. As a consequence of a theorem due to Zierler and Schlessinger, this definition implies a
violation of the quantum ordering of propositions in the corresponding hidden-variable theory. This
violation is shown explicitly for the theory of measurement due to Bohm and Bub.

1. INTRODUCTION

What is a hidden-variable theory of quantum
mechanics ? In this paper a simple answer is proposed
in the form of a physically motivated definition.
Some consequences of this definition are examined in
relation to the investigations of Zierler and Schles-
singer! and in relation to a recent hidden-variable
theory of measurement due to Bohm and Bub.?

The early proof of von Neumann?® of the impossi-
bility of hidden-variable theories is now generally
recognized not to be relevant to the discussion except
as a starting point. The principal justification for the
assumptions that von Neumann makes is that they
reproduce the usual Hilbert-space structure of quan-
tum mechanics. His principal assumption, the linear
additivity of eigenvalues, turns out not to be experi-
mentally verifiable in the framework of quantum
mechanics. There is, therefore, the possibility of
violating this postulate but still producing a theory
with the same experimental predictions as quantum
theory. One interest of this approach is to produce
a physical theory of the measurement process.? There
is an excellent short discussion of von Neumann’s
theorem in the review article by Bell.

The approach adopted here is based on the lattice
structure of the set of propositions (yes-no experi-
ments) in quantum theory. This method was intro-
duced by von Neumann and Birkhoff® and has been
developed by Jauch and Piron®® and applied to the
problem of hidden variables. In terms of this assumed
lattice structure, a violation of the quantum ordering
of propositions is proved to be a general feature of
hidden-variable theories. This is shown explicitly for

1 N. Zierler and M. Schlessinger, Duke Math. J. 32, 251 (1965).

2 D. Bohm and J. Bub, Rev. Mod. Phys. 38, 453, 470 (1966).

3J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, N.J., 1955).

4 J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).

5 J. von Neumann and G. Birkhoff, Ann. Math. 37, 823 (1936).

8 C. Piron, Helv. Phys. Acta 37, 439 (1964).

7 J. M. Jauch and C. Piron, Helv. Phys. Acta 36, 827 (1963).

8 J. M. Jauch, Helv. Phys. Acta 37, 293 (1964).

the theory of measurement proposed by Bohm and
Bub.

2. BOOLEAN EMBEDDINGS OF NONDISTRIB-
UTIVE LATTICES

A few definitions must be introduced. A partially
ordered set is a system X in which a binary relation
x >y is defined which satisfies three postulates:

(Reflexive) x> X,
(Antisymmetric) x>y, y > x=x =},
(Transitive) X>y,y>z=>x>z

A lattice is a partially ordered set P such that any two
elements have an “intersection” x N y and a ““union”
x U y, with the usual properties relative to the partial
order.
It is useful to define special lattices satisfying addi-
tional assumptions:
(i) Distributive lattice:

avbnNnog=@ubn@yeo,
anGuc=(anb)Vlanc);

(ii) Modular lattice:
a<lcaVbneo=(@uUb) nec;
(iii) Weakly modular lattice:
a<b=(@uUb)nNnb=a.

These three lattice types are those which arise in
relation to usual physical theories. They can be used
to give a convenient characterization of classical or
quantum theories. Note that (i) = (ii) = (iii).

There is a simple diagrammatic representation of
the lattice structure. For example, the lattice of subsets
of a set of three elements has the following representa-
tion (Fig. 1). The vertices are interpreted as the
elements of the lattice and the joining lines give the
partial order. This is a distributive lattice. Figure 2
gives an example of a nonmodular lattice. This lattice

1411
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124

FiG. 1. Distributive
lattice.

"¢
is used as an example in the fundamental paper of
Birkhoff and von Neumann.®

Distributive lattices are the most familiar. They
arise as lattices of subsets as in the first example.
Modular lattices can be considered as lattices of
closed linear subspaces of finite-dimensional Hilbert
spaces. The corresponding lattices for infinite-di-
mensional Hilbert spaces are weakly modular. These
are the structures that arise in connection with the
physical theories considered in this paper. The basis
of this investigation is that every physical theory has
a corresponding calculus or lattice of propositions.
The propositions correspond to those observables of
the physical system which are associated with two
possible values: yes or no, true or false, 1 or 0. In
quantum mechanics, these propositions correspond
to projection operators, Hermitian operators with
eigenvalues 1 and 0. This makes obvious the identi-
fication of propositions with the closed linear sub-
spaces of Hilbert space. The vatious assumptions of
distributivity, modularity, and weak modularity
characterize not only the lattice of propositions of the
physical theory but also the theory itself.

The underlying problem in hidden-variable theories
is to embed the usual quantum theory in a larger
framework which has the characteristics of a classical
theory. Lattices provide a natural mathematical
language for this problem.

Physical theories are characterized by the dual
structure of states and propositions, as well as by the
lattice structure. Quantum-mechanical states are
defined as measures on the closed linear subspaces of
Hilbert space and classical states are measures on the
Borel subsets of phase space.® The dualities are defined
by the action of the states on the propositions mapping
them to the unit interval of the real line. These are
separating dualities in the sense that two propositions
are identical if no state can be found to distinguish
between them. Similarly, the states are separated by
the duality. This dual structure of states and proposi-

9 G. W. Mackey, The Mathematical Foundations of Quantum
Mechanics (W. A. Benjamin Co., Inc., New York, 1963).
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tions gives an effective framework in which to discuss
hidden-variable theories. The dual structure is called
the logic of the physical theory.

In a general notation, the problem can be expressed
by the following diagram:

sS85
P25 P,
where S(S”) is the space of quantum (classical) states
and P(P') is the lattice of quantum (classical) proposi-
tions. S and P are dual spaces as are S” and P’ with the
structures defined above. The embedding is achieved
by the two maps 7:S — S’ and o:P — P'. There is a
relation between 7 and ¢ given by the dualities.
There is only one condition on the embedding that
seems necessary from physical considerations. The
classical theory which proposes to replace quantum
theory must predict the same expectation values as the
quantum theory at least in those cases which are
accessible to experiment. Embeddings which do not
have this property have no relevance to the present
discussion. )
Consider

feS, aeP—~f,=7(f)es’, ola)eP.

The condition is that f(a) = f,(a(a)) or f = (+(f))° c.
The following diagram is commutative:

a

P P’

P ()

R

A typical question arises immediately. If o(P) does
not span P, an extension of f, to all of P’ must be
defined. The simplest assumptions will be made on
7 and o, namely, the 1-1 property and f = (7(f)) - 0.
for fe S. The first property is usually understood in
the definition of an embedding. It is a requirement of
nontriviality—different quantum states are mapped to
different classical states. The definition of a hidden-
variable theory can now be given.

An embedding of the quantum logic (S, P) into the

avb

b FiG. 2. Nonmodular lattice.

QAb
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distributive logic (', P’) is a pair (r, 0) of 1-1 maps
:8§—>S" and o:P—P,

such that expectation values are preserved, ie.,
feS=f= (+(f)) - 6. This will be called a Boolean
embedding or a hidden-variable theory. The problem
now is to establish the properties of these embeddings
and to relate these properties to specific hidden-
variable systems.

The rest of this section is devoted to a discussion of
the work of Zierler and Schlessinger.! They consider
the problem of the construction of hidden-variable
theories under an additional assumption. They assume
that the quantum ordering of propositions is pre-
served in the embedding o: P — P'. Now, the quantum
ordering of propositions is defined in terms of the
duality

a<b<>fl@<fb) (VfeS).
Therefore the assumption that Zierler and Schlessinger
adopt is a very strong condition on 7 and o. They are
able to prove that the embedding must be a trivial one.

This result is a new proof of von Neumann’s
theorem. However, it is subject to the same objections.
Their assumption (which is called the isotone property)
is the following:

f(@) < f(b) (VfeS)
= 7(f)o(@)) < 7(/)e(®)) [V7(f) € S'].

This need not be true in general. There may be states
in S’ which violate the second ordering. The isotone
property is an assumption which severely limits the
structure of §’. In fact, the assumption limits the
embedding to the trivial case.

It seems more profitable to consider the alternative
definition of embedding and to allow the possibility of
violations of the quantum ordering of propositions.
From the above argument, this is seen to be a general
feature of hidden-variable theories. In Sec. 3 this is
shown explicitly for the theory due to Bohm and
Bub.?

3. A HIDDEN-VARIABLE THEORY OF
MEASUREMENT

There have been numerous hidden-variable theories
proposed, notably by Bohm and co-workers, to
illustrate shortcomings of quantum mechanics, to
produce counter examples to various versions of
von Neumann’'s theorem, and to suggest alternative
developments. From the general considerations of
Sec. 2, every such theory provides an example of a
Boolean embedding. The recent theory of Bohm and
Bub? gives a hidden-variable theory of measurement
for a particle with spin without translational motion.

1413

For the spin-} particle, the states are given by a
wavefunction represented as a vector in a two-
dimensional Hilbert space:

l9) = 91 1S) + ¥ |S2), |wal® + |yt = 1.

To complete the description of the state, a dual
Hilbert space is postulated:

(§] = 51 (Sll + 52 (Sal, |51|2 + |§2|2 = 1.

These are the hidden variables assumed to be randomly
distributed on the hypersphere of unit radius.

The measurement process is described by nonlinear
equations of motion relating ¢ and &. These equations
are such that the.initial values of the parameters
determine the result of a measurement:

dy, _ l{lilf - M} [pal®

dr e T 1Ee
d_'/’_z = 2{'1/’_2_|_2 _ L'ﬁf} | 1|2.
dt [£qf® 1&(?

It will be noticed from the equations of measurement
that the phases of the wavefunctions do not enter the
theory. Furthermore, the hidden variables have no
clear physical interpretation or direct correspondence
with well-known classical observables.

The phase space of the classical theory is six-
dimensional, the Cartesian product of two three-
dimensional hyperspheres. The Hilbert space of the
corresponding quantum theory is two-dimensional.
The lattice of subspaces of a two-dimensional Hilbert
space has the representation shown in Fig. 3. Here «
is an angle variable that parametrizes the one-dimen-
sional subspaces. This lattice is modular. The distri-
butive lattice of the hidden-variable theory is the
lattice of Borel subsets of the six-dimensional phase
space. This has many more degrees of freedom than
the corresponding lattice parametrized by one angle
variable.

It is completely trivial to study the action of the
embedding on the ordering of propositions in the two-
dimensional case. This follows from the observation
that there is essentially only one order relation

g<a,<I 0<a<2n)

F16. 3. Modular lattice.
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and this is preserved under the embedding
o(2)= @ <o@a)<I=al) 0<a<?2n).
The theory for a particle of spin 1 (corresponding to
a three-dimensional Hilbert space) provides the first
example of the violation of the quantum ordering.
This is shown very simply by the following argument.

In the theory of Bohm and Bub, if the initial values of
the variables are such that

lpsl® _ lpal®  [wal®
1&12 7 16127 1&12°

the result of the measurement is spin-polarized in the
3 direction in the Hilbert space. In the quantum
theory, this measurement process corresponds to the
projection operator P;, onto the 3 direction. If the
two-dimensional subspace is rotated through an angle
0,

¥y = p,cos 6 + y,sin 0,
w3 = —, 8in @ 4 y, cos 0,
Ys = ¥,

& = £ cos 6 — &,sin 6,

& = & sin 6 + &,cos 0,

&3 = &3,

this gives the same projection operator in quantum
mechanics, i.e., Py, = Py,. However, in the hidden-
variable theory, the two corresponding propositions
are distinct. After embedding, the projection operator
P,y corresponds to the subset of phase space given by

19* _ lps+ patan 6 Iy, tan 6 — g,
[&s* |é, — & tan 0| & tan 6 + &|®

This is not, in general, the same subset of phase space.
There is a dependence on 6. For example, iftan 0 = 1,
there is a neighborhood (of positive measure) of the
point [y =3, lpil* = lpul? =3, |&° = |&* =1,
|&,1% = 4, which satisfies the first inequality but not
the second. Therefore, the propositions Py, and P,
are distinct in the hidden-variable theory.

The violation of the quantum ordering of proposi-
tions is illustrated explicitly by the following example
with tan 6 = 1. Four quantum propositions are
introduced with the corresponding subsets of phase
space after embedding:

>

Py, spin in 1 direction,

I'I’ll2 Wzlz; [|W1l2 I‘P.alz:.
== > A AT >
{|£1\2 [&)? 1617 7 &)
Py, spin in 1’ direction,
{l% + pl* S o= %F} A {lwl + pol® I%Iz:;
16— &I* T &+ &I (61— &l® T &7

JAMES E. TURNER

Py, spin in 12 plane,

> ) o ),

AT R (T X AT
Py, spin in 1’2’ plane,
{I% + ,)® I%I’} v {l% — S l%l’}_
[& — &I* 7 1&)® &+ &IF 7 1&)

In the quantum theory:

P%<P12=P1'a'a
Pyy < Py = Py
In the hidden-variable theory:

Py < P,  but P23{P1'2’;
Pgs < Pyy but Pyy £ P,.

For example, if |]? and |y, |? are both nearly zero but
with
2 2 2 2
ol g el
(&1 14l (&% &l

then verifying P,.,. reduces to verifying

lpal” o lval
l&af* 7 1&l®
which need not be true. Therefore subsets of phase
space of positive measure can be found satisfying Py
but not B,.,.,

There are other embeddings which could have been
chosen for this theory. As an extreme case, consider
embeddings which map the quantum-pure states to
points of phase space. This choice clearly violates the
quantum ordering of propositions. The violation
occurs for every such choice of embedding.

This is a general feature of hidden-variable theories
(if the Hilbert space of the quantum theory has
dimension greater than two). It arises as a result of
the interaction between the measurement apparatus
and the system under observation. For the theory of
Bohm and Bub, this interaction has been shown
explicitly by the noninvariance of the measurement
process under change of coordinates. The violation
of quantum ordering can also be considered as a result
of the nonlinearity of the equations of measurement.
This is illustrated by the following simple argument.

Suppose that the equation of measurement, written
dy|dt = L(y, &), is linear-invariant in the sense that it
is invariant under linear coordinate transformations,
i.e.,dy'[dt = L(y’, §'). The pure states of the quantum
theory when embedded in the hidden-variable theory
correspond to subsets of phase space with boundaries
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L(y, &) = 0. Consider again the three-dimensional
case (although the result will be quite general).
Suppose the three regions of phase space correspond-
ing to quantum-pure states are given by the labels 4,,
As, and 4;. Now, the assumption is that the bound-
aries of these regions given by L(y, £) = 0 remain
the same under coordinate transformations. This
implies that the above regions are the same after
coordinate transformations

Al =4, A=A, A,=A4,.
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Therefore there is no violation of the quantum
ordering of propositions and the hidden-variable
theory is equivalent to the quantum theory. This
result shows the relation of nonlinearity to the violation
of quantum ordering.
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Tensor distributions of several four-vector variables which transform according to a finite representation
of the Lorentz group are considered. We give a canonical classification of all possible forms of such
objects; this is used to show that, in the relevant cases, it is sufficient to regularize them with respect to the
invariants that may be formed out of the variables to obtain analytic functions. We apply this result to
Wightman functions, showing a result similar to a theorem proved in position space by Borchers under

different assumptions.

1. INTRODUCTION

The fundamental role played in field theory by
tensor distributions of several four-vector variables
makes it very interesting to consider the general
features of these objects. The fact that such distri-
butions possess definite transformation properties
under the Lorentz group puts severe restrictions on
their possible form; thus, for instance, it seems natural
(and this has been widely used) that one may project
them onto invariant ones. The last are a special
case of the former, and it is also interesting to
inquire whether the statement that they really only
depend on the invariants formed with their arguments
is true. To put forth an example, given T,(x, ), the
question is posed whether one can expand it as
x,ty + y,ta, 1; invariant, and whether it is true that
t, = t,(x? y* x - y). That this is in fact the case for
analytic functions has been shown by several people?;

* This paper was supported in part by the National Science
Foundation.

T Present address: CERN European Organization for Nuclear
Research, 1211 Geneva 23 Switzerland.
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but one may expect some trouble for distributions as
the existence of counterexamples such as, e.g.,
9,8(x + p), any o, indicates. One is thus led to the
problem of giving a characterization of the “well
behaved” as well as a description of the “pathological”
ones, i.e., to a classification of tensor distributions.
For invariant distributions of one variable this has
been done by Methée? who proved that if T(x) is
invariant, then

T(x) = t(x*) + [polynomial (343,)18(x),

and his analysis has been partially extended to more
variables by several people’~® (in special cases). In
the present article we give a generalization of these
results, presenting a complete classification of all
tensor (not necessarily invariant) distributions in
several variables.

Related problems are relevant in different contexts.
Thus, Borchers® has shown (using support properties
and translational invariance) that the Wightman
functions in position space need only be tested in the

2 P. Methée, Comm. Math. Helv. 28, 225 (1954); 32, 153 (1957);
C. R. Paris, 240, 1179 (1955); L. Garding and J. L. Lions,

Nuovo Cimento Suppl. 14, 9, (1959).
3 H. J. Borchers, Nuovo Cimento 33, 1600 (1964).
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L(y, &) = 0. Consider again the three-dimensional
case (although the result will be quite general).
Suppose the three regions of phase space correspond-
ing to quantum-pure states are given by the labels 4,,
As, and 4;. Now, the assumption is that the bound-
aries of these regions given by L(y, £) = 0 remain
the same under coordinate transformations. This
implies that the above regions are the same after
coordinate transformations

Al =4, A=A, A,=A4,.
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Therefore there is no violation of the quantum
ordering of propositions and the hidden-variable
theory is equivalent to the quantum theory. This
result shows the relation of nonlinearity to the violation
of quantum ordering.
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Tensor distributions of several four-vector variables which transform according to a finite representation
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objects; this is used to show that, in the relevant cases, it is sufficient to regularize them with respect to the
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1. INTRODUCTION

The fundamental role played in field theory by
tensor distributions of several four-vector variables
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features of these objects. The fact that such distri-
butions possess definite transformation properties
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their possible form; thus, for instance, it seems natural
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question is posed whether one can expand it as
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t, = t,(x? y* x - y). That this is in fact the case for
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invariant, then
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and his analysis has been partially extended to more
variables by several people’~® (in special cases). In
the present article we give a generalization of these
results, presenting a complete classification of all
tensor (not necessarily invariant) distributions in
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2 P. Methée, Comm. Math. Helv. 28, 225 (1954); 32, 153 (1957);
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timelike directions, proving that
[ a6 = g, 40

is differentiable infinitely many times in spacelike
directions. As a result of our analysis it follows that
Lorentz covariance alone is sufficient to ensure a
similar result for Wightman functions in momentum
space.

In Secs. 2-4 we describe the mathematical tools that
are needed later; some results, previous to the analysis
itself and concerning chiefly the description of in-
variant variables, are presented in Secs. 2 and 3, while
in Sec. 5 we deal with tensor distributions. In this
context, we show that (apart from certain patho-
logical cases) tensor distributions need only be tested
in the invariants to get infinitely differentiable (and
even analytic) functions. A canonical representation
of the pathological cases is described in Sec. 6, thus
obtaining a general classification of all tensor distri-
butions, which is used to give (Sec. 7) some applica-
tions; we conclude with some remarks and comments,
in Sec. 7, as well as in the appendices where a few
auxiliary questions are discussed.

Finally, we remark that, although we use loose
language, our results are mathematically rigorous;
they also possess the advantage of using intrinsic
methods, so that they are straightforwardly extendable
to more general situations.

2. LITTLE GROUPS, ORBITS, AND
CURVILINEAR COORDINATES

Let £ be a connected Lie group with parameters
&,---, &, and let its continuous representation
oD — ApD in the linear space MY of dimension
n + 1 be given. We denote with the same letter the
element A in £ and its representer, since no confusion
may arise. We assume the representation to be irre-
ducible, form the direct sum of N spaces identical to
MDD MO oo MW and define a new representa-
tion acting on E = MW @ - - - @ MM by setting

Av=vP@ @V >Av=A" 0 oA/,

1)

which we still denote with the same letter.* (
If v is a vector in E, we define the little group® W,
as the subgroup of all I' in £ such that I'v = v; it is
clear that, if the I', are in ‘W,, and ' —T, also

4 This may be thought of as a representation reducible into N
equivalent representations acting on the M(J). The case of the M/}
being unequivalent could also be considered, but our construction
suffices for applications.

5 E. P. Wigner, Ann. Math. 40, No. 1 (1939); F. J. Yndurain,
Nuovo Cimento 45, 239 (1966); E. Salusti and F. J. Yndurain
(unpublished.)
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T —0v)—> (v —v) =0, so that W, is closed in £
and therefore is a Lie subgroup of £ (Ref. 6, Chap.
IV, Secs. IV and V); we take £,,,," -, & to be its
coordinates.

Together with the little group, we will consider the
orbit R(v); it is defined as the set of all elements of the
form Av, where A ranges over £. We now have our
first theorem.

Theorem 2.1: The homogeneous space £/W, is an
analytic manifold, isomorphic to R(v). R(v) may be
parametrized with the parameter &, - - -, &,; it then
becomes an analytic manifold, analytically embedded
into E. In other words, if v’ is in R(v) and its Cartesian
coordinates are v, then these depend analytically
and nonsingularly on the curvilinear ones &, - -, &,
and vice versa.

Proof: The analyticity and construction of the
isomorphism £/W, <> R(v)are shown in Ref. 7 (p. 111,
Theorem 32). Now, W, being closed, the projection
£ —£/W,_ is analytic (Ref. 6, pp. 109-111; Ref. 8,
p- 43); since any representation of a Lie group is ana-
Iytic,® we have the analytic chain £ — representation
of £ in E— £/W, <> R(v). Q.E.D.

As to the introduction of coordinates in R(v), let L
(W,) be the Lie algebra of £ (W,). If M, -+ M, are
the generators of L, M,,, - - M, those of W, then
the mapping

Eryrre b >exp (BMy+ -+ EMp (2)

maps (analytically) a neighborhood of £/W, onto a
neighborhood of v in R(v) (Ref. 7, p. 113, Lemma
4.1). This is the desired (local) parametrization of
R(v). The action of £ on the coordinates &,,-- -, &,
is then the natural one, viz., if v* has coordinates
&, -+, &,and v" has &,---, &, and if 0" = AV,
we define

A, -, E) = (&, 7, 6); 3

it may be shown that this action is analytic (Ref. 8,
pp. 42ff; see, alternatively, Refs. 6 and 7). These
induced nonlinear “representations” have been con-
sidered in physics in connection with quite different
problems.® Although we do not use this, we note that

8 C. Chevalley, Lie Groups, Vol. I (Princeton Math. Series,
Princeton, 1946).

7S. Helgason, Differential Geometry and Symmetric Spaces
(Academic Press Inc., New York, 1962).

8S. Kobayashi and K. Nomizu, Foundations of Differential
Geometry (Interscience Publ. Inc., New York, 1963).

? L. Michel, in Axiomatic Field Theory, Brandeis Lectures 1965
(Gordon and Breach, Science Publ., Inc., New York, 1966);
S. Wenberg, Phys. Rev. Letters 18, 188 (1967).
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R(v) is, in some cases, even a Riemann symmetric
manifold.”#

Two analytic manifolds are locally isomorphic
whenever they have the same dimension; it is then
natural to split E as the union of disjoint sets E, such
that if v is in E,, dimR (v) = r. If dim E, = a,, then
E,/R is an analytic manifold of dimension a, — r;
locally,

E,=(E//R) X R.

Denoting by P, to E./R, this shows that we may
introduce analytical coordinates p;, - *, p,_, in
P,, and the p are invariant under £ (see Refs. 5-8; an
explicit construction of the p is given in Sec. 4 and
Appendix A). Collecting the results, we have the
following theorem.

Theorem 2.2: For every point § in E, there exists a
neighborhood U(?) of ¢ in E, and a corresponding
neighborhood (that we may take to be cylindric)
Up X Ug, in P, X R such that if v is in E,, v has
curvilinear coordinates (p, &) in P, X R, the relation
between the Cartesian and curvilinear coordinates is
analytic and the Jacobian J(v{; p, &) is analytic and
nonsingular over U(p), Up X Ug. The action of A
in £ on the § is as in Eq. (3), and the p are unchanged.

Explicit examples are found in Sec. 4.

3. CURVILINEAR COVARIANT COORDINATES

Consider the Minkowski space A, ,,, with n space
and m time coordinates. The connected part of the
group of linear transformations of A, that leave
invariant the metric

VW= 0,Wg,,
nv

guv=diag(+1""n" +1; _1,'?' , —1),

where v,, w, are the (Cartesian) coordinates of v, w,
is called the (n + m) Lorentz group® and denoted
by £™. The space E is defined by taking the direct sum
of N Minkowski spaces M, ,,:

E=Mn+m®.jy‘®M'n+m'

If we are given N’ Minkowski vectors v and we
select a set of linearly independent ones v'", " =
1,--+, N"<n+ m— 1, we know (Hall and Wight-
man, Ref. 1) that the invariants that may be formed
out of the v'¥ are functions of the invariants of
the o). Moreover, these invariants are simply the
scalar products v'7" - v'" = p., .. In view of that,
we always assume N’ < n + m and, consequently,
N <n + m. The general case (that may be treated
along similar lines) is left for the moment (in all the
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following we take the physical case n = 3, m = 1; the
generalization for arbitrary n, m is straightforward).

In virtue of the discussions of Sec. 2, the first step for
studying objects T(v) defined on E is to reexpress
them in terms of canonical coordinates p, &. For this
we have to classify the little groups

— (N
W, = W, 3,

This has already been done (Ref. 5; see also Appendix
B) and, in regard to their dimensionality (which is the
result that is relevant here in view of the analysis of
Sec. 2 and the fact that dim R = dim £/W = dim £ —
dim W) the answer is:

Theorem 3.1.

Case (1), N=1. () If v 0, dim W, =3 and
dim R(v) = 3. (ii) If v = 0, then ‘W, = {1, dim W, = 3,
and dim R(v) = 0.

Case (2), N = 2. (i) If o'V and v are linearly inde-
pendent, dim W, = I and dim R(v) = 5. (ii) If they
are parallel, but v 0, dim W, = 3 and dim R(v) =
3. (i) If » =0, then W, =£!, dimW, =6, and
dim R(v) = 0. Here R(0) = {0}.

Case (3), N = 3. (i) If the three v'¥, v'2, and v'2 are
linearly independent, W, =1 and dim R() =
dim{} = 6. (ii) If two are linearly independent,
dim ‘W, = 1 and dim R(v) = 5. (iii) If all are multiples
of a nonzero vector, dim W, = 3 and dim R(v) = 3.
W) If v=0 and W,=¢}, dimW,=6 and
dim R(v) = 0; in fact, R(0) = {0}.

We may then form the corresponding E,,
dim R(v), as in Sec. 2; applying Theorem 2.2, we get
our next theorem.

r =

Theorem 3.2: In situation (3i) of Theorem 3.1 we
have the coordinates &, - -, & and the p;, ", pg
that may be taken to be the p,; = v - v, In (2i)
of Theorem 3.1, the coordinates are &,,- -+, & and
P1,° ", ps that again may be taken to be the p,,. In
situation (li) of Theorem 3.1, the parameters are
&, . &and p=v-o.

The “singular” situations are moredifficulttohandle.
The simplest of the singular cases are the last of each
case, i.e., (lii), (2iii), and (3iv) of Theorem 3.1,
since R(0) reduces to a point. The invariant coordi-
nates (the & do not exist here!) are simply the coordi-
nates of v = 0. In the remaining cases, we relabel
the components v'” of v in such a manner that the
last vectors pl4+1) ... 4N} gre expressible as linear
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combinations of the first, which are taken to be in-
dependent; i.e.,
4
P 4B = 5 A+ By,
4=

We may then show, by direct checking, that the follow-
ing is true.

Theorem 3.3: In situation (3ii) of Theorem 3.1,
the coordinates are &;, -« -, &; and the p’s are formed
by the py 4 = 04704 4, 4" = 1,2, and o¥,
A’ =1, 2. This gives a total of five p,, - -, p;, and
dim E; = 10. In (3iii), we have & ,::-,&;; p, =
v oW o = «{®, and p; = «¥. Here dim E; =
6. Finally, in situation (2ii), the parameters are
&, 00, &y and pp = v - oD o, = al®, Moreover,
dim E; = 5.

Note that the analysis is not yet complete since we
still have to specify E, in E. For this, let the case be N;
form the matrix Ay

o ey
o P

Moy = (1) Y]
5 vy
o0 PV

We remark that the number of linearly independent
vectors is given by the rank of Ay . A straightforward
application of matrix calculus then gives the following
theorem.

Theorem 3.4: The missing “invariant parameters”
that specify E, in E are: in situation (3ii) of Theorem
3.1, d® =0, d® =0, where the d¥ are any two
different (3 X 3) minors of Msy; in (3iii), d? = -+ =
d{? =0, where the d'? are any six different (2 X 2)
minors of . In situation (2ii), we have d{® =
d® =d® =0, and the d'¥ are any three different
(2 % 2) minors of A, .

We remark that the E, are invariant sets, and if
r’ > r", then E,. is of null measure with respect to
E,. and lies on its boundary.

Definition: We denote by Ep the set of maximal
dimension among the E,. For 3 (respectively, 2, 1)
vectors, R =6 (respectively, 5, 3). Note that
dim E, = dim E. Moreover, Ej, is open in E.

4. DISTRIBUTIONS AND FUNCTION SPACES

Let U be an open set in the real finite-dimensional
vector space E; let F be a topological linear space, and

F. J. YNDURAIN

let F’ be its dual.’® We define the following!®-13:

CE(U), the space of n-times differentiable functions
in U with values in F;

CF(U), the space of analytic functions in U with
values in F;

8F(U), the space of functions in CZ(U) of fast
decrease; <

8F(U), the intersection of CE(U) and 8¥(U);

8'F(U), the space of tempered distributions with
values in F.

If we do not write the superscript, it should be under-
stood that F is the field of complex numbers. Let
AF(U) denote any of these objects; then,’® X belongs
to AF(U) if, for every e in F’, (e, X) belongs to A(U).
Now we have the following lemmas.

Lemma 4.1: 1f, under the change of variables
v— @, the image of U, is Uy, and if the Jacobian
J(v; B) is analytic, bounded, and nonsingular, X(v)
belongs to 4¥'(U,) whenever X(v(8)) belongs to 4% (Uy).

Lemma 4.2: 1f dim V < oo, if T(p, &) is in
§T(U, x Up),
and if, for every y(p) in 8(U,),

[dowerrio, 0 = e @
is in C%(U,), then T(p, &) is in CLOSW,(U,), and
whenever ¢(p) is in (U, the convolution product

(T)(p, &) = f dp'dp — OT(L &) (5
isin CL(U, x Uy).

Lemma 4.3: T,(p, &) in CL(U, x U,) converges in
CPx8'Wo(U,) if, for any p(p) in S(U,), (pT)(é) con-
verges in CK,(Ug). The same is true with the substitu-
tions

§(U,) —C,(U), pesU,)ype C.(Us). (6)

Proof: The first lemma is proved by directly checking
the definitions; as for the last two, they are straight-
forward consequences of standard distribution
theory!!:13; they may also be found (with slight alter-
ations) in Ref. 3.

10 G, Kéthe, Topologische Lineare Rdume (Springer-Verlag, Berlin,
1960).

11}, Schwartz, Théorie des distributions (Hermann & Cie., Paris,
1950), Vols. I, and 1I.

12 M. Gel’fand et al., Les distributions (Dunod Cie., Paris, 1967),
Vols. I-V.

131, Schwartz, J. Anal. Math. (Jérusalem) 4, 88 (1954).
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Finally, we present two more standard results of
distribution theory.

Lemma 4.4: If the U, form a basis of E, i.e., if the
union of the U, covers E, and if A¥ is either C¥ or
S'F then X is in AF(E) wherever the restriction of
X to U, belongs to AF(U;) [Schwartz’s “principe du
récollement des morceaux,” (Ref. 11, Vol. I, Chap.I,
Sec. 3)].

Lemma 4.5: If T is in 8¥(U), and if T obeys an
elliptic symmetric differential equation with analytic
coefficients on U, then T is in C%(U) (Ref. 12, Vol.
II1, Chap. IV, Sec. 8).

Definition: If the group L acts on E, i.e.,

A:veE—-AveE, A€t @)
and if X(v) is in AV (E) and verified,
X(Av) = D(A)X(v), (®

where D(A) is the matrix of a representation of £ in
V, then X is called a tensorial A object (tensorial
analytic function, tensorial distribution, etc.), and
the space of such X’s will be denoted by AP(E)
[rather than AY(E); clearly AP(E) is a subspace of
AV (E)).

5. TENSOR DISTRIBUTIONS: GENERAL
PROPERTIES
Let T(v) be a tensor distribution over E. If # is in
Epg, and since Eg is open in E, then there exists a
neighborhood Uj of & contained in E; the restriction
of T to U; is in 8'P(U;). We perform the change to
curvilinear coordinates and, if U; X U; is the image
of U, in these coordinates, then T(v(p, &) = T(p, &)
is in 8'P(U; x U;) (Theorem 2.2 and Lemma 4.1).
By virtue of the definitions (Sec. 4), for every y(p) in
(),
(p), T(p, £)) € 8'P(Up). )
(The only fact that needs some discussion is the
conservation of the tensor character of 7. But this is
obvious if we notice that the p are invariant.) Now, if
we recall the way £ acts in the & [Sec. 2, Eq. (3)], it
follows that, in a neighborhood U, of &, the (y, T)(&)
satisfy an elliptic differential equation with analytic
coefficients (see Appendix C for the explicit construc-
tion of this equation) so that Lemma 4.5 tells us that
the restriction of (y, T)(§) to U, is in C2(U.). But
£ acts effectively in R, that is, any £” in Uz may be
obtained as A& with & in U, . Combining this with
the tensor character of (y, T), i.e., with the formula

. TH(E") = (p, THAEF) = DAy, TXE),
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and with the linearity of the spaces C,,, we obtain
that the differentiability of (, T) may be extended to
all of Uz, ie., that (y, T)(§) is in CZ(Up), so that
Lemma 4.2 tells us that whenever ¢(p) is in 8(U),

($+T(p, &) € CBU; x Uy,
But then we may use Lemma 4.1 and Theorem 2.2
to perform back the change of variables and obtain

($+T)E) = f dp'd(p’ — p)T(v) € CE(U3). (10)

Now, the U; form a covering of Ep, and thus Lemma
4.4 applies. We have therefore proved our main
theorem, which is stated below.

Theorem 5.1 (Main Theorem): 1f 1(v) is in 8'P(E)
and ¢(p(v)) is in S(Pg), then (¢, T){(v) and ($*T)(v)
are infinitely differentiable in Ej, in the remaining
variables (the first), and in all the variables (the last).
Moreover, they keep the same tensor character as 7.
This is mathematically expressed by formula (10)
(for the last), replacing U; by Ex.

Corollary 5.1: If we extend T to complex values of
v by means of the complexified £ group £ by setting

T(Agv) = D(A)T(v),

A in £€, then we may replacé the requirement “¢ is
in 8(Pg)” by “éis in §,(Pg)” to get “analyticity”
instead of “infinite differentiability” in Theorem 5.1.
This follows from the fact that the D(A.) depend
analytically on the parameters of Ayand from Lemma
4.1.

Corollary 5.2: The invariance of the p is decisive in
all above arguments. However, once Theorem 5.1
and Corollary 5.1 are proved, we may perform a new
change of variables p — T and still keep the properties
of differentiability and analyticity (but no longer the
tensor character!), whenever the change of variables
is admissible (Lemma 4.1 applies). Thus, e.g., if
N =1 (Sec. 3), we may average T(v) along any time-
like direction, i.e., in v, (the component of v along
any timelike axis that may, in particular, be v, i.e., the
time axis).

From our subsequent analysis (Sec. 6) it follows
that if we define TC as the restriction of T to Ep,
then TC" may be “continuously” extended to all of
E (by ““continuity” across the frontier of Eg; recall
the definition at the end of Sec. 3); let us call 7C such
an extension. We then may define

T(v) = T(v) — T(v); (11



1420

T is the “discontinuous” part of T and has support
in E — Eg. By iterating this process, we would arrive
at a decomposition

T() = (12)
where T" has support in the union of E, with r’ < r
and is “continuous” across the boundary of E,. In
any case, from (11) it follows that if we subtract at
any T its discontinuous part, we obtain a “regular”
TC.

T () + ERT’(U),

6. CLASSIFICATION OF TENSOR DISTRIBUTIONS

If, in Corollary 5.1, we take ¢(p) — d(p), we see
that the problem of classifying tensor distribution
may be reduced to the classification of tensor analytic
functions. This has been solved quite generally,! and
we simply state the results; for definiteness, we give
them explicitly in the case T' = T,(v'V, v'?, v'¥). We
now return to the situations of Theorem 3.1.14

Situation (3i):

3
TE(U(I), U(Z), v(3)) =Iz v’(‘I)tI(U(I), U(J)), (13)
=1
and the ¢#; are invariant distributions. Thus, the usual
decomposition is valid on Ep.

As for the T, we have to consider distributions with
support on the surface E,. Their general form is well
known (cf., e.g., Refs. 11 and 12) and we only have to
apply the general theory. We do it in increasing order
of difficulty.

Situation (3ii): Eq is the point vV = p@ = p® =0,
so that T} is of the form

Tz(u(l), (2) (3))

= Z pAD) 57 S0P, (14)

ov (1)
where the p; are polynomlals in the d’Alembertian
0= 2 guvauav .
Situation (3iii): Taking into account the results of
Sec. 3, Theorem 3.4, we may represent 7}, as
Ts(d(z) o((2) a(s) v(l))

and the fact that T° has support in Ej is exhibited by
decomposing it as

(6 d(z)) S - - - ST, (o, vD).

14 We will only consider proper vectors; otherwise, terms of the
form eugrpVolsVy, Where € is the Levi-Ci\(ita symbol, should appear.
We thank Professor O. Steinmann for this remark.
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It is not difficult, although cumbersome, to find the
transformation properties of 7°. We leave this to the
reader and work explicitly only the case p = 1.
The 8(d) are then invariant, and T,? is still a vector.
The final result is then

Tﬁ(U(l), D(Z), v(3))
1 g2 (
=4 (d} U 51(dé2’)v,(‘1)t(a;2), a13), o 0(2))’ (15)

and ¢ is again invariant. We remark that «{" may be
rewritten as p'D - D fpM) - W (f 0 js lightlike, we
define the quotient by a limiting procedure), so that
t(a, 0¥ - 9y = ¢/(D - p!)); this is true whenever
neither of the v is zero and ¢ is continuous across the
light cone.

Situation (3iv): The analysis is similar to the former
situation, and the result is likewise:

Tﬁ(vm, v(2), 0(3))

2
= 61(di3))61(d(23)) zv‘il)tl(a{w’ 05;3), U( I, (J ))
I=1

r,Jg<2 (16)

and here again we may reexpress the o’s in terms of the
invariants v'? - o) whenever the v'D 5 0.

If T satisfies suitable support properties, we may set
still stronger results. Thus, if, e.g., T vanishes unless
v =0 or v - o0 > 0, the condition d¥ = - - - =
d® = 0 may be reexpressed as [we take the situation
(3iii), for example]

[U(Z) [U(Z) (2)]{0(1) cp
[0(3) [0(3) (3)][0(1) )

i.e., in terms of the invariants p;;. We are thus
allowed to separate the part of ¢ in (15) that is
“continuous” across « = 0 and the part with support
in « = 0. The first can be rewritten in terms of the
invariants in a form analogous to the second member
of Eq. (13); the second is, by virture of arguments
familiar by now, of the type

(1)]2 (1)]
b

(1)]2 (1)]
’

p(0®) —5 '™ Ntiprs) + PO WV 1:(p1,)

oo (3)
or the similar one containing the product §4(v®)d*(v'?)
and the same with an arbitrary permutation of the
superscripts 1, 2, 3 (since we have to consider all
possible labelings).

Quite generally, the following general result may be
easily obtained by putting together all these conditions.

Theorem 6.1: If the support of T is contained in the
union of the open cones v'” - v'” > 0 and the origins
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0@ =0, and 7,0, -+, v"V) is in 8'P(E), then T,
may be canonically decomposed as

T (U(l) e (N))
n 3
N
z {2[ Prs@% e, 0
2,3)\I=0
6 PYIs 9
NIz ]:[ W Nt V(paB)
+ ”z (O, -+, 0"
H (Il}U:tI”)tII”,S(PAB)}}’ (N

where D 43 is extended to all permutatlons of
(1,2, 3) and the term / = 0 in the sum X}, is to be
interpreted as causing the corresponding ('),
Po(0®), 0/0v'® to disappear, i.c., it gives the reg-
ular part [Eq. (13)] of T. pyp =04 0B 4, B =
1,--+, N.

Corollary 6.1: The above theorem extends the
result of Theorem 5.1 from Ej, to the set E’ consisting
of v’s such that neither of the v’ (I=1,-:-,N)
vanishes.

Remark: We have taken the case of a vector distri-
bution as an example. The general tensor distri-
bution T; may be expressed, mutatis mutandi, in the
same manner; one only has to change the vectors
d/0v,, v, by the corresponding tensor functions (Refs.
1 and 15) 7,(0/0v,) m,(v,). We also note that the f may
be found from the T in a canonical manner with the
standard procedures (see, e.g., Ref. 1).

7. SOME APPLICATIONS AND COMMENTS

If Wy (00, , o'™) are the Wightman functions
in momentum space and, after having separated the
translation invariance,'¢ they have the suitable support
properties and are tensor distributions. Our analysis
applies to them, and consequently the results of
Theorems 5.1, 6.1, and Corollary 6.1 hold. Thus, e.g.,
we obtain that the regular part of W need only be
spread out in the invariants p;;. This is to be com-
pared with a similar result obtained by Borchers?® for
X space; our results extend his to momentum space if
we get rid of the singular part W?of W. This is easily
done in, e.g., a theory of massive particles where

15 K. Hepp, Ann. Math. 152, 149 (1963).

18 R. Streater and A. S. Wightman, TCP, Spin, and Statistics and
All That (W. A. Benjamin, Inc., New York, 1964); R. Jost, The
General Theory of Quantized Fields (Am. Math. Soc. Publ., Provi-
dence, R.I., 1963).
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W4 is simply the contribution from the vacuum. Note
that no analyticity properties have been used in
obtaining these results.

Similar comments could be made concerning
scattering amplitudes. We do not, however, give the
pertinent analysis here.

Finally, a few more questions are considered.

1. Discrete transformations. Space reversal does
not add anything new to what has been said, but this
is not the case for time reversal (p,— —p,). The
manifold of tensor distributions may be split in-
variantly into even and odd distributions with respect
to time reversal, depending on T(—~uv,, v) = £ T(v,, v).
For the (+) choice, the analysis remains unchanged;
if the (—) sign holds, then sgn v,T is even. We may
thus write any T as

T = T + (sgn v) TV,

These considerations are well known (see, e.g.,
Garding and Lions, Ref. 2).

2. Distributions of the invariants. To complete the
description of Sec. 6, one has to give a description of
the spaces of the ¢’s, i.e:, of the spaces of distributions
of the invariants. This has been done by several
people and we refer to the corresponding literature
(Gérding and Lions,? Hepp,''' etc.).
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APPENDIX A

We give an explicit construction of the p, & Let &
be a point in E, and consider R(3). Let U be a
neighborhood of 4 in E, . If we denote by R+ the plane
orthogonal to R(?) at 5, by virtue of the continuity of
the R, we may suppose that U is small enough to
guarantee that if v" % v” are in the intersection of U
and R+, then R(v) # R(v"); then, if p’ are the
coordinates of points in RL, to every value of these
there corresponds one single R(v'(p")) so that we have
a parametric family of surfaces R . We may then
take the system of orthogonal trajectories of the R,
and obtain a curvilinear system of coordinates. [This

17 K. Hepp, Helv. Phys. Acta 37, 639 (1964).
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construction is classical; see, for instance, Ref. 18; the
&’s are the coordinates of R, the p those of the orthog-
onal family. In the concrete situation it is not difficult
to show the p’s explicitly (Theorems 3.1-3.3, Sec. 3).]
Alternative group-theoretical constructions may also
be easily given.®

APPENDIX B

We give, for completeness, the list of the different
little groups. A detailed discussion with proofs may be
found in Ref. S.

(1) Three linearly independent vectors:
‘w,,,m,u(z)v(a) = {1}

{2) Two linearly independent vectors: (a) The plane
vMWp® is spacelike; then W, w,@ = £}. (b) The plane
vMp'? is tangent to the light cone; then W ui =
&, , where &, effects dilations along the tangent to the
light cone. (c) The plane v™v® cuts the light cone;
then ‘u)vmv(z) = 0.

(3) One nonzero vector. (a) Spacelike: W, =£}.
(b) Lightlike: W, = &, (Euclidean group in two
dimensions). (c¢) Timelike: W, = O4.

(4) v = 0; then, Wy, =1£1.

APPENDIX C

Let us show that if 7(W,---,0v"™) is a tensor
distribution, then (ypT) obeys an elliptic-symmetric
(e-s, for short) differential equation in the &. First of
all, we remark that if the M, are the usual generators
of the Lorentz group L}, then; by going over to
infinitesimal transformations, it follows that if T'is a
tensorial object [Definition, Sec. 4, formulas (7) and
(8)], then

9 d
g} v:{) 5;5}_} . vil) W}T(v(m’ RN ()(N)}
= dD(M,)TW", -+, v*™), (C1)

where dD is the representation of L} induced®” by the

18 1, P. Eisenhart, Differential Geometry of Curves and Surfaces
(reprinted by Dover Publ, Inc., N.Y. 1909).
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representation D of £3. We want to prove that, in
terms of the &, Eq. (C1) becomes e-s for (p, T); it is
clear that, since the p and & are independent, it is
sufficient to show this for T as a function of & Let
& be a fixed point in E, W; its little group, and
My, - -+, M, the generators of £3/W; (Sec. 2); then the
dependence of T in the & is given by

T(D) =TC, &, -, Sr)
= T(, exp My + -+ MrEr 5,) (C2)

and the action of the A on the £ is as in formula (3),
Sec. 2, ie.,

l r
Algy, -0, m) = exp (; mM,-) :T(', exp g &M ,-)

- T(-, [exp f;mM{I l:exp ?r .Sij]) .

(C3)
For small &, %, and for 5; = d;7,

[expnM f][exP E &M i]
:exP [EIMI + v + (51 + 77)M: + e + ‘Ser]:
so that, near & = 0, Eq. (C3) gives

0
agi T( k] 5) - dD(Mi)T( H E)v

In general, the equation is of the form

(C4)

S (6 5% TC, & = dDOMYTC, 9, anyi, ()

and the oy are analytic functions with «,(0) = J;;.
Equation (C4) is clearly elliptic [i.e., Eq. (C5) is
elliptic at & = 0]; by virtue of the analyticity of the «,
Eq. (C5) is also elliptic in a neighborhood of the point
£=0. Q.E.D.

Let us remark that this argument contains as par-
ticular examples the ones currently used!; thus, e.g.,
the proof of Methée? is a specialization of ours for
the simple case N = 1 and T scalar, i.e., dD(M) = 0.
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We prove that the free and total (renormalized) Hamiltonians exist as essentially self-adjoint operators
in the relativistic Lee model without cutoff. Nevertheless, their domains of definition only have the zero
vector in common and thus the interaction Hamiltonian is meaningless (“‘Haag’s theorem™).

In a previous paper® [hereafter referred to as (I)],
it has been shown that, by using a limit procedure, it
is possible to define a total Hamiltonian H for the
relativistic Lee model even in the limit of point
coupling (no cutoff). The properties of this Hamilton-
ian are further analyzed in the present note, where we
are able to prove the following: (1) The total Hamil-
tonian H, as defined in the domain introduced in (1)
[Eq. (4.5)], which we henceforth denote by D, is an
essentially self-adjoint operator. It governs the
dynamics of the model; in particular, it possesses the
correct spectral properties. (This last statement was
proved in Ref. 2, by constructing a Schrodinger
equation.) (2) If D, is the maximal domain of definition
of the free (renormalized) Hamiltonian H,, then D,
and D only have the null vector in common. As a
consequence, the interaction Hamiltonian H;, =

H — H, becomes meaningless. These results, of
course, complete and substantiate those of (I); in
particular, they explain why the Mgller operators are
nonexistent, thus showing that the relativistic Lee
model “satisfies” the theorem of Haag® and confirms
(in a sense) the conjecture of Van Hove.*

1. We recall® that D consists of vectors |y) of the
form

Iy = f &p D(p)VE |0) + f &g d%

Ag(q + k, k)®(q + k)
Ex(9) + w, — Ep(q + k)
For them, the action of H is defined as
H |y = lim H |p),

f=1

x {‘F(q, k) — N*a¥ (o).

where [cf., (I), Egs. (2.1), (2.2), (2.3), and (2.4)]

H' = H, +Jd3P SEL(PIV,V, + lfdsp &k {IBEp(P)Ex(p — K)oy ] ¥ (p, V3N, 40, + Hec,

Hy = f &p E,()ViV, + f &p Ex(DNIN, + f &k walay,

d’k f(p, k)*

SE? = |A|?
¥ (P) ”J{[EN<p—k)+wk

— Ex(DIBER(D)Ex(p — K]}

The result, as is easy to check, is the last equation in (1), viz.,

V(p —

k, k)

Hip = j dsp[Eycp)cwp) +2 f d%

(BE(PEx(p — ko)t

:IV: 10) +fd"‘q &

AEp(q + k)D(q + k)

x {[EN(q) + 0¥ (g, k) —

We will presently show that, so defined, H is essen-
tially self-adjoint in D. For this, since H is symmetric,
it is sufficient® to prove that the only solution for
H*|{) = £i|{) is the trivial one, |{) = 0; i.e., we
have to check that if

(& Hy) = 2K, Hy), lx) in D,

* Research supported in part by the National Science Foundation.

t Supported in part by Comisaria de Proteccién Escolar (Spain).

1 Address from January, 1968: Theoretical Division, CERN,
Geneva 23, Switzerland.

1 F. J. Yndurdin, J. Math. Phys. 7, 1133 (1966).

2 F. J. Yndurdin, Anales Real Soc. Espan. Fis. Quim. (Madrid)
62, A 317 (1966).

for all

[Ex(@) + ©; — Ey(q + KIBE(q + KEx(qo.

}N;*a:‘ 0. (1)

then |{) = 0. Computing explicitly, we get that, if
10 = f & &)V, 10) + f d’q &k (g, KIN*a¥ |0),

3 R. Haag, Kgl. Dansk. Vid. Selsk. Mat.-Fys. Medd. 29, No. 12
(1955). We use quotation marks for the word “‘satisfies” because
Haag’s theorem is a relativistic local theorem, whereas the Lee
model is not.

4 L. Van Hove, Physica 18, 145 (1952); 22, 343 (1956).

® We use consistently the notation of (I), which also coincides
with the standard notation.

%See, e.g., N. 1. Achieser and I. M. Glasmann, Theorie der
L;ne:;ren Operatoren in Hilbertraum (Akademie-Verlag, Berlin,
1954).
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then we should have

f d®p E(p) Ey(p)P(p)
+ 4 f &p &%k E(p)a(p, ¥ (p — k, k) + f &g d%

x {ﬁ(q, OEn(@) + w¥(g, k)

_ Mi(q, KEy(q + K)g(q + k, )P(q + k)}
Ex(9) + w, — Ep(q + k)

- :I:i{ f d*p E(p)0(p) + f i d3k[ﬁ(q, V¥ (g, k)

_ lg(q + k, k)ij(q, K)P(q + k)]}
Ex(q) + o, — Ey(q + k)
g(p. k) = BEL(DENp — Mot ()
From this, it already follows that both & and # must be
different from zero or vanish at the same time. Since
(2) must hold for all ® and ¥, we may take' V' = 0
and @ in the manifold orthogonal to the function
[Ex{(p — k) + o, — Ey{(q)]
from which Eq. (2) gives that & must be parallel to
77,/[EV q: i], i~e-)

&p) =

an'(p)
[Ev(p) F i)
Analogously, if ® =0 and ¥ is orthogonal to
&'(q, k) = &g + k)g(g + k, k), then we get
c2£'(g, k)
[Ex(9) + o F i]

From Egs. (3) we conclude that either ¢;c; = 0 or,
on the support of £ and 7,

Ep(p) F i = c1e,Ey(p) f &%

(3a)

n(q, k) = (3b)

lg(p, B)I®
Exp— k) + o, Fi
= ¢,6Ep(p) X 0.

F. J. YNDURAIN

But this last equation only is satisfied if p = o, so
that [{) must vanish. Q.E.D.

2. We will show that H;,, = H — H, is not
defined by proving that, for any |y) in D, H, |¢) lies
outside of the Hilbert space of (normalizable) super-
positions of states with V' and NGO particles. This
result is obtained by direct computation:

Holp =y + a2 + lxa)»

) = f d*p E,(p)®(p)V ¥ |0)
+ J &g d*K[Ex(g) + 0¥, HN*a} |0),

lge) = —A f Pyq &k

 Evla + gl + kDO + 1)
Ex(9) + o, — Eplq + k)

say |0),
o) = —4 f &g & g(g + k, KHD(q + KN*a} |0).

It is easy to check that |y;) and |x,) are normalizable.
However,

A f &g & (g + k, (g + K)* = oo,

whatever ® may be. Hence H |y) is outside the Hilbert
space. Q.E.D.

ACKNOWLEDGMENTS

In conclusion we would like to acknowledge
interesting correspondence with Dr. J. M. Lévy-
Leblond, and the hospitality extended to us by
Professor B. Zumino at the Department of Physics of
New York University, where part of this work was
performed.

Thanks are also due to the P.I.O., Comisaria de
Proteccion Escolar (Spain), for partial economic
suppott.



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9,

NUMBER 9 SEPTEMBER 1968

Generalized Second-Order Relativistic Wave Equations. I*

KENNETH RAFANELLIT
TRW Systems, Redondo Beach, California

(Received 9 November 1967)

A covariant second-order wave equation, free of subsidiary conditions, is deduced frorq thg fami.liar
linear relativistic wave equation for a free particle of arbitrary spin by use of the representation-invariant
Lie algebra of O(4,1). The correspondence principle is used to interpret the physical content of this
generalized equation, which explicitly admits zitterbewegung and implies an inverse spin dependence for
the rest energy. Without further assumption this generalized second-order equation is equivalent to the
Kliein-Gordon equation for the particular Lie algebras of the Dirac and Duffin-Kemmer rings. For
higher spins the imposition of a subsidiary condition, understood via the Bargmann-Wigner analysis,
extends the equivalence with the Klein-Gordon equation and explicitly displays the above mass

spectrum.,

L. INTRODUCTION
The linear relativistic wave equation
(TP, + )y =0, 1)

where x is a constant parameter related to the rest
mass P, = ~ihd,, and the four-matrix operators
I, satisfy the representation-invariant Lie algebra
of the de Sitter group 0(4, 1),* ie.,

(y, Ty =T, (2

3)

and
T, )= re, —rIs

Ve ®

which together imply

(FIAV 2 Fpo‘)

= —(T,,8,, + I',9

Yoo Up

- Puqavp - vaauq), (4)

constitutes an accepted description of a free particle
with arbitrary spin. There is, however, some discussion
in the literature on the completeness of this description
without demanding that y, a solution of (1), also be a
solution of the Klein-Gordon (KG) equation.? This
demand generally necessitates the introduction of
subsidiary conditions, which can cause inconsistencies
for the usual inclusion of electromagnetic interactions.
It is partly to the question of subsidiary conditions
that we address ourselves here, although interactions
are not explicitly considered in this first paper.

We adopt the point of view that (1) does indeed
constitute a complete description of a free-spinning
particle and show that this does not preclude the
existence of a second-order wave equation. In fact,

Ilﬂéva‘

* This work supported in part by the Office of Naval Research.

T Permanent address: Queens College of the City University of
New York, Flushing, N.Y.

1 | jterature on the algebra of O(4, 1) is extensive. For the notation
adopted here and an exhaustive reference list, see H. C. Corben,
Classical and Quantum Theories of Spinning Particles (Holden Day
Publishing Co., San Francisco, 1968), Sec. 13.

*P. A. M. Dirac, Proc. Roy. Soc. (London) A155, 447 (1936);
M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A173, 211 (1939);
H. J. Bhabha, Rev. Mod. Phys. 17, 200 (1945); Harish-Chandra,
Phys. Rev. 71, 793 (1947).

the well-known Lie algebra of O(4, 1), based on Egs.
(2) and (3), permits us to deduce a general, representa-
tion-invariant, second-order wave equation without
resorting to the use of subsidiary conditions. This
equation is developed in Sec. 1I. The remainder of this
paper is then devoted to analysis of the properties of
this equation.

It is first shown that the covariant Hamiltonian
operator defined by this general second-order equation
has as its correspondence limit a form of the already
studied classical Hamiltonian for a free-spinning
particle.® The solutions of the admitted Poisson-
bracket equations of motion are known to predict
helical trajectories, the superimposed oscillatory
motion corresponding to zitterbewegung. These
solutions are also known to yield a rest energy which
decreases as the observed spin increases.* Thus com-
parison with classical theory indicates that in this
general form the second-order wave equation displays
an energy and angular momentum which are not
divided into separately conserved orbital and intrinsic
spin contributions and that the coupling gives rise to
an implicit mass spectrum.

Finally, we examine the equivalence of this general
second-order wave equation and the KG equation.
The Lie algebra of the Dirac and Duffin-Kemmer
rings® suffices to reduce our second-order equation to
the familiar KG equation for these particular repre-
sentations. Generally, however, for higher spins it is
necessary to postulate a subsidiary condition in order
to arrive at an equation of the KG type. To under-
stand the nature of the subsidiary condition for the
finite-dimensional representations, our second-order
wave equation is first recast into the language of
WCorben, see Ref. 1, Sec. 7; K. Rafanelli, Phys. Rev. 5,
155, 1420 (1967); K. Rafanelli, Nuovo Cimento 524,342 (1967).

4 H. C. Corben, see Ref. 1, Sec. 8; K. Rafanelli, J. Math. Phys.
8, 1440 (1967).

® N. Kemmer, Proc. Roy. Soc. (London) A173, 91 (1939); E. M.

Corson, Introduction to Tensors, Spinors, and Relativistic Wave
Equations (Hafner Publishing Co., New York, 1953), Sec. 39.
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Kramers, Belinfante, and Lubanski (KBL).® In this
form imposing the subsidiary condition is equivalent
to assuming the Bargmann-Wigner (BW) equations.”
With this assumption our second-order equation
reduces to an equation of the KG type (orbital and
spin contributions separately conserved), with the
previously implicit mass spectrum now explicitly
displayed.

II. GENERALIZED SECOND-ORDER EQUATION
Adopting the usual procedure for constructing a

second-order equation,® we multiply (1) on the left by
(—il,P, + ), yielding

r,rp.pP, + <Py = 0. %)
Then with

Pan = %(Pur‘v + Pvpu) + %(I‘urlv - Pvpp) (6)

we note that, since (P,, P,) = 0, the antisymmetric
part of (6) does not contribute to (5).
Introducing the four-vector

%o = 3,0, + T,1,), O

the following representation-invariant identity is easily
obtained, using (2) and (3):

r,r,+0ry
=2 T 6

ot a¥uv T (FuaFav + Pvapaa) + 2(x!4’ FV)

(®
This last relation (8) is not to be considered as a

subsidiary condition, since it follows directly from the
Lie algebra of O(4, 1). Since

C’b = -%Fuvr‘yv + FuFu (9)
is a Casimir operator of 0(4, 1), and
COL = —%Fuvpuv (10)

is a Casimir operator of the homogeneous Lorentz
group SL(2, C), it follows that I',I', = C; — CF
separately commutes with all the elements of O(4, 1)
only for those representations for which y, =0
(e.g., the finite-dimensional Dirac ring, and the
infinite-dimensional Majoranarepresentation).** How-

ever, it is worth noting at this point that
a,r,r,)=20 an

for all representations.

8 H. A. Kramers, F. J. Belinfante, and J. K. Lubanski, Physica
8, 597 (1941).
7 V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. 34, 211
1948).
¢ 8 N} E. Rose, ‘‘Relativistic Electron Theory” (John Wiley & Sons,
Inc., New York, 1961), Sec. 22.
¢ E. Majorana, Nuovo Cimento 9, 335 (1932).
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With relations (6) and (8) we may write the second-
order wave equation (5) as

,r.pp, - aIT,Tr,)PP,
+ (xpn Pv)Pva + K2}1/’ =0. (12)

Equation (12) constitutes the representation-invariant
second-order equation, free of subsidiary conditions,
implied by (1) and the Lie algebra of O(4,1). An
analysis of some properties of this equation is taken
up in the next two sections.

HI. THE CORRESPONDENCE PRINCIPLE

In order to interpret the physical content of Eq.
(12), we turn to the relation between the quantum
and classical theory of spinning particles. To facilitate
this discussion we first examine the representation-
invariant relation between velocity and momentum
operators implied by (1).

If we multiply (1) on the left by ~iI', and use (8),
then, for « # 0,

il = 2—1- {20, TP, + 2(x,, TP,
K

- (Puapqv + Fva'ch)Pv + Fvav}y)' (13)

This relation is not to be considered a subsidiary
condition on ¥, since again it follows directly from the
Lie algebra of O(4, 1). If (13) is multiplied by P,, then
comparison shows that (1) and (12) are equivalent
statements, the latter arising when the velocity oper-
ator iT",, which appears explicitly in (1), is replaced
by its functional dependence on momentum. Thus,
as is customary, if we consider the wave equation (1)
to define the covariant Hamiltonian operator

H=il',P, + «, (14)

then (12) defines the Hamiltonian operator re-
expressed quadratically in the momentum as

H =TT.pPP, ~ T, T,)PP,
+ Op> TOPP, + % (15)

The classical Hamiltonian H,; corresponding to
(15) may be obtained from

Hy = (H) = f H yd'x. (16)
If we write out the third term of (15) explicitly, using
(2) and (7), then

<(xu > Pv)Pqu>

=3 f #{2T,0,0,T, — I,0,T,0, — T,0\T I )P, Py,
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which vanishes when use is made of Eq. (1), the
adjoint equation —i(P,)I', + «p = 0, and surface
terms are neglected. Then, with (9), (10), and (16),

H, = f zp{(cg — CHP,P,

L,
+ 2 Cﬂ (F#aFav)Pqu + KZ}W — 0. (17)
(Faﬂpaﬂ)
With the bilinear associations!?
v, = (), s, = (—=ihl,), (18)
the classical Hamiltonian predicted by (12) is
PP
Ho = aP,P, + 2b 2007y L (2 0, (19)
SapSap
where
a=C,—CE b=cCt (20)

Similarly, the above procedure may be used to obtain
the relation between the classical variables corre-
sponding to (13):

G'VPV
kv, = aP, + 2b Lmy

(21)
548528

For the special choice b = a, (19) and (21) define

the Hamiltonian formulation of the classical-rela-

tivistic pure gyroscope. This classical theory and its

relation to the quantum theory of spinning particles

has been studied elsewhere.®* The classical theory

predicted by (12) then is a generalization of the pure

gyroscope with the supplementary condition S0y =
0 now replaced by

snvvv = (g) suvPv’
K

where 7 = a — b. The Poisson-bracket equations of
motions admitted by (19) are nevertheless identical to
those of the pure gyroscope, because of (11). The
solutions to these equations are known to predict
helical trajectories, and the superimposed circular
motion corresponds to the classical equivalent of
zitterbewegung.®# Further, it has been shown that the
energy in the “momentum-rest” frame varies inversely
with the magnitude of the observed spin.3*

This analysis provides us with an interpretation of
the dynamical content of the generalized second-order
wave Eq. (12). It indeed describes a free-spinning
particle, but in terms of variables from which the
zitterbewegung or, equivalently, the coupling of
positive and negative energy states has not been
removed."" In other words, the energy and angular
momentum are not generally divided into separately

(22)

10 K. Rafanelli and R. Schiller, Phys. Rev. 135, B279 (1964).
11 See Ref. 8, Sec. 18.
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conserved orbital and intrinsic spin contributions.
The question of equivalence to a covariantly uncoupled
description is taken up next.

IV. RELATION TO THE KG EQUATION
Transposing the mass term, (12) becomes
{r,r,p.pP, + <y
= {(I,T\)P,P, — (xu» T)P,P}y. (23)

If we use (2), (3), and (7), the right-hand side of (23)
may be written as

¥T,0,0,T, + [,0,I.T, + 2T, I,L,T,
— 2I,I,I",T', — 2T, T,T,T,)P,P,p.

[

So that after some lengthy but straightforward algebra,
based on (2), (3), and (5), Eq. (23) becomes

{D,T.PP, + x*(l + T,T )y
= {I,I,I,T, — 2T, I,T,T\}P,P.v.

L a4

24)

Equation (24) is still a representation-invariant
statement, free of subsidiary conditions. It is not
difficult to see that further attempts to simplify the
right-hand side of (24), Rz, , based on representation-
invariant algebra, yield empty identities. In fact,
unless

Riayy = «*fyp, (25)

where f is some constant or some function of I' I"_,
an equation at all resembling the KG equation is not
recovered.

If we turn to particular representations of 04, 1),
then, for the cases of spin 4 and spin (0, 1), (25) is a
direct consequence of the Lie algebra of the Dirac and
Duffin-Kemmer rings. This is verified as follows.

A. The Dirac Ring: For this case, in our notation!

r,=4%y, IO+, =4%5,, [T, =1. (26)
Thus R,y = —2«%, and Eq. (24) becomes
{P,P, + )%y =0, 27)

and since by (26) we must have myc = 2« for the
rest mass, (27) is the correct KG equation.
B. The Duffin-Kemmer Ring: For this case, in our
notation!:?
F,=8, LTI, =0LT,=04,+T4,,
Py=T,C,Py
(28)
Thus Rz = «*p, and Eq. (24) becomes
LY A{PP, + ¥y =0, 29)

which, nontrivially, yields the correct KG equation
with myc = k.
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Thus, for the above two cases, (25) is an identity in
virtue of the Lie algebra characterizing the representa-
tions. For more general cases, (25) must be assumed
and hence becomes a subsidiary condition. To justify
this condition and evaluate f for arbitrary spin, we
use as a tool the construction due to KBLS for the
finite-dimensional representations. The wavefunction
p is considered to be a four-spinor of rank N = 2s,
where s is the spin, and in our notation

N
r,= %2; v, (30)
The y matrices satisfy -
Yy =vvus (1 # k)} -
Yuvs + vy, =20,; (eachl)

Using (30), our general second-order wave equation
(12) becomes

(2

kA=

1{%75‘75(1’,,1",, + )} + <

N . . . "
— ¥ 3 iyt — 2y;°yzy3y:>P,,Pv}w —0. (3
2, 5=

Again lengthy but straightforward algebra, now based
on (31) and (5), allows simplification of (32) to

N
{Kz + i z J’.EJ/(Z,PMP,‘ Y
k=1

N
= %kli_l{yfyiyiyé — yiy}P, Py, (33)

Although (33) is not representation-invariant,
because of the completely reducible construction (30),
it is nevertheless free of subsidiary conditions. As one
might expect, further attempts to simplify (33),
relying solely on (31) and (5), lead to empty identities.
Thus, in order to arrive at an equation resembling the
KG equation, we must assume something about the
right-hand side of (33) [except for N = 1, in which
case (27) is recovered]. Now, however, thanks to the
BW analysis,” the choice is a natural one. If, in
addition to (1), the BW equations are obeyed, i.e.,

iylPy = —axy, (34)
where ax is the rest mass, then (33) becomes
2
(4 DLPPY = | =@, D, + 7 @l
(35)

KENNETH RAFANELLI

and we have returned to our original notation for
Cs — C[. Consistency between (30) and (34) requires
a = 2/N. Finally, we have
4y’

I‘,,I‘,,{P,,Pu + F}w —o. (36)
Since the curly bracket is separately zero in virtue of
(30) and (34) alone, we see that for the finite-di-
mensional representations our general second-order
wave equation (12) reduces to a KG equation,
provided the BW equations are assumed. The reduc-
tion explicitly displays the spin dependence of the rest
mass, since

2

K
mye =— =—,
s

(37

which is in accord with Bhabha’s conclusions,? and
corresponds to the classical spin dependence.*

It should also be noted that while the BW analysis
applies only to the finite-dimensional representations,
Eq. (36) correctly gives the well-known mass-spectrum
characteristic of the infinite-dimensional Majorana
representation if N =25+ 1 and s is allowed to
be0, 3,1,

V. CONCLUSION

We have used the Lie algebra of O(4, 1) to construct
a representation-invariant second-order wave equa-
tion, free of subsidiary conditions, from the linear rela-
tivistic wave equation for a free particle of arbitrary
spin. Both the first-order (linear) and second-order
wave equations define the same Hamiltonian operator.
The corresponding classical Hamiltonian describes a
free-spinning particle in terms of variables possessing
zitterbewegung and predicting a certain mass spec-
trum. In general, to obtain equivalence with a second-
order equation free of zitterbewegung, it is necessary
to impose a subsidiary condition. The condition is
equivalent to assuming the BW equations and results
in the explicit display of the same mass spectrum
implicitly predicted by the general form of the
equation. The spectrum exhibits an expected accu-
mulation point at zero mass.
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The ensemble exp [—y Tr (H — H,)*], where the eigenvalues 1, of H, are given by some distribution
f (), is investigated. In particular, the limits of large and small ¥ for the orthogonal case are considered.
Formal expressions are obtained for various distributions of the eigenvalues in the two limits. The
approximation developed in the large-y limit is also applied to the thermodynamics of an incompletely
specified system. Further, it is shown that this approximation is easily extended to include the unitary

and symplectic ensembles.

1. INTRODUCTION

In a previous paper' we investigated the effect of
biasing a Gaussian ensemble of random matrices with
a given matrix H,. In particular, we calculated the
nearest-neighbor spacing distribution for the orthogo-
nal ensemble given by

PH,H,,y)=nexp[—y Tr(H — Hy?l, (D

() = (p|mN2y[mN VI, 2

in the large- and small-y limits. There it was assumed
that the eigenvalues A, of H, were known explicitly.
Here we generalize our discussion to the case when
the eigenvalues are not known exactly, but are instead
specified by a given probability distribution.

We shall again restrict our discussion to limiting
cases. In the small-y limit we shall calculate a formal
expression for the nth-order spacing distribution. In
the large-y limit we shall calculate formal expressions
for the joint eigenvalue distribution and the single
eigenvalue distribution. Inaddition, the approximation
methods developed for the large-y limit will be applied
to the thermodynamics of an incompletely specified
system. In particular, the free energy of such a system
will be expressed in terms of the free energy of the
known Hamiltonian H,.

2. SMALL-y LIMIT

Given that the joint distribution for the unper-
turbed eigenvalues 2, is f(4), the joint matrix-element
distribution p(H, y) for the perturbed system is

p(H, y) = f F(OP(H, Hy, ) dA, 3)

* Some of this material is based on portions of a thesis of one of
the authors (J. F. M.) presented to Wayne State University in partial
fulfillment of the requirements of the Ph.D. degree.

1 Supported in part by a Faculty Research Fellowship, Wayne
State University.

I Present address: Department of Mathematics, University of
Windsor, Ontario, Canada.

1J. F. McDonald and L. D. Favro, J. Math. Phys. 9, 1114 (1968).
This paper will be referred to as MF.

where dA = []Y, dA;. In the previous paper (MF)
we found that, for fixed values of the 1,, the nth-
order spacing distribution p™(S, Hy, y) could be
written to second order as
p(n)(s, HO’ )’)
. 2y Tr H2
= lexp (= T HON pi"(S, ) + o

(N—=1(N+2)
0
(()n) S, )  (nn) S, , (4
X [p (S, 7) — 2y ay(l’o ( y)/n)]} 4)

where p{®(S,y) is the nth-order distribution for
an unbiased Gaussian distribution. It appeared that
this series expansion in powers of y would converge
rapidly if

(5D » yN, )
where S, is an average spacing associated with the
particular set of 4, under consideration. The difference
between that case and the present one is that Eq. (3)
contains the additional integrations over the 4, so that
P (S, y) can be written as

P™(S, 7) = f )P, Hy, p) dd. (6

Assuming that f(4) is such that the condition given by
(5) is satisfied for any set of A, with appreciable
probability, we can insert our expansion for
p™(S, Hy, y) into Eq. (6). To second order it follows
from (4) that

S, ) = ABYS, ) — ——2F AW

(N — 1)(N —2) 9y

X {pé”’(S, y) — 29/7163[1%‘"’(5, y)/n]}, @)
Y

where
Ay) = f fO)exp (—y Tr HD]dA. (8)

Thus, in the small-y limit, the spacing distributions
again approach the corresponding results for an
unbiased Gaussian distribution.
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3. GENERAL EXPANSION FOR THE MATRIX-
ELEMENT DISTRIBUTION IN THE
LARGE-y LIMIT

In the small-y limit we calculated the various
spacing distributions by interchanging the order of
integrations, the 4, integrations being performed last.
Thus, we simply used our results for a fixed value of
the 4,, multiplied by f(4), and carried out the 1,
integrations. In the large-y limit this approach is not
as fruitful. This is because the conditions on the 4,
spectrum, for the validity of the approximations used
in the fixed-4 case, impose conditions on f(4) such that
we obtain nothing really new. In particular, f(4) must
be such that each 4, is much more sharply peaked
about some value, say e, , than the E, and the rotation
parameters (i.e., the parameters which determine the
matrix which diagonalizes H) are about their peak
values. Thus we find it necessary to use an alternative
approximation for the integration over the rotation
parameters.

The approximation we will use involves a cluster-
type expansion, analogous to those used, for example,
in the theory of imperfect gases.? In general, the
technique of making a cluster expansion consists of
adding and subtracting terms in such a way as to
obtain a (supposedly convergent) series expansion.
That is, given some function of a set of variables x,,
i=1,--+, N, say h(x), which is of the form

N
h(x) = TLAGD, ©)

and, given that each f;(x;) is in some sense approxi-
mated by g,(x;), then A(x) can be expressed as

h(x) =TT [g«(x) + L)),
Li(x) = fix) — gix)).

This can be rewritten as

(10)
(11)

where

N N j
0 = T &e) + 31000 T s |+, (12

where J T/ is the product with the term i = j missing.
Thus, 4(x) has been expressed as a power series in the
1,, which are by assumption small.

We wish to apply this approach to the function

N
P(H, Hy, ) = |:]._I1 F(Hy — 2;, V)jl[l;[kF(ij’ 2?’)],
= J
13)
2 See, for example, J. E. Mayer and M. G. Mayer, Statistical

Mechanics (J. Wiley & Sons, Inc., New York, 1959), Chap. 13,
p. 277.
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where

F(x, o) = (a/m)}t exp (—ax?). (14)

Note that we have chosen to use the representation in
which H, is diagonal. Since

lim F(x, «) = 8(x), (15)

we make the expansion

P(H, H,, 7)
- []‘[ S(H,, — z,.)} [k[[l 6(H,c,)}
+3 1,.,.[15[ 8(H,; — zi)} [7;[]; 6(Hk,):|

+ [T = 2] 3 | TT 8080 | 4+,
(16)

where ] [ is the product with the term corresponding
to k = m and / = n missing, and where the following
definitions have been used:

l;;=FH;; — Airy) — 5(HM -4 17

(18)

To first order this expansion can be rewritten as

and
lyw = F(H > 2v) — 6(H ).

P(H, Ho, ) ~ 8 — Ho + 3 { [ 101 - Hol,

x F(x — 2,,7) dx — 8(H — Ho):

+2 U_Z[a(H — Ho)lt pm(H =)

X F(x, 2y) dx — 8(H — Ho)}, (19)

where
S(H — Hy) = [H 8(H,, — /1,.)] [k]:[l a(Hk,):I. (20)

Note that we have inserted additional delta functions
and integrations. This is to facilitate the transforma-
tion of variables from the matrix elements to the
eigenvalues. Some applications of this expansion are
given in the next two sections.

4, EXPANSION FOR THE JOINT-EIGENVALUE
AND SINGLE-EIGENVALUE DISTRIBUTIONS
FOR THE LARGE-y LIMIT

To obtain an expansion for the joint-cigenvalue
distribution from the expansion developed in the last
section, we change variables from the H;’s to the
eigenvalues E, and some rotation parameters ¢,. If
H; and Hj; are two Hamiltonian matrices in the same
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representation, then

H 5(Hu - Ht{f) dH
25

- [me-e|[mas -] (37

) dH,
i Ei ’ 4’:‘

(21)

where the E; and E; are ordered the same way, and
the limits on the ¢, and ¢ have been chosen so that the
entire H,; and H, spaces are covered only once.?

Using this result to change variables in Eq. (19),
averaging over the rotation parameters, and sym-
metrizing with respect to the labeling of the E,, one
obtains the unordered joint-eigenvalue distribution
for a particular set of 4,. The resuit of these calcu-
lations is

P(Ew )~ 3 [6@: )

+ z{ f ® F(x = 45, ISE — D]y opdx ~ OE — /1)}

—0

+ 3

m>n

([ 7Fee 20M0E — D1, - — o0E - 0]

© m=Qnm

(22)

where Y, is the sum over all permutations of the label-
ing of the E:

OE ~ 1) =TI &(E;— 2) (23)

and
5= H + 4) & (B — 4 + 471 29)

Note that for this correction term it has been neces-
sary to diagonalize a 2 X 2 matrix. Successive terms
involve diagonalization of matrices of higher dimen-
sion (i.e., the next correction requires that 3 X 3 and
2 X 2 matrices be diagonalized, etc.). The x integra-
tions in the second and third terms can now be
explicitly carried out. However, depending on the form
of f(4), it may be convenient in particular cases to
retain the x integrations in the third term. Thus we
shall retain that integration. Performing the 4,
integrations and also the x integrations in the second
term, for the joint eigenvalue distribution p(E,, y) we

3 That is, on the right-hand side we have omitted peaks of the
distribution function which correspond to trivial interchanges of the
labels on the eigenvalues. Also, it should be noted that if there are
degenerate levels, delta functions on the ¢;, which correspond to
rotations in degenerate subspaces, will not occur in this expression
since all rotations in such a subspace are equivalent. These delta
functions are to be replaced by constants such that the integration
over all the angles still yields unity.
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obtain
P(E,>7) = f di P(E,, A, 1)f{A)
Nfs(Er) + z [F:i(Er) ""fs(E'r)]

+1 3 FudE) ~LEN (29)

where .
J(E) =~ 3 S(E), 26)
FAE) = [ Fy = B UE g, dh, @D

and

Em=242

FoE) = j j dx diy dAF (e, 29 UFED g,

X 0(E, ~ QR)(E, — Q). (28)
Note that 4[F,,,(E,) + F,.(E,)]is the joint eigenvalue
distribution corresponding to the ensemble

P = FAHF(H o, 2) T 0H, (29)
where m > n. o

The result of integrating Eq. (25) over all but one of
the E, can be written as

P(E, y) ~ PYE) + [p:(E, v) — Py(E)]
+ (N — DlpAE, v) — P(E)], (30)

where P}(A,, - -+, A,) is the joint distribution of the
first n eigenvalues of Hy:

PiCh, o2 = [ ddga [ diafin @)

P = [ FuPUE +wdi, ()

PE, ) = } f f f F(x, 2)[XE — Q%) + 6(E — Q)]
o X P4y, &) dx dd, diy, (33)

and where the remaining eigenvalue has been simply
denoted as E. One can explicitly perform one more
integration in (33) without explicit knowledge of
P3. However, depending on P}, there may be some
preferred order of integration, so that we shall leave
P(E) in this form. It should be noted that p,(E) is the
single eigenvalue distribution for the two-dimensional
ensemble

P(H) = F(H1s, 2y)Pi(Hy; , Hy). (34)
Thus, if the distributions P}(4,) and P}(4,, 4,) are

known, the single-eigenvalue distribution can be
calculated to first order from (30), (31), and (33).
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In an analogous fashion one can calculate a formal
expression for the nearest-neighbor spacing distri-
bution. The expression is rather complicated and will
not be given here.

The expressions given above for the corrections to
P(E,,y) and P(E,y) (also those for the spacing
distribution) may, in general, be difficult to evaluate
exactly. One could, of course, resort to numerical
calculations to evaluate the required integrals.
However, it may also be possible, depending on
f(4), to obtain an asymptotic expansion in powers of
y~1 for the required integrals. As an example consider
the orthogonal Gaussian distribution for which

1) = ene)(TT 14~ 4) exp (~o S 4, (39)

where ¢ is a normalization constant which is inde-
pendent of «. The exact joint-eigenvalue distribution
for the biased ensemble can, be calculated exactly in
this case by performing the required integrations in
the matrix element space. The result is

P(E,, 7) = en(o!) (II IE, — E,-l) exp (=’ S E2), (36)

where o' = ay/(x + y). We can use this exact ex-
pression for p(E, ») to investigate the validity of our
cluster-type approximation.

If we now insert (35) into (27) and (28) and use
Laplace’s method* to obtain asymptotic expansions
(to order 1/y) of the integrals, we get

« E

o ; 1
FUE)~fEN1 -2 -2 =4 =
AE) ~( )[ Loty oy

1 o
+ B, 37
A~ ENE —E) | } e
an(Er) Nf(Er)B(En - Em)
X [2 +2-L s B - E)E - Em)}. (38)
)) 2’}) k+Em,n

It is now easily seen that

3 [FAE) — f(E)] ~f(E)~aN*j2y + (/) 3 E})

(39
and
3 S [FudE) — f(E)] ~f(EQaN(N — 1)/4y, (40)
so that
P(E,, y) ~f(EDIl — N(N + Da/dy + o*(Z ED[y).

(41)

4N. G. de Bruijn, Asymptotic Methods in Analysis (North-
Holland Publ. Co., Amsterdam, 1961), p. 60.
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That this is indeed the correct expansion can be seen
by expanding the exact expression (36) directly in
powers of y~1. It should be noted that the N-dependent
term in this series arises from the binomial expansion
of the normalization constant in (36). If one wishes to
take the limit of this expression as N — co, this term
must be reabsorbed into the normalization.

In everything we have done above it was assumed
that the joint distribution for the unperturbed eigen-
values was given. Alternatively, one might consider the
joint distribution for the matrix elements of the
unperturbed system f(H,) to be given. Assuming a
random perturbation to this distribution (here we
consider -only a Gaussian perturbation of half-width
y~3), the perturbed joint eigenvalue distribution is

P(H,y) =1 f oo"Hof (Ho)e? ™ 1O (42)

where 7 is the normalization constant. At this point
one can make a cluster expansion similar to (16) with
the exponential factor in this expression. However,
the explicit calculation of terms in that expansion is
made more difficult by the fact that H, is not diagonal.

5. THERMODYNAMICS OF AN INCOMPLETELY
SPECIFIED SYSTEM

Anotherapplicationof ourexpansionfor P(H, H,, ),
which was derived in Sec. 3, is to the statistical
thermodynamics of an incompletely specified system.
The formalism of the theory of an incompletely
specified system is given by Mazo,® and an expansion
given by Leff.® Here we give only a brief outline of the
general formalism.

If the exact Hamiltonian of a thermodynamic
system is unknown, one can still obtain information
about the system by considering an ensemble of
Hamiltonians of which the Hamiltonian of interest is
a member. The ensemble should be consistent with
whatever knowledge one has concerning the Hamil-
tonian. For example, all members of the ensemble
might be assumed to have the same volume V" and
temperature T.

Each system in the ensemble is assumed to be
describable by ordinary statistical mechanics—that
is, by an ensemble of the possible states of that system.
Thus, we have the so-called dual ensemble formalism.
In the following we shall denote averages over the
states of a given system by a single horizontal bar and
averages over the ensemble of different Hamiltonians
by the brackets ( ). We shall consider only the
canonical ensemble of states.

5 R. M. Mazo, J. Chem. Phys. 39, 1224 (1963).
8 H. S. Leff, J. Chem. Phys. 41, 596 (1964).
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The thermodynamic behavior of a system is given
by performing the dual averaging process to thermo-
dynamic variables. That is, if X is a thermodynamic
variable, we must calculate (X), where the statistical-
mechanical average must be done before the average
over systems.

Generally, the quantities of interest are functions of
the logarithm of the partition function, and we
restrict ourselves to one of these, namely, the free
energy. Leff® has shown that the free energy for such
systems involves the average of the logarithm of the
partition function, not the logarithm of the average
of the partition function.

We shall calculate an expansion for the free energy
F, using the expansion for P(H, Hy,y) derived
previously. That is, we shall calculate an expansion for

F==p fo») d2 f P(H, Hy, »)In (Tr ¢#'") dH

(43)
in the large-y limit, where § = (kT)™* and k is
Boltzmann’s constant. Further, we shall restrict
ourselves to fixed Hy, i.e.,

J3) =11 8% — e,

i

(44)

where the e; are fixed.
If the expansion for P(H, H,, y) given by Eq. (19)
is used, it follows that

—fAF = InZ§ + Z{fﬁoF(x, y) In [Z8 4+ exp (—fx)

—0

— exp (—fBe)]dx — In Z{)’}

+iy { f " F(x, 2 In [Zo — exp (—fe,)

2 mFEn\J—0

+ exp (—Bep)] — In Z{:}, (45)

where
Z{,’ = Tr [exp (—fH,)] (46)
and
et = Y(ew + e) £ [(e,, — €, + 4x°F). (47)

If the levels e, have the type of structure considered
in MF (i.e., the spacings of the levels are either
small or large compared with 1/y~%), one can obtain
an asymptotic expansion for the integrals involved in
Eq. (47) in powers of 1. This can be accomplished
by noting that the integrals involved are of the form
., f(x)e =" (x, where o 3 1. Thus, if we expand
f(x) about x4 in a power series and integrate term by
term, we obtain a series in powers of «~'. Applying
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this method to Eq. (45), we obtain
—BF ~1n Z§ + [B¥4y101 — ZH(Z8)1]
+ (B*/8yZf) g O rem €XP (—Pe,)

— [Bi8yzZf] 3 1 —9o,,,)

X {exp [_ﬂ(en + em)]}/(em - en)’ (48)

which can be rewritten as
~BF ~1n Z§ + [F78y1[1 — 228 [(Z5)*)

1
+ (B¥/8y2Z8) f ZEZ8 dx. (49)
0

Hence, given the partition function of H,, Zf as a
function of temperature, the free energy of the system
can be calculated from Eq. (49). Note that we need to
know Z, for a whole range of temperatures in order to
evaluate F at a given temperature. This expansion is
valid only if A2 L y (i.e., kT > y~b).

6. APPLICATION OF THE LARGE-
y APPROXIMATION TO THE
UNITARY AND SYMPLECTIC

ENSEMBLES

The approximation method developed in the large-
y limit for the orthogonal ensemble given by Eq. (1)
is easily extended to the corresponding unitary and
symplectic ensembles. In particular, if we consider
the ensembles

Py(H, Hy,y) =ngexp [—y Tr (H — Ho)zl’ (50)
M = Iy mPNI (s

(where g =1, 2, or 4 corresponding to orthogonal,
unitary, or symplectic cases, respectively), the joint
eigenvalue distribution, for a particular set of 4, given
by (22), is modified only in that the term arising from
the off-diagonal matrix elements (i.e., the term with
> - n) is multiplied by the factor f.

The distribution f(4) can correspond to any of the
three cases. The value of $ is, of course, determined by
the symmetry properties of H — H,,. Thus, the large-y
approximation can be used for any of the three cases
as well as for various mixtures. For example, suppose
we consider P,(H, Hy,y) and assume that f(4)
corresponds to an orthogonal ensemble. This corre-
sponds to an othogonal ensemble (time-reversal
invariant) with a random perturbation H — H,,, which
is unitary (not time-reversal invariant). Hence the
method developed is applicable to many interesting
problems.
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7. SUMMARY

In this paper we considered an orthogonal Gaussian
ensemble of random matrices biased by a random
matrix H,, whose eigenvalues 4, are given by a distri-
bution f(4). The limiting cases of large and small y
were considered.

The results for the small-y limit were found to
approach those for an unbiased Gaussian distri-
bution regardless of the form of f(4). On the other
hand, the large-y limit results were found to approach
the corresponding results for f(1). In each limit a
perturbation method was developed and a first-order
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correction calculated. In the small-y limit we considered
the nth-order spacing distribution, while in the large-
y limit we considered the single-eigenvalue and
nearest-neighbor spacing distribution, as well as the
application of the approximation to the thermo-
dynamics of an incompletely specified system.

It was also pointed out that the methods developed
for the large-y limit are easily intended to include the
unitary and symplectic cases. Thus, many interesting
problems (such as mixtures of various ensembles)
can be investigated using the formalism which was
developed.
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This paper is the third in a series analyzing identities for special functions which can be derived from
a study of the local representations of the Euclidean group in 3-space. Here identities are derived which
relate Gegenbauer polynomials, Whittaker functions, Jacobi polynomials, and Bessel functions. Among
the results are generalizations of the addition theorems for solid-spherical harmonics and a group-
theoretic interpretation of the Maxwell theory of poles.

INTRODUCTION

This paper is the third in a series analyzing the
special function theory related to T, the complex
Euclidean group in 3-space. In the first two papers'-2
(which we shall refer to as I and 11, respectively) it was
shown that important identities relating Bessel
functions, Gegenbauer polynomials, Whittaker func-
tions, and Jacobi polynomials could be derived in a
straightforward manner from the study of certain
local irreducible representations of Tg. After a brief
review of terminology (Sec. 1), this paper proceeds
as follows: In Secs. 2-4 we study classes of local
reducible representations of T. These representations,
closely related to the solution of Laplace’s equation in
spherical coordinates, lead to identities for Gegen-
bauer polynomials, which are generalizations of the
addition theorems for solid-spherical harmonics.®*
Also, the Maxwell pole theory for spherical harmonics
appears as a byproduct of the analysis. Section 5 is
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2 W. Miller, J. Math. Phys. 9, 1175 (1968).

3 R. A. Sack, J. Math. Phys. 5, 252 (1964).
4Y. N. Chiu, J. Math. Phys. 5, 283 (1964).

devoted to an examination of a class of irreducible
representations closely related to the type F factoriza-
tions of Infeld and Hull.? These representations yield
new identities for the Whittaker functions. Finally,
in Sec. 6 we apply a technique developed by Weisner®
and use T, to derive identities for special functions
which are not directly related to the local representa-
tions of Tg.

As usual with this kind of work, most of the special
function identities that we derive are well known.
Our primary interest is in systematically deriving and
elucidating the group-theoretic meaning of these
identities rather than in deriving new identities.

The special functions studied in this paper ordinarily
arise in one of two ways: as matrix elements corre-
sponding to a local representation of T, or as basis
vectors in a model of such a representation. Once the
matrix elements have been computed, they remain
valid for any model of the representation which occurs
in modern physical theories.

5 L. Infeld and T. Hull, Rev. Mod. Phys. 23, 21 (1951).
8 L. Weisner, Pacific J. Math. 5, 1033 (1955).
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7. SUMMARY

In this paper we considered an orthogonal Gaussian
ensemble of random matrices biased by a random
matrix H,, whose eigenvalues 4, are given by a distri-
bution f(4). The limiting cases of large and small y
were considered.

The results for the small-y limit were found to
approach those for an unbiased Gaussian distri-
bution regardless of the form of f(4). On the other
hand, the large-y limit results were found to approach
the corresponding results for f(1). In each limit a
perturbation method was developed and a first-order
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COMPLEX EUCLIDEAN GROUP. III

1. THE LIE ALGEBRA T,
The 6-dimensional complex Lie algebra Tg is

defined by the commutation relations
[3%, 3] = £3%, [3F, 7] = 233,
[38, §£] = [I3, 3E] = £T%,
91 = 37, 5] = [, 9] = 0,
[3F,07) = [0+, 3] = 293,
[43, ] = [+, 1 = 0. (1.1

The 6-parameter complex Lie group T consists of

elements {w,g}, w=(«,5,9)eC? g= (‘CZ Z) €
SL(2), ad — bc = 1 with group multiplication

{w, gHw', g'} = {w + gw', gg'}, (1.2)
gw = (a®« — b*f + aby, —c%o + d?f — cdy,
X 2aca — 2bdf + (bc + ad)y). (1.3)

Be is the Lie algebra of Ty and a neighborhood of
0 € By can be mapped diffeomorphically onto a
neighborhood of the identity {0, e} € T (eisthe 2 x 2
identity matrix) by means of the relation

{w, g} = exp («F+ + ST~ + 9T%) exp (—b/dI")

X exp (—cd3)exp (—21nd3®), (1.4)

where “exp” is the exponential map.

If Vis a complex abstract vector space and p is a
representation of G4 by linear operators on ¥V, we set
p(E2) = P=, p(8%) = P, p(34) = J%, p(3%) = J% The
linear operators P, P3, J%, J® satisfy commutation
relations analogous to (1.1), where now [4, B] =
AB — BA for linear operators 4, B on V. The invari-
ant operators

P-P=—PP-—PP3,P.J
= —}(P*J- + PJY) — P3J3
have the property
(PP, p(@)] =PI, p(0)] =0

for all « € Gg.

2. SOME REDUCIBLE REPRESENTATIONS

We examine the following two classes of reducible

representations of G on a complex vector space
V: Rt(u,) and T+

A. R*(uy)

Here u, is a complex number of such that 0 <
Re uy, < 1 and 2u, is not an integer. There is a count-~
able basis {f{®} for V such that m =u, u— 1,
u—2,--+,and u=uy, ug+ 1, uy £ 2,-+-. The
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action of the infinitesimal operators on the basis
vectors is given by

PR =mf @, T fR = (—u = mfh,

2.1)
1 1
P8 i::) = ;:LH—I)! Pt :::) — ::LH—U’
s 2u + i/ T = + (et
—1
PfW = ——— fitd, 2.2
f 1™t (2:2)
P.-Pf¥ =0, P-Jf¥=0. 2.3)
B. }+
There is a countable basis {f*} for ¥ such that
m=u,u—1,"+, —u+1, —u; u=0,1,2,---.

The action of the infinitesimal operators on the basis
vectors is given by (2.1)-(2.3). [If a vector £{*’ on the
right-hand side of one of the expressions (2.1)-(2.3)
does not belong to the representation space, we set
this vector equal to zero.]

It is left to the reader to verify that R*(u,) and 1+
do define reducible representations of G . In fact these
representations are degenerate cases of the irreducible
representations Ry(w, 0, up) and 7,(w, 0), constructed
in II, obtained formally by choosing a new basis
fi® = puflw and passing to the limit as w — 0.
Corresponding to a fixed value of u, the vectors
{fl¥)} form a basis for an irreducible representation
of the subalgebra 5/(2) of G, . Each such representation
induced by 1+ has dimension 2u 4+ 1 and is denoted by
D(2u), while each representation induced by R*(u,)
is infinite-dimensional and is denoted by |u. A
detailed analysis of the representations D(2u) and [u
is given by Miller.”

In accordance with the procedure developed in T
and II, we search for models of these abstract repre-
sentations p such that the infinitesimal operators
p(a), o €Gg, are linear-differential operators in »
complex variables. The basis vectors {f{%} are then
certain functions in these variables and the relations
(2.1)-(2.3) are differential equations and recursion
relations for the “special” functions {f*}. Further-
more, each of our Lie algebra representations of G,
can be exiended to a local Lie group representation
of Ts. Such a local representation is defined by linear
operators T(h), h € T, acting on ¥ such that T(h)
T(") = T(hh') for h, k' in a sufficiently small neigh-
borhood of the identity. Due to this group property of
the T operators, the matrix elements of these operators
with respect to the basis {f{*'} will satisfy a series of
addition theorems.

" W. Miller, Lie Theory and Special Functions (Academic Press
Inc., New York, 1968).
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3. MODELS OF THE REPRESENTATIONS

To begin we look for all models of the representa-
tion R*(ug) in n =1, 2, or 3 complex variables.
According to Ref. 7, no model exists for n = 1.
For n = 2, there is exactly one model (a special case of
the type F operators):

0 0
=z tuy, JT=22" —zt— — u,z,
oz = ° 9z o
—7d td  u
Jr==0_L2 t pa 1y
oz z0t z *
Pt %t; Y G.1)

Here z, ¢ are complex variables and u, is a fixed
complex constant. The constant § has been chosen
for convenience in the computations to follow.
Clearly the operators (3.1) satisfy the commutation
relations (1.1). Furthermore, P-P =0, P.J =0,
The basis vectors f{*)(z, t) for this model of R*(u,)
are defined up to a multiplicative constant by expres-
sions (2.1) and (2.2) and may be chosen as follows:
£ =T + Hr,
k=uy—m=uy—u, Ug—u-+1,

ug—u+2,---. (3.2)

The possible values of u,, v, m depend on the repre-
sentation R+(u,) and are listed in Sec. 2.

Since the operators (3.1) satisfy the commutation
relations of T, they induce a local-multiplier repre-
sentation of T by operators T(#), 4 € T, acting on the
space of analytic functions in 2 complex variables.
The operators T(4) can easily be computed from stand-
ard results in local Lie theory. We list only the results.

Clearly T(h) = T(w, g) = T(w, e)T(0,g), where
h = {w, g} is defined by (1.3). If fis an analytic func-
tion defined in a neighborhood of the point (z, 7) € ¢2,
(r # 0), then

t

[T(w, &)1(z, 1) = exp [5 (f —pz+ y)] ex)

w = (x f,7), (33)

[T(0, )/ ) .
=(a + cz)""(d + ;)

X f[(z : Z ,t(a + cz)(d + g)]

a b
— = 1, 3.4
g = (c d) € SL(2), ad — bc B4

As the reader can verify, these operators satisfy the

property

TOHH ) = TR [TW)f] 3.5

WILLARD MILLER, JR.

whenever both sides of the expression are well de-
fined.

The matrix elements {v, n] w, g |u, m} of our model
are defined by

Tw, 9f 0’ =33 {o, n| w, glu, m}fP, (3.6)
where v is summed over the values u,, u,+ 1,
uy+ 2,-+-, and n over the values v, v — 1, v —
2, . It is clear that the functions (3.2) form an
analytic basis for the representation space in the
sense of Ref. 7, Chap. 2. Therefore, the matrix
elements (3.6) are uniquely determined by the Lie-
algebra relations (2.1) and (2.2), and are independent
of our model.
Substituting (3.2) and (3.4) into (3.6), we find

(a + cz)**™ (d + S)u " S:O{u, u— k|0, glu, m}zt,
P
“2ler, |2« (3.7
a z
or
{v,n] 0, glu, m}
_dvT" gt ™ — m)!
h (u — n)!
><F(n—ur, —m—u;n——m+1,'bc/ad)(S
F'n—m+1) o
_dvma e " M u + m 4+ 1)
- Tu+n4+1)
Flm —u, —n —u;m — n +1; bc/’ad)(S
Cim—n+1) o
(3.8)

where g = (¢ 1) € SL(2), ad — bc = 1. Clearly, these
matrix elements are defined only in a suitably small
neighborhood of e. Substituting (3.3) into (3.6), we
find

{v,n|w,elu, m}
_ P+ D= T(y)y
27w — w)!l'(v + %)
(—ably®)
“al(m—n+a)(v—u+n—m-—2a)
if v—u>0,
(3.9)

= (0 otherwise.

Here the sum is taken over all integral values of a
such that the summand is defined.
By construction the matrix elements satisfy the
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addition theorem
{v.n|w + gw', gg’ |u, m}

= i i{v,n!w,glu+l,u+l—k}

=00 k=0

x{u+Lu+l—kiw,g|lu,m}, (3.10)
valid for g, g’ in a suitably small neighborhood of
ec SL(2).

Now that we have computed the matrix elements
of R*(u,), we look for a model of this representation
in three complex variables. There is only one such
model:

J3=t~§;, J+=-—t§;,
= rl((l - 22)% — 2z —é%),
P-=~t—’((1—zz)§—r—“(1 :Z)éa;+(‘ ;H)t%)

(3.11)
(the Model B operators constructed in 1), The basis
vectors f\[r, z, 1] for this model are determined up
to a multiplicative constant by relations (2.1)-(2.3)
and may be chosen as follows:
w'lr 2, 1]
(2w — m)!

P(—u + 12

[Note: The relation P-J =0 is satisfied identi-
cally by the operators (3.11), while the requirement
P.P /") =0 is closely related to Laplace’s equation
in spherical coordinates.] In fact, substitution of (3.11)
and (3.12) into (2.1) and (2.2) leads to the following
identities for the Gegenbauer polynomials CA(z):
d

L ey = ueiie)

dz

_(E D22 —1) L,
2“ R 2) Cn}-l(z)a

{:(22 -1 51: + Qi+ n+ %)ZJ Ci(2)
= (n + 1)CL, (2),
%%+@mwQQ@=MWW%
[£

T(m + D™, (.12)

(2.1)

21 — A)[—(ZZ + W24 (4 1)+ 2(1 — 29 ﬂcj;(z)
Z
= (n+ D(n 4+ 2)Ci(2), (2.2)
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valid for 24 € ¢' not an integer and n = 0,1,2,---.
Using the type F operators and the basis vectors
(3.2), we find
() __ F(u + %)
" T(m + 3
Clearly, this relation must hold for any model of the
representations R*(u,) or t+. In terms of the operators
(3.11) and basis functions (3.12) it reads

k4t CH(2)

9 (1= =z P!
(24U =2)9 _z;_, b,
(Zar+ r 0z r( ))(r )

(2P3)1£~?17 j:lu). (3 1 3)

k=0,1,2,---.
Using the type F operators, the reader can easily
derive other similar identities for the Gegenbauer
polynomials. The study of identities of this form
constitutes the Maxwell theory of poles.®
The differential opetators (3.11) which define
model B can be used to construct a local representa-
tion of T, by operators T(h), h € T, acting on the
space of analytic functions in 3 complex variables.
The operators T(#) have been computed in 1:

[T0. 2)f1(r, 2z, ©)

2
=f(?’, z(1 + 2bc) + abt + cd(z_‘:ﬁl’
13
2 —
@’ + 2acz + ¢ _Z_.._‘_))
{
8= (f 3) € SL(2), (3.14)

[T(w, e)f1(r, z, 1)
=10, (z + y/NQ7% (t + 28/r)Q7Y, .
_ 2(1 — 2% | 2a 28 V: 2yz
Q_P+"T7m+ Q+r)+;+—ﬂg

r r r

w=(x B, ). (3.15)
Here f'is defined and analytic in some neighborhood
of the point (r, z, t) € ¢*. We have the group multipli-
cation property

Tk f = Th)TH)f)

whenever both sides of this expression are well
defined as analytic functions of r, z, and r.

Itis easy to verify that the basis functions [, z, ],
Eq. (3.12), form an analytic basis for the representa-
tion space V. Therefore, we immediately have the
identity
(T(w, &).f1ir, z, 1]

=22 {o.nlw, glu,m}fPlr, z, 1], (3.16)

8 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi,

Higher Transcendental Functions (McGraw-Hill Book Company,
New York, 1953), Vol. 2, Chap. 11.
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where the operators T(w, g) are given by (3.14),
(3.15); the matrix elements are given by (3.8), (3.9).
We examine some special cases of this identity.

If w = 0, (3.16) reduces to

kIDu — k 4+ 1) (X3 i pid
I‘(2u—k+1)( ) *
x[f—z—1+2”_]+%J
X X

x (1 + 2xz + x¥z2 — D)y“*

_ ST =1+ P (xY
=0 'Qu — 1 + l)()

% F(—k, —2u+1L;1—k+1;1 —x) C}‘“”%(z),
T(l—k+1)
2xz + X*(2 =1 <1, k=0,1,2,---, (3.17)

which was already derived in . If g =e, 0 = =0,
we obtain

[l + 272 + 7}2]—}.—%:/ZC;E[(Z + y)(l + 2}’2 + y2)—1/2]
I 4k
—Z( y)( + )C,i+z(z), 129z + ¥ < 1, (3.18)

which, when k =0, simplifies to the well-known

generating function

[L+2yz + 9T = Z( 7)'Ci(2).
Ifg=-¢e, a =y =0, we obtain
[+ Bl — 22
x Cilz(1 + B(1 — 22»4/2]“ + Ay
2 o (kA 2D T —
= > 1‘(2) Ciria),
k=0,1,2,---, [B(1 =29, |l < 1. (3.19)

Finally, if g =e, f =y = 0, (3.16) reduces to
[1 + a]»lflc/ilcz:[z(] + o()‘l/‘l]
@ (N .
- §EDTEED Gy
o ! I'(4)
k=0,1,2,---, Jo| <. (3.20)

1If we restrict ourselves to consideration of the
representation T+, we can be somewhat more specific.
First of all, the matrix element

{u,m| w, e 0,0} = {u, m| 2, f,v;e|0, 0}
can be computed by making use of the identity
{u, ml ab&, —cd&, (1 4+ 2bc)é; e 0, 0},

= {u,m| 0, g |u, 0}{u,0]0,0, & ¢]0,0}, (3.21)

where g € SL(2). In terms of the new variables [ =
pbE, = —cdE,y = (1 + 2bc)é, p? = y2 + dup = &7

WILLARD MILLER, JR.

the matrix elements on the right-hand side of (3.21)
are

_ (il Dt (A e
(w1000} = 30 i(s)
x (=) Imi=miclnitde, ),
£ TR
0{0,0, 0, —_——
g | Fiel0.0) = ()u'l‘(u+1)
ence
{u, m|o, B, y;e]0, 0}

- (u +1;1'|1)l£ I_i-(u% )+ 2)(B)u(§)ml

X qllmbEm/2_ gymi-m)/2c] |+%(y/p) 3.22)

Note that this matrix element is a polynomial function
of x, 8, ¥, and p% Thus, even though our derivation
was valid only if p? £ 0, (3.22) is also correct in the
limit as p — 0.

Applying the identity

T(a, B, v; e)fIr, z, t]

= z i {Ll,m l oL, ﬁ, y;e I()’ O}f(,,l,t)[r, z, t]

u=0 m=—u

to the Model B operators and simplifying, we obtain
[+ 2801 — 2%) + 20 + p* + 2pz]
— i i F('ml + %)F(m + %)(ll - m)! 2|m]+m
w(u + |m})!
X (20()“m]+m)/2(_25)(]1n[—m)/2pu-—lm]
x CLtid(IpICI i (2). (3.23)
Just as in I we can use the Clebsch-Gordan coeffi-
cients C(:;-|+) to compute the general matrix
element {v, n| o, f3, v; e |u, m}. The result is
{v,n|o, f,y; elu, m}
-3 \:w(u — m)'(u + m)!
5 (v — )t (v + n)! :
2
x(u—u+s+n—-m)!(v—-u—l—-s+m-n)!]
X C(u,0;0 —u +5,0|0,0
X Clu,myv—u—+s,n—m I v, n)
X {v—u+s,n—mla, f,v;el0,0}

w=0 m=—u

(3.24)

where s ranges over the finite set of nonnegative
integer values for which the summand is defined.
The computation of identities for Gegenbauer
polynomials using these matrix elements is left to the
reader.

4. MORE REDUCIBLE REPRESENTATIONS

In analogy with the procedure in Secs. 2 and 3, we
shall briefly analyze the following two new classes of
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reducible representations of Bz on ¥: R(4), 0 <
Re uy < 1, 2uy not an integer; and 1-.

A. R (1), 0 < Reyy < 1, 2uy not an integer

There is a countable basis {f'*'} for ¥ such that
m=u, u—1, u—2,---, and u=u,;, U+ 1,
Uy £ 2,0

There is a countable basis {f'“} for ¥ such that
m=uu—1,++,—u+1,—uandu=0,1,2,---

For each representation the action of the infinites-
imal operators on the basis vectors is given by

PW = mfW, JEHW = (—ut m)fiul,, 4.1)
P:ff(u) (u + m)(u -~ m) (u—1)
2u + 1 "o
—(u — —m—1)
P+ (u) _ (u m)(u m (7: 1)’ 4.2
fm 24 1 fmnt (4.2)
ppow (4 + mu+m-—1) w-1)
f 2 + 1 fm 1
P.PfW=0, P.JW=0. (4.3)

[If a vector f{* on the right-hand side of one of the
expressions (4.1)-(4.3) does not belong to the repre-
sentation space, we set this vector equal to zero.]

The representations R~(u4,) and 1 are degenerate
cases of the irreducible representations Ry(w, O, u,)
and 7,(w, 0) constructed in II, obtained formally by
choosing a new basis f,{* = w=%f*) and going to the
limit as w — 0. Corresponding to each fixed value of
u, the vectors {f{*} form a basis for an irreducible
representation of the subalgebra s/(2) of Gg. The
finite-dimensional representations D(2u) are induced
by 1~, while the infinite-dimensional representations
lu are induced by R~(u).

According to our usual procedure, we search for
models of these representations and compute their
matrix elements. Unfortunately, R~(u,) and 1~ have
no models in two complex variables. However, the
structure of the abstract recursion relations (4.1)-(4.3)
is simple enough that we can compute the matrix
elements of R~(#,) and T~ directly from the abstract
relations. We then apply our results to a model in
three complex variables, which does exist.

The matrix elements can be defined formally by

T(w, g)f¥ = exp («P* + BP~ + yP?) exp (—b/dJ ")
x exp (—cdJ7) exp (=2 In dJ3) f*
= Z {v,nlw, glu, m}f,

w=@&w,pﬁjﬁenm.

The values assumed by the variables u, v, m, n depend
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on which of the representations R~(u,) or 1~ we are
studying. For the present we treat both representations
simultaneously.
Since relations (4.1) and (2.1) are identical, it
follows immediately that the matrix elements
{v,n]0, g lu, m}
are given by Eq. (3.8). Furthermore, a simple induction
argument based on (4.2) yields the results
{v, n10,0, yse u, m}
_ (Z T+ HTut+m D -—-m)! 4,
2) Tu+3HTo+m4+1D (0—mu—o)
if u—v>0,
if v—u>0 (44

=0
{v,n]@,0,0; e|u, m}

. _'—_O_(u_v F(l}+ i) (u — m), 6m,n—~u+v
- ( 2) F(u+3)(2v—u—m)‘(u—u)'
if u—0v>0,

=0
{v,n|0, B,0;eu, m}

_ (g P+ Twd+m4+1) 6,

2) F'u+3HT2v —u+m+ 1) — v)!
if u—0v2>0,

=0 if v—-—u>0. (4.6)
The expression for the general matrix element
{v,n| w;elu, m} of the representation R (i) is
rather complicated and we need not take the time to
derive it. Similarly, we do not derive an expression
for the most general matrix element of {—, although
this is not so complicated.*

The Model B operators (3.11) can be used to
construct models of R™(#,) and 1~ in three complex
variables. In fact, relations (4.1)-(4.3) will be satisfied,
provided that we choose the basis vectors as follows:

crienm,

(u) _ (Y u—=m'T(m+ })
fm[rizst]—(z)
(4.7)

V2T + )
where the possible values of the variables u, m are
determined by the representation space to which the
basis vectors belong. To see the equivalence between
our models and certain recursion relations for
Gegenbauer polynomials, we substitute (4.7) into (4.2):

[(1 iy kz]c,ﬁ(z) = (k + 22 ~ 1)Ch\(2),
dz

if v—u>0, (4.5

d
Pg~ﬂqw 2ACHY),
2(A — 1)[—2(] — 2% ;—z — 2%k + (k4 24 — 1)](?;(2)
= (k + 24 — 1)(k + 21 — 2)C}(2). (4.8)
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As was shown in Sec. 3, the differential operators
(3.11) define a local representation of T by operators
T(w, g), Egs. (3.14), and (3.15). Furthermore, it is
easy to see that the functions (4.7) form an analytic
basis for such a representation. Thus the matrix
elements defined by

T(w, )f W =X {v,n|w, g lu, m}f

are identical with those computed earlier in this
section. In addition, we have the identity

(4.9)

{v,n| w4 gw'; gg' [u, m}
=3 d{vniw,glu+lLu+1—k}

=~ k=0

X{u+Lu+1l—kiw,g um} (410

valid for g, g’ in a suitably small neighborhood of e.
The following special cases of (4.9) are of interest:
If g = e, « = f§ = 0, this identity becomes

[1 4 p* 4 2pz]2Ci(z + Y1 + * + 2pz]™3)

k 24 + k —
=3/ (" T e @n
if g =eand f =y = 0, one obtains
(1 — o()70/2(:2(2(1 _ 0()_1/2)
*/2 _
-3 al(l + ; 1) CHL(2); (4.12)
if g =e, and a« = py = 0, there follows
[1 + B(L — 21 + B 2CHEIL + (1 — 2D
o0 1 al -
N2 =o\4) 1TQRA+k —2D
Bl < 1. (4.13)
5. A CLASS OF IRREDUCIBLE
REPRESENTATIONS

We now turn our attention to a new class of
irreducible representations of Gy listed in Ref. 7:

Ré(;a 110),

There is a countable basis {f{*'} for the representa-
tion space V such that m =u, u —1, u—2,---,
and u = uy, g+ 1, uy & 2,---. The action of the
infinitesimal operators on the basis vectors is given by

{#0, 0<Reuy, <1, 2uy not an integer.

PO = mf e, JEH = (—u £ m)fl, (5.1)
3p(u) _E f(u+1) C f(u)
" QuA D+ D" u(u + 1)
+ Lu + m)(u — m)f(u——l)’ (5.2)

Qu + Nu

WILLARD MILLER, JR.

prw =ty W —m)
I = Gy vy T <+n““
_ Z(u + m)(u - m — ]) {(u —1) (5 3)
QQu + Du St A
P { win _ S+ m) o
fm (2u+1)(u+1) m—1 ( +1)fm1
u+mu+m—1)
+ 2u + Du fmas (5.4)
P. Pfﬁ,’{’ =0, P-. Jfﬁ,’:’ = —Cf(,ff). (5.5)

[The representations R;(Z, uy) can be obtained formally
from the representations Ry(w, g, uy) by setting g =
—{/w and passing to the limit as w — 0.]

R;(L, up) has no models in two complex variables.
However, in three variables the type F operators?
provide a model:

0 a 0 z
J3 =t — , J:I: —_ ti t— =
ot ( 0z * o )
PP =20z, PE= 420", (ef. (5.6)

As is easy to verify, these operators satisfy the
commutation relations of G,. Furthermore,

P.P=0, P.J=—L

Corresponding to this model, the basis vectors are
determined up to a multiplicative constant by relations
(5.1)-(5.4) and may be given by

(u) ( 1)_

fu(z, )= T2
_ 1

T T(=2u)

where the functions

my—ud (™

M—m,—u~f}(—z)tm: (57)

M, (2) = eV R G+ — 51+ 2u52)
are Whittaker functions.® In fact, expressions (5.1)
are equivalent to the recursion relations

)mﬂﬂ=w+%imMWMA
(5.8)

while expressions (5.2)-(5.4) are equivalent to the
relations

d
— 4+ m
Gw ¥

M, (2)
m
M 1! N s o~ Mm u
Ot S b=
ymomp—Hm+tpt+h My n2) (59

du(u + )

9 W. Magnus, F. Oberhettinger, and R. Soni, Formulas and
Theorems for the Special Functions of Mathematical Physics
(Springer-Verlag, Berlin, 1966), 3rd ed.
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M, (2)
m+u+1)
2u 4+ Hp — )
(m+p+Hm+p+13)

Mm-}-l,u(z)

= Mm+1,u-l(z) +

4+ 3) Mol
(5.10)
M (m—p—1)
= =M, _1,.(2) + m M, _1,.(2)
_(m - u;;(—i)(r;) ® =3 Mot a2,
(5.11)

We now prove some auxiliary lemmas which will
enable us to extend the representation Ry({, u,) of T,
to a local representation of T. In the following, all
operators and basis vectors are assumed to satisfy
relations (5.1)~(5.5).

Lemma 1:

(P = (20FKk! TQu + 1)
y ‘z (=D"Qu42n+1) ()
amon!(k—n)TQu+n+k+2)
k=0,1,2,--".
Proof: Expression (5.2) and induction on %.

>

Corollary 1:

P O
_% K\ TQu + 2n + 2)
—n=0(n) FrQu4+n+k+2)
k=0,1,2,---.

u,—u—n—l/Z(Z)

By definition,
M,y —yiap(z) = €227 F F(—k; —2u — 2k; —2).

From this equation and Corollary 1, it is an easy
computation to obtain the identity

My 3(2)

BT

n

I'Qu — 2s + 2n — 2r 4+ 2)
I'(—s+2u—2r+n+k+2)
X Fo(~k, ~s — k + n,
+s—2u—n—k+2r—1;

—2u — 2k, —s —k; DM, i 3(2),

k,s, £r=0,1,2,---, (5.12)
expressing the function z'M, _,_, 4(z) as a linear
combination of Whittaker functions M, _,_. ,4(2).

[Compare this expansion with Eq. (3.2) of I1.]
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Let k be a nonnegative integer.

Lemma 2:
(P3)k 5,1:) ____u~7n+k(2§)k(u — m k)
1=0 l
T'C2m + 21+ 2) I'(—=2m — 2])
Fu+m+k+1+2) TI'(=2uw

X Fo(m —u, —k +m—u+1,
—u—-m-—k+4+1-—-1;
—2u, —k + m — u; (=1,

Lemma 3:
u—m
P+k (u) 2 k(u_m)
( )fm l=mnx(uz~'m~2k,0)( C) l
I'Cm + 2k + 21 + 2)
D(u + m + 2k + 1 + 2)
I'(—=2m — 2k — 21) (2k)!
IM—u—m~—=1) (m—u+2k+ 1)
X (_1)u~1n+k+%f;n7$;ck+l)‘
Lemma 4:
(P

_ R T(2m — 2k + 21 + 2)
Tu+m+1+42)
[(=2m + 2k — 21) D(~=2m + 2k — 1)
I'(—u — m) P"—u—-m+2k—=1)
Q2k)! (=1 e (m—ked-1)
2L i),
(u—m+2k—-l)!(l—u+m)!( O

Proof: For our model these results can be obtained
easily from expression (5.12). Since the lemmas are
valid for the model, they must be true for the abstract
representation Ry(u,, 0).

l=u—m

According to Schafke!® (Chap. 8), the functions
(5.7) form an analytic basis for R;(uo, {). Thus, this
Lie-algebra representation can be extended to a local
group representation of T,. The matrix elements
{v, n|\w, g| u, m} can be defined by formulas analogous
to (4.9) and satisfy the addition theorems (4.10).
In particular, the matrix elements are completely
determined by Lie algebra relations (5.1)-(5.4). We
now compute the most important of these matrix
elements.

Since Egs. (5.1) and (2.1) are formally identical,
the matrix elements {v, n| 0, g |u, m} are given by (3.8).

1 F, W. Schafke, Einfuhrung in die Theorie der Speziellen
Funktion der Mathematischen Physik (Springer-Verlag, Berlin,
1963).
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The elements of the form {v,n|w,e|u, m} can be

computed directly from Lemmas 2-4. In particular,
{v,n]0,0,y; elu, m}
(2{)/)" u—m+k
= m n z ( )
k v—m

I‘(2v + 2)I'(—2v)

F'(u + v+ k + 2)I'(—2u)

X gFsm —u, —k+v—u,—k+v—u
—2m — 1; =2u, —k + m — u; N(—1)"*

(5.13)
If m = u, this simplifies to
{v,n| 0,0, y;e|u,u}
2 nNre (-1 —
(2v + DPQu + (=1 Lo S&7D)

T T 0 — w)I L)
if v—u>0,

=0 if u—v>0. (514

Here I,(z) is a modified Bessel function.® (5.13) and
(5.14) are entire functions of {y:
{v,n|2,0,0;e|u, m}
@)™ (u—m
B (n — m)!(v - n)
I'v + 2)['(—2v)(2n — 2m)! (—1)"*

lMNu+v+4+n—-—m+2)
XI(—u—v+n—m@—u+n—m

if n—m?_lu_vl,

= 0 otherwise; (5.15)

{v,n]| 0, B,0;e|u, m}
C(=280™" Tv+2)
m—-n! Tu+v+m—n+2)
I'(—20)['(—v — n)
I'(—u —m)'(—u—v+m—n)
2m —2n)! (—=1)"*
(w—v+m—n)!w—u+m-—n)!

if m—n>|u—uv,

= 0 otherwise. (5.16)

The operators T(w,g) defining the multiplier
representation induced by the Lie derivatives (5.6)
take the form

[T(a, ﬁ: Vs e)f](z, t)
= exp [2;2 (at — pt™ + y)} “f(z, 0, (5.17)

WILLARD MILLER, JR.

[T(0, )f1(z, ) = exp [Z(d itbt at :— c)]

f( zt at + c)
(at + o)(d + bt) d + bt
lefat] < 1, |bt/d| < 1,

g = (: Z) e SL(2). (5.18)

By construction, the basis functions of our model
must satisfy the identity

[T(w, 2f 2z, ) = E {v,nlw, g |u, m}f(z, 1).
(5.19)

We examine some special cases of this identity. 1f
w = 0, (5.19) simplifies to

[z( bt c ]
exp | - -
2\d + bt at + c)

x (1 + ) (1 + Z‘)_m(l + boy™

zt
XMy i (m)

k! F(—=1l, =2m — k; k — 1 4+ 1; bc/ad)

© dlakbk—l
2 Ttk—141)

1=0 l!
X Mokt —mied (D
ad — bc =1, |clat] <1,

If b = 0, (5.20) reduces to

[bt/d) < 1. (5.20)

e—(zc/2)/(1+c)M

Z m
m.—m—k—llz(l + c) (1 + C)

00

2 k
Z ( m+ )Mm—l,—m—k——1/2(z)cl’

1=0

|c| <1, k=0,1,2,- (5.21)

In particular, if k = 0, this last expression yields the
generating function

z~™ exp (;g T c;)( + o)

=0

= § (Zm) M, _m_3(2)c

If ¢ = 0, Eq. (5.20) reduces to

cxp [2(1 b)](l + oM ’”‘"‘"“*(1 42- b)
- go (I)Mmﬂ,_m_k,g(z)b‘, bl < 1. (5.22)

Another interesting special case of (5.19) can be
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obtained by settingg = e, «a = 8 =0, and u = m:

0

exp a + 2\ = z IM'LZ) a_u_%12u+2z+1(2‘11})
z 2 =0 I

X z"M, _, . 3(2). (5.23)

6. WEISNER’S METHOD

In this section we will be concerned exclusively
with the differential operators (3.11) which provide a
realization of G; in three variables. So far, these
operators have been used to construct identities for
special functions which are simultaneous eigen-
functions of J3, C,,, and P -P. Furthermore, our
identities have been valid only for group elements in a
sufficiently small neighborhood of {0.e}. However,
we can follow a method introduced by Weisner® and
use the operators (3.11) to derive identities for special
functions in which the above restrictions are lifted.
We make the following observations. If f(r, z,t) is a
solution of the equation P+ Pf = —w?f, i.c.,

(2,22 8 u8 a2
or*  ror r*or® riot r? 9zt
2zt 0° 2z 0 9
_—— - = g ,z, ) =0, (6.1
r? 00z r? oz to }f(r 0 &

then the function T(w, g)f, formally defined by Egs.
(3.14) and (3.15), is also a solution of (6.1). This
remark is true whenever the formal expression for
T(w, g)f can be interpreted as an analytic function in
(r,z,t) and is a consequence of the fact that the
differential operators (3.11) commute with P-P.
In addition, if f'is a solution of the equation
Lf = (xpJt 4+ x,J™ + x3J°
+ Pt po P+ P = Af
for complex constants x;, y;, 4, then T(w, g)f = f~
is a solution of an equation of the same form L'f" =
Af"where L' = T(w, g)LT \(w, g), i.e.,
x; = a®x; — b®xy + abx,,

—c%x; + dx, — ¢ dx,
x5 = 2acx, — 2b dx, 4+ (1 4 2bc)x,,
y1=a’y, — by, + aby,

+ a[—acx; + 2b dxy — (1 4 2bc)xy]

+ yla®x, — bx, + abx,],

Xy =

0 0 (6.2)
=y + dys —cdy;

+ Blacx; — 2b dx, + (1 4+ 2bc)x,]
+ [e®x; — d®x, + ¢ dxg),
ys = 2acy; — 2bdy, + (1 4+ 2bc)y,
+ a[—2¢%; + 2d%xy — 2¢ dx,)
+ Bl—2a%x; + 2b%x, — 2abx,).
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As an application of these remarks, consider a
simultaneous eigenfunction of the commuting opera-
tors P+ P, P3,J3:

P-Pf=—f, P =2, =mf,l,meLl. (6.3)
A straightforward computation shows that the
solutions of (6.3) are of the form
Sz, 0) = 12 = G2 — Dy
x e, (r(z2 — DA2 — Db,
Choosing the 7, solution, we note the validity of the
expansion

£ 2, 1) = 1S (Dt (AT, (6.4)
%=0

giving f as a sum of simultaneous eigenfunctions of
the operators PP, C,,, J31 It remains only to
compute a,(4). Since f is symmetric in z and 2,
a, (1) = b,C4(2). Furthermore, if 1 = 1, then

m Tz

e = (& ol
2) '(m+1)

which has the well-known expansion

r i re < 2 % 1 1
() e =2,()rem + vom + k4 »
2 E=0\F
X Lyed(NCEH(2)
(see I, Corollary 7, or Ref. 9). This last expansion

enables us to compute the coefficients a,(4) with the
result

[(* = D@ = DI 1,02 — 1) — DI
2m+1 0 ] . 1
=2 Dm 4 ppS Kmtk+ D
2mr)* =0 'Cm + k + 1)
X Lugad(CR A0 (6.9)
convergent for all z, 1 € ¢.
Similarly, it is easy to show that

iroz, 1) = (

;(TtT)) L, [ar(zt ~ 1)}
Z —

is a solution of the equations

P-Pi=0, P¥=1, J)=mj (6.6)
There exists an expansion of the form
Jrs 2, 0) = T a(HrECpi e, (6.7)
k=0

expressing j as a sum of simultaneous eigenfunctions
of PP, C,,, and J3. The constants a,(1) can be
evaluated by setting z = 1 on both sides of Eq. (6.7).
The result is
L(m + Dir(z% — D7e™r, [1(z22 — DY)

- I'Cm+1) +1

= —————— (), (6.8

HTam + k+ ok A (68

convergent for all r, z € ¢.9
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As a final example we consider
hr, 2, 1) = 1 L a(CEH @, ued,
2u not an integer, k =0, 1,2, -+ . & is a solution of
the simultaneous equations
P.Ph= —h,Cioh=u(u+ DHh, Jh= (u— k).
(6.9)
Note that the function
2y —utk—h)/e
B = T(0, 4, 0; e)h = (r2 + (_l_t_ZL’)

2y
o+ 02

-3
[l ) o e
0< 1l <IF, (6.10)

can be expanded in a Laurent series in ¢. Thus, the
following expansion is valid:

0 0

W(r,z,ty=

n=—o s=max([—2n],0)
x 1, amCHE @, 6.11)

We now determine the constants a, ,. According to
expression (6.2), k' = T(0, },0;e)r satisfies the
equation (J® + }P)i' = (u — k)A!. This implies the
recursion relation

a,s'T'(n+ %)

2(u—k——n)ans=—:—a"—+lii
T (2n4+2s—1)
+(2n+S+1)(2n+s+2)
(2n + 25 + 3)
X dyyrs (6.12)

WILLARD MILLER, JR.

for the coefficients a, ,. On the other hand, if z = 1,
(6.11) reduces to a power series in #:

(1, 1) = (2” - k) e A+ ),

frt] < 1. (6.13)
By comparing (6.13) with the well-known expansion
N
(5) T

_olk+ 1+ HI(—u+ k+ Dk + 21+ 1)
ND(—u + 0w+ 1+ 3)
X 1k+21+%(r)1 k=07]’2a”.’

[see I, Eq. (5.10), or Ref. 9, p. 129], we find

=0

n,8

(m)? k I
XF(u—k+l)F(n+k+l+%)

Tw—k—=n+ D0+ 1+3)
gt k+2+

_ (2)‘“+k+2"(2u - k) (—u +n4+k+1-— ])

2n + k + 2!
ifs=k+2l, k,1=0,1,2,---,
=0 ifs£k+2, k1=0,1,2,---. (6.14)

Thus, we have computed a, , for n > 0. However,
formulas (6.14) make sense for all integers n such that
2n + 5 > 0, and they satisfy the recursion relations
(6.12) even when n is negative. Therefore, formulas
(6.14), defined for all integers #» and nonnegative
integers s such that 2n 4- s > 0, are the solution to
our problem:

1 — 2y (utk—3)/2 2y . R
kK'I(u — k + %)<r2 + ( Zz )") * Iu+%(:(r2 + q Z )r) :|C,':‘k+§‘:r2(r2 + (1 Z )")2:‘(1 + r)ek
t t

FrQu —k+1) t

n=—o0 l=max([—n—k/2],0) S

- i E 8—u+k+n(_u +n+k+1-— 1)F(n k4 L+ DU+ Dk + 2D+ k + 20+ Pr?

n+%

Qn+ k42D Tw+ 14+ 3H0(w —k —n+1)

X Loy d(DCa(2)", 0< |t <|r',ue ¢, 2u notan integer, k=0,1,2,-"-.

The above examples should suffice to indicate the scope of Weisner’s approach—though many other

results could be obtained using the same method.
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In a Hamiltonian variational formulation of a field theory, certain boundary conditions arise naturally
whereas others arise as constraints on the admissible variations, and no initial conditions arise naturally.
When the Hamiltonian formulation is used to obtain approximate solutions to boundary-value problems,
the approximating functions need not satisfy the natural conditions but must satisfy the constraint
conditions. Although, in many instances, it is desirable for the approximating functions to satisfy the
constraint—and even the natural—conditions, in other instances it is imperative that the approximating
functions do not satisfy certain constraint conditions. A procedure is introduced for transforming
Hamilton’s principle so that the initial conditions and all conditions at boundaries and internal surfaces
of discontinuity arise naturaily and no constraint conditions are required. The transformation is effected
by modifying the principle slightly, using Lagrange multipliers in the classical manner, and adding an
appropriate initial-value term to the Lagrangian. A particularly useful approximation technique is
applied to a problem with an internal surface of discontinuity, and it is shown that the transformed
principle can be used whereas the usual form of Hamilton’s principle cannot. It is noted that the trans-

SEPTEMBER 1968

formed principle has an important advantage over the method of least squares.

1. INTRODUCTION

The calculus of variations has proven to be a
useful tool for obtaining approximate solutions to
boundary-value problems for which exact solutions
cannot be found. There are in existence a wide
variety’™ of techniques for actually making the
approximation, all of which lie within the variational
formulation of the field theory. Classically, a varia-
tional formulation can usually be regarded as Hamil-
ton’s principle? for a particular field. There are many
other variational formalisms, including, for example,
the method of complementary energy® in linear
elasticity and Reissner’s variational formulation of
linear elasticity.® However, this discussion will be
confined to those variational formulations that can be
regarded as Hamilton’s principle in the classical
sense. From this author’s point of view, the crucial
distinction between Hamilton’s principle and those of
others is that in Hamilton’s principle the Lagrange
density is expressed in terms of the minimum number
of dependent field variables and their derivatives;
whereas in the others, the Lagrange density is ex-

* Present address: Dlepartment of Mechanics, Rensselaer Poly-
technic Institute, Troy, N.Y. [218].

LL. V. Kantorovich and V. L. Krylov, Approximate Methods of
Higher Analysis (Interscience Publ, Inc., New York, and P. Noord-
hoff Ltd., Groningen, The Netherlands, transl. by C. D. Benster
from 3rd Russian ed., 1964), Chap. 1V, Sec. 2 and 3.

2 R. D. Mindlin, Quart. Appl. Math. 19, 51 (1961).

3 M. Onoe, J. Acoust. Soc. Am. 30, 1159 (1958).

¢ C. Lanczos, The Variational Principles of Mechanics (University
of Toronto Press, Toronto, 1949), Chap. V, Sec. 1.

5 1. Sokolnikoff, Mathematical Theory of Elasticity (McGraw-Hill
Book Company, New York, 1956), 2nd ed. Chap., 7, Sec. 108.

¢ E. Reissner, On Variational Principles in Elasticity (Proceedings
of the Eighth Symposium on Applied Mathematics, Calculus of
Variations and lIts Applications) (McGraw-Hill Book Company,
New York, 1958), pp. 1-6.

pressed in terms of a larger number of field variables.
In Hamilton’s principle, the variations of each of the
field variables are independent (unconstrained) within
the domain, i.e., excluding the boundary; and there-
fore, each variation yields an independent differential
equation. Moreover, the variation of each of the field
variables is constrained to vanish at ¢ and ¢, through-
out the domain and the boundary. Furthermore, if,
on any portion of the boundary, a particular field
variable is prescribed, its variation is constrained to
vanish on that portion of the boundary for all time.
If, in addition to the aforementioned boundary, the
domain contains a surface of discontinuity, the
variations of each of the field variables are uncon-
strained in the regions on either side of the discon-
tinuity, but are constrained to be continuous across
the surface. The removal of the constraints on the
variations of the field variables on the portions of the
boundary where they are prescribed and across an
internal surface of discontinuity, for all time, and, at
t and f,, throughout the domain and the boundary,
in Hamilton’s principle is precisely the subject of this
paper. The removal of these constraints on the
variations of the field variables can be very important
in obtaining approximate solutions to boundary- or
initial-value problems because, if the constraints are
imposed on the variations, the approximating func-
tions must satisfy these constraints; but if no constraints
are imposed on the variations, the approximating
functions need not satisfy any constraints. Although
in many instances it is desirable for the approximating
functions to satisfy the constraints so that the approxi-
mation will be more accurate, in other instances it is
imperative that the approximating functions do not
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satisfy certain constraints required by the classical
form of Hamilton’s principle. A particularly important
situation arising in connection with a boundary-value
problem, in which an internal surface of discontinuity
is present and in which functions constrained in the
classical Hamiltonian manner cannot be used, is
discussed in the last section of this paper. The problem
treated is an eigenvalue problem in which the initial
conditions may be left out of account. Although the
variational formulation permits a similar approximate
treatment of initial-value problems, no such problem
is discussed. 1t is interesting to note that the removal
of the constraints on the variations at ¢ and #, applies
in the case of particle mechanics also. In that case the
modified Lagrangian yields the differential equations
and the initial conditions.

The technique for removing the boundary con-
straints and the time constraint at ¢ required by the
Hamiltonian form of the variations is the classical one
of adding to the Lagrangian, each constraint as a
zero times a Lagrange multiplier, so that the variations
of the field variables can be treated as free (uncon-
strained). The only difference between this situation
and the usual one is that the constraints treated here
by the Lagrangian technique are boundary constraints,
while those usually treated by the Lagrangian tech-
nique are either domain or isoperimetric constraints.
In this situation the Lagrangian multiplier is either a
function on a surface for all time or a function over
a domain at a fixed time, instead of a function over a
domain, for all time, as it usually is in the absence of
isoperimetric constraints. In any case, the Lagrangian
multiplier can be varied freely.” The technique for
removing the constraints at 7, consists of simply
introducing initial prescribed (inertial) terms in
exactly the same way that prescribed boundary con-
ditions are introduced. Additional variational terms
are introduced at ¢, in order to account for the initial
conditions on the field variables,

The resultant Lagrangian has been given for the
scalar Helmholtz equation by Morse and Feshbach,®
for the biharmonic equation by Hildebrand,® for the
electromagnetic equations as applied to waveguides
and resonators by Berk,'® and for a special case in
linear piezoelectricity by Eer Nisse!* and Eer Nisse

7 R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publ. Inc., New York, 1953), Vol. I, Chap. 1V, Sec.

8 P, M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, New York, 1953), part II, p. 1132,

® F. B. Hildebrand, Methods of Applied Mathematics (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1965}, 2nd ed., p. 219,
Problem 100. )

10 A. D. Berk, Inst. Radio Engrs., Trans. Antennas Propagation
44, 104 (1956).

11 E, P. Eer Nisse, IEEE Trans. Sonics Ultrasonics 14, 153 (1967).
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() (2)

Fic. 1. Diagram of a bounded region containing an internal
surface of discontinuity.

and Holland.?®> In each instance the modified La-
grangian is simply presented without a convincing
explanation of why the new Lagrangian is permissible,
i.e., without either the explicit use of Lagrange
multipliers or any clear discussion. However, the
demonstration of validity in the case of Refs. 8 and 9
is rather straightforward. Moreover, all the modified
Lagrangians that have been presented are applicable
only when field variables are prescribed on portions
of the boundary and none are applicable to time-
dependent systems. The additional modifications
required for either the important case of an internal
surface of discontinuity or for time-dependent
systems have not been presented. In all the afore-
mentioned cases,® % specifically when there is no
surface of discontinuity, and even when there is a
surface of discontinuity, the proof of the validity of
the Lagrangians presented can be provided without
the use of Lagrange multipliers by using the appro-
priate version of what might well be called ““Reissner’s
unconstrained variational technique.” ¢ Furthermore,
for the scalar systems presented in Refs. 8 and 9, the
proof can be provided without the use of either
Lagrange multipliers or Reissner’s technique, simply
by employing the definition of the variation. This
same procedure can be used to obtain a transformed
version of Hamilton’s principle, which yields initial
conditions naturally, without the use of either La-
grange multipliers or Reissner’s technique.

2. CLASSICAL FORM OF HAMILTON’S
PRINCIPLE

In this section we briefly present Hamilton’s
principle so that we may clearly note the consequences
when we transform it in the next section. Consider
the diagram shown in Fig. 1. The diagram contains a
region (possibly a body) which is divided in two by a
surface of discontinuity $'®. The remaining boundary
of region 1 is labeled S and of region 2, S'®, Let the
behavior of this body be governed by a vector'? field

12 £, P. Eer Nisse and R. Holland, Proc. IEEE Letters 55, 1524
(1967).

13 Cartesian tensor notation is employed throughout; the sum-
mation convention for repeated tensor indices is employed as is the
dot notation for differentiation with respect to time, and 2 comma
followed by an index denotes differentiation with respect to a space
coordinate.
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@™ (x;, 1)k, j=1,2,3;m =1, 2. Let the Lagrange
density in regions 1 and 2, respectively, be given by

t(m) — %P(m)q-);cm)(p;cm) _ %(m)((p,(cm)’ (p’(:lt), x]_),
m=1,2. (2.1

In Eq. (2.1), £ has continuous first and second
derivatives with respect to all its arguments in V'™,
and @{™ is twice continuously differentiable with
respect to all independent variables in ‘™ and attains
prescribed values @™ on portions of S™, which we
denote by S{*'. On the remaining portions of the
boundaries S™, the @™ are unknown, but the
quantities n,dU™[9(p{™) = G = F{™ are pre-
scribed and are given by
F™ = nd W™ dey) = nGy” = F™, m= 1,2,
(2.2)

in which the F{™ are prescribed functions of the x;
and ¢, and n, denotes the components of the outward-
directed unit normal. The portions of the boundaries
St™ on which (2.2) holds are denoted by S{™. When
the @{™ are prescribed, we have what are termed
constraint conditions, and when the F{™ are pre-
scribed, natural conditions. At this point it is clear
that Hamilton’s principle may be written in the form

t 2
ol dty U £m gy +f Fmgim ds} =0,

to m=1Jy"™ '™

(2.3)

where the dg{™ are constrained to vanish everywhere
at 1 and 1, and for all time on $& and S{, and to be
continuous across S‘. Taking the variations,!
utilizing the fact that the variation operation com-
mutes with differentiation, integrating by parts with
respect to time, and employing the divergence
theorem and the constraints on the variations, we
obtain

t 2
dty [ f (= U™
to m=1]Jp™
— p™ME™ + GISe™ dv
+ ] (O 4 Firyagie as|
SN(M)
1
- d’f WG — GO dS = 0, (24)
to JS

where n{® denotes the components of the unit normal
to the surface of discontinuity S directed from y'
to V. Since the volumetric and surface variations
dpi™ appearing in (2.4) are arbitrary, we have the

4 The extension to more than one field and to spaces of higher
(different) dimensionality is evident, as is the extension to more than
one surface of discontinuity.

15 Reference 4, Chap. II, Secs. 8-11.
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Euler differential equations

~ W™ PP™ — p™MG™ 4 G =0, m=1,2,
(2.5)
the boundary conditions on S{
—n™GM 4+ F™ =0, m=1,2, (2.6
and the discontinuity (jump) condition across S
(Gl — Gi) = 0. @7

In addition, by virtue of the constraints on the varia-
tions, we have the boundary conditions on S&*

o — @ =0, m=1,2, (2.8)
and the continuity conditions on §@
o — g =0. (2.9)

Thus, this Hamiltonian variational principle (2.3),
constrained in the cenventional manner, yields the
differential equations (2.5), the boundary conditions
(2.6) and (2.8), the jump conditions (2.7), and the
continuity conditions (2.9) of the field in which we are
interested, but does not yield all the initial conditions.

As usual, Eqgs. (2.3) or (2.4) can be used to obtain
approximate solutions to boundary-vaiue problems,
provided that initial conditions may be left out of
account by a variety of techniques, such as the
Rayleigh-Ritz procedure,! Kantorovich’s procedure,!
and many others. However, any approximating
solution must satisfy the constraint conditions (2.8)
and (2.9) in accordance with the variational principle;
but the approximating solution need not satisfy the
differential Eqs. (2.5) or the natural conditions (2.6)
and (2.7). This point is discussed very thoroughly by
Kantorovich and Krylov!® and Collatz.?? Clearly, the
formulation is completely inadequate for obtaining
an approximate solution to any problem in which
initial conditions must be considered, since the
approximating solutions must satisfy the constraints
on the variations at ¢ and ¢, and the values of the
field variables at ¢ are unknown. Moreover, there are
no conditions on the known initial time derivatives of
the field variables. These inadequacies of the classical
form of Hamilton’s principle have been noted by
Gurtin'® in a somewhat similar context. In connection
with purely boundary-value problems, it should be
noted that, although the requirement of satisfying
(2.8) and (2.9) is frequently not restrictive and even
desirable (for obtaining accuracy) in practice, at

18 Reference 1, pp. 258-260, 272-273, and 279-281.

1" L. Collatz, The Numerical Treatment of Differential Equations,
translated by P. G. Williams (Springer-Verlag, Berlin, 1960), 2nd

ed., pp. 202-207 and 213-216.
13 M. E. Gurtin, Arch. Ratl. Mech. Anal. 16, 34 (1964).
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times it is excessively restrictive and for certain types
of procedures, which are discussed in Sec. 4, it is so
stringent as to be prohibitive. In the next section we
will transform the Hamiltonian variational principle,
with the aid of Lagrange multipliers, in order that al/
conditions, including those at boundaries, at surfaces
of discontinuity, and at the initial time, appear as
natural conditions and there are no constraint con-
ditions which an approximating solution must satisfy.

3. THE TRANSFORMED PRINCIPLE

In Sec. 2, the variations d¢{™ are constrained to
vanish on those portions of the boundaries where the
@™ are prescribed, to be continuous across the
surface of discontinuity S'®, and to vanish everywhere
at +. This situation is analogous to the usual one in the
calculus of variations where holonomic!® constraints
are used to reduce the number of independent varia-
tions. Instead of eliminating a particular field variable
for each holonomic constraint, it is common practice
to add to the Lagrangian each constraint as a zero
times a Lagrange multiplier,”2® and then to treat all
variations as free. As stated in the Introduction, the
constraint on the variations d¢{™ at ¢, can be elimi-
nated by introducing initial prescribed terms in the
Lagrangian in the same way that prescribed surface
terms are introduced; additional variational terms
must be introduced at 7y in order to take account of the
initial conditions on the field variables. Thus, in
accordance with the above, we introduce Lagrangian
undetermined multipliers A, 2{*, and A{"; then we
dot A(™ into (2.8) and integrate over S and #; A"
into (2.9) and integrate over S and ¢; and finally
2" into 6@ and integrate over ¥, And then we
add the three integrals to the left-hand side of (2.3)
while introducing the aforementioned terms at £ to
obtain, in place of (2.3),

J? dt zl [f (,”)L(”') 1% +J (")Egm)(p,ﬁm) ds
+J\‘ (m);(m)((P(m) -(cm)) CIS:]

(D) (2)
+6fdtjul (g

+ Z A([)éq;m)(t) + ‘E)'Iim)(sq,{_m)({o)

m==1

+ (‘I;(m)(fo) _ (/—)I(‘m)(ro))P(m)(s(/(m)(ro)] dv = 0 (3‘)

where, now, the d¢{"™ are unconstrained on S{*' and
S as well as on S{ and in VU at all times, and at ¢
and #, everywhere, and the AU, ¢, and A{ are to be

(”l(:l)) dS

(m i

19 Reference 4, Chap. I, Sec. 6.
20 Reference 4, Chap. 11, Sec. 12.
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varied freely,” and P{™(t,) denotes the initial value of
p™¢i™. In place of (2.4) we now have

t 2
iy [f (=2 gl
tg m=1} Jy™

— PG+ GDdg" dv
+ ( nlm)G(m) + F}im))éwl(cm' ds

S]V( m)

+fso(m)[( (m)G(m) + Z,(cm))é(p;cm)
+ al(m)((p(m) -Ifcm))] dS:!

t
+[ |06l + 20
+( (d)G(2) + 2(d))6(p(2) + 61(d)(¢(2)
+3 [ ot + A0

+ O = i asel )
+ (@(10) — GNP ™8 1] AV = 0. (3.2)

Since the volumetric variations dg™ are arbitrary, we
have (2.5) in ¥; and since all the surface variations

(1))] ds

dgim . oA and OAP are now free, we have the
boundary conditions (2.6) on S, the conditions
—n(WGE 4 3tm @, (3.3)
g — G = o (3.4)

on S, and the conditions
n"Gy + A" =0, (3.5)
nGE 4+ 10 =0, (3.6)
7 = g =0 3.7

across S, Since the variations d¢{™ are arbitrary at
r and ty, we have

/1;:’
F(;m) _

P‘/'}/[m)(r) =0,
(m) (m)(to) = Q.

3.8
3.9

Since the d¢{"™(t,) are independent of the dg{™ (1),
we have
7" (to) — @ (1) = 0, (3.10)

all in ¥, The subtraction of (3.6) from (3.5) yields
(2.7). Equation (3.4) is identical with (2.8) and (3.7)
with (2.9); but (3.4) and (3.7) appear as natural con-
ditions, whereas (2.8) and (2.9) are constraint con-
ditions. The Lagrange multipliers 2™ may now be
obtained from (3.3), A% from either (3.5) or (3.6), and
A0 from (3.8). Moreover, it is clear that the initial
conditions may be read off from (3.9) and (3.10). Thus



NATURAL BOUNDARY AND INITIAL CONDITIONS

it is clear that the variational principle (3.1) with
unconstrained variations yields the Euler equations
(2.5), the boundary conditions (2.6) and (2.8), and the
conditions across S (2.7) and (2.9), as does the
variational principle (2.3) with constrained variations.
It is also clear that the unconstrained variational
principle (3.1) yields the initial conditions (3.9) and
(3.10), whereas the constrained variational principle
(2.3) does not.

As already mentioned, the unconstrained variational
principle (3.1) has an advantage over the constrained
variational principle (2.3) for obtaining approximate
solutions to boundary-value problems, since, with
(3.1), an approximating solution need satisfy no
conditions. In order to find the most appropriate
forms of (3.1) and (3.2) to be used in obtaining
approximate solutions, add (3.5) and (3.6) to obtain

ﬂl(cd) (d)(G(l) (311)

and substitute from (3.3), (3.8), and (3.11) into (3.1)
and (3.2) to obtain, respectively,

t 2
. (m) S(m). (m)
’ [()dt'mgl [ﬁ""’)£ dV +J'Siv1m)17k Pr dS
+J; o ) M)Gl(];n)(qg(m) (}?}’(cm)) dS:I
Se
t
—_ 6J‘ dtf ""zd)(Gg,lc’
ly s¢
2 -
T2 f IS0 + P05 )
+ (@ (1) ~ 716N ™06 10)]dV =0,

t 2
qp(m)j (m) __ _Gim) .- (m)
dr UVW,(—ML g™ — p"y

fo  m==1

G{]:nl))éq)(m) dv +f ( nlm)G(m)

(2)
le )a

(2))((p(2) (1)) ds

(3.12)

+ F,im)(S(pLM)dS +J; - m)((p(m) (}3§cM))6G.§IZn) ds:]
¢

t
_ %fdtf d)[(G(l) Gg,%))(étp‘l) + (S<P(2))
+ <zp‘” g )OGy + 0GR)1 dS
+ Z SP — pg (1D (1)

+(¢;m>(t0) — @t )p ™o () dV = 0. (3.13)

The integrals over S{™ in (3.12) and (3.13) are pre-
cisely the forms presented in Refs. 8-12, but without
the explicit use of Lagrange multipliers or any refer-
ence to Reissner’s® technique or any meaningful dis-
cussion. The integrals over $'% and over V' at t and
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FIG. 2. Diagram of a symmetric bounded elastic plate with internal
surfaces of discontinuity.

fo in (3.12) and (3.13) do not appear in any of the
references. Clearly, the expression (3.11), and conse-
quently (3.12) and (3.13), is not unique, because of
the difference of (3.5) and (3.6). However, the forms
chosen are obviously the most straightforward and
give equal weight to each adjacent region.

4. APPLICATION TO A BOUNDARY-VALUE
PROBLEM

In this section we consider a technique of solution
of a particular boundary-value problem in which the
transformed principle in Sec. 3 can be used and the
classical principle in Sec. 2 cannot. For clarity,
simplicity, and definiteness, we confine ourselves to a
prototype problem in isotropic, linear elasticity,?! in
which case the £™ are of the form

(), (m)

(m)
1[1 U U

(m) (m) (m) (m) (m)
gy gy o) —

ﬁ(ml

(m) ()n) (m)]

(4.1)

In Eq. (4.1), the ¢{™ have been replaced by the u{™,
which represent the components of mechanical dis-
placement in region m, A and u™ are the Lamé
constants in region m, and p'™ is the mass density in
region m. Consider the bounded plate shown in Fig,
2, in which region 1 is identical with region 3 while
region 2 is different, and in which the length out of the
paper is infinite and may be left out of account. The
length out of the paper may also be infinitesimal, in
which case the A in (4.1) must be converted to the
plane stress value?? 2u™ A [(AM) 4 240m)  Let the
upper and lower surfaces be traction free (F* =
F® = F® =0) and the left and right surfaces be
displacement free (z{") = a{¥ = 0).

Suppose we are interested in determining the
eigenfrequencies and mode shapes corresponding to
the extensional solutions that are symmetric (and/or
antisymmetric) about x, = 0 so that initial conditions
may be left out of account. Although there are many
procedures for obtaining an approximate solution to
such a problem, a particularly interesting, useful, and

' A. E. H. Love, 4 Treatise on the Mathematical Theory of
Elasticity (Cambridge University Press, Cambridge, England, 1927),
4th ed. (reprinted by Dover Publlcdtlons Inc., New York, 1944),
Secs. 69 and 115.

22 Reference 21, Sec. 146.
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enlightening technique, suggested by Mindlin?® and
employed by Onoe® for the case of all traction-free
boundaries and no internal surface of discontinuity,
consists of expanding the solution of the bounded
plate in an appropriate number of the exact solutions
for the infinite plate with traction free surfaces®
(Rayleigh modes) and satisfying the remaining con-
ditions on the traction-free end edges approximately
by means of what remains of (2.4). However, the
technique of expanding in the Rayleigh modes cannot
be used with (2.4) when the / and r edges are displace-
ment free and/or there is an internal surface of
discontinuity because the approximating functions
must satisfy (2.8) and/or (2.9) in order to be used in
(2.4); that is not possible when expanding in the
Rayleigh modes. Nevertheless, the technique of ex-
panding in the Rayleigh modes can be used with (3.13)
when the / and r edges are displacement-free and/or
there is an internal surface of discontinuity—or any
other combination of conditions for that matter—
because the approximating functions need not satisfy
any conditions in order to be used in (3.13).

Explicitly, the Rayleigh solution for standing waves,
which are symmetric about the center plane, in an
infinite, isotropic plate may be written®

uy = [EB cos ax, + BC cos fx,] cos Ex, cos wt,
Uy = [—~aBsin ax, + £C sin Bx,] sin &x, cos wf,

Uy =0, 4.2)
so that
Tyn= —pl(B® + & — 20%)B cos ax,
+ 2BEC cos fx,] sin &x, cos wl,
Toe = pul(£% — B%)B cos ax,
4 2BEC cos fx,] sin éx; cos wt, (43)

Ta3 = —A{a® + £2)B cos ax, sin £x; cos wf,

T12 = ‘M["'ZEaB sin 0L Xy

4+ (& — BAC sin Bx,] cos éx, cos wt,
Ty= T =0,

where the Gy, of Secs. 2 and 3 have been replaced by
the Ty, and where the differential equations are
satisfied if

2 2
w 7 w
= gt @
Vi Va
23 R. D. Mindlin, Investigations in the Mathematical Theory of
Vibrations of Anisotropic Bodies, CU-4-56-8C-64687-CE, Final
Report, U.S. Army Signal Corps Engineering Lab., Fort Mon-
mouth, N.J. (1956) (unpublished).
24 Lord Rayleigh (J. W. Strutt), Proc. London Math. Soc. 20, 225
1889).
¢ 23 l% D. Mindlin, An Introduction to the Mathematical Theory of
Vibrations of Elastic Plates, DA-36-039-8C-56772, U.S. Army
Signal Corps Engineering Lab., Fort Monmouth, N.J. (1955)
(unpublished), Sec. 2.06.
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and V; and ¥V, are the velocities of dilatational and
equivoluminal waves, respectively. The boundary
conditions Ty, = Ty = Typ3 = 0 on the upper and
lower surfaces of the plate are satisfied if?¢

tan fb/tan ab = —4E2p[(& — p2R, (4.5)

= —~2£Bcos pb, C = (& — ) cos ub. (4.6)

Equation (4.5) is the Rayleigh frequency equation for
waves that are symmetric about the center plane of the
plate. Equations (4.4) and (4.5) determine dispersion
curves w = (&), which are now well known.?” For
any given real, positive w, there are a denumerably
infinite number of branches—some are real, others
imaginary, and still others complex. Nevertheless,
in many frequency ranges one can conclude that a
good approximation can be obtained by omitting all
branches except a rather small number.?® In fact, for
the symmetric modes, below a certain frequency
(edge mode) the number of branches that must be
included is only one,®* and, for the antisymmetric
modes, below a certain frequency the number of
branches that must be included is only two.* Although
the actual number of branches required for obtaining
an accurate solution is very important, it is not partic-
ularly important in this paper because we are inter-
ested only in giving an example of the use of (3.13)
under circumstances in which (2.4) cannot be used.
Consequently, we simply consider the situation where
only the one lowest, real, symmetric branch is needed.
The extension to more than one branch is trivial in
principle, although cumbersome in practice.

Before proceeding further, it is important to note
that a solution, symmetric about the center plane of
the plate and linearly independent of the one in (4.2)
and (4.3), can be obtained from that one simply by
interchanging sin &x, and cos £x; and, in the quanti-
ties in square brackets, replacing & by — &. Equations
(4.4) and (4.5) remain unchanged and & should be
replaced by —¢& in (4.6). Since we are interested only
in solutions that are symmetric about x; = 0, this
latter solution will be the only one needed in region
2, but both linearly independent solutions associated
with the one branch will be required in region 1. Thus,
it is clear that, for each additional real or imaginary
branch that must be included, two linearly inde-
pendent solutions occur when symmetry with respect

2% Ref, 25, Eqgs. (2.115) and (2.116).

27 R. D. Mindlin, Proceedings of the First Symposium on
Naval Structural Mechanics (Pergamon Press, Inc., New York,
1960), Sec. 12, pp. 214-219.

28 Reference 25, Chaps. 4 and 5; Ref. 27, Secs. 16 and 17.

28 1), . Gazis and R. D. Mindlin, J. Appl. Mech. 27, 541 (1960).

30 M. Deresiewicz and R. D. Mindlin, J. Appl. Mech. 22, 86 (1955).
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to x, does not exist and only one when symmetry
exists. When the branches are complex, each linearly
independent solution is composed of a pair of complex
conjugate branches so that the resultant solution is
real.?

At this stage it should be noted that, since the
differential equations and boundary conditions on the
upper and lower surfaces of the plate are satisfied in
each region and the solution is symmetric (or anti-
symmetric) about x; = 0 and the initial conditions
may be left out of account, all that remains of Eq.
(3.13)is

b
+ f‘l;(cl)éT{};) dx,
—b T je=ate

b
=3[ [ = mioyeu + ou)
b

=0,

L=

%))

+ @ — uP)OTE + 6T dxz]

where the first integral is evaluated at the edge
x, = a + ¢ and the second at the internal surface of
discontinuity x; = a. It should also be noted that
those terms that still remain in (3.13) and appear in
(4.7) are precisely the ones that do not exist in (2.4).
The first integral in Eq. (4.7), which is associated with
a displacement ~free edge, is the type of term that
appears in Refs. 8-12, but the second integral in Eq.
(4.7), which is associated with an internal surface of
discontinuity, does not appear in any of those refer-
ences.

The solution for the bounded plate may now be
written:

W = (LAY cos £Vx, — a)
+ MPD"W sin ¢P(x, — a)) cos o,
1 = (LA sin EV(x, — a)
+ MDD cos EV(x, — a)) cos wt, (4.8)
uiz) = M;”Dm sin §(Z)x1 cos wt,
ul? = MPD® cos £®x, cos wt,

u!,” = u§,2) =0,

where the L{" are the terms appearing in square
brackets in (4.2) times the shear modulus in region 1,
#Y, and the M{™ are the equivalent terms that would
appear in place of the L{™ in the aforementioned
linearly independent standing-wave solution for the
infinite plate. The T/ may readily be obtained from
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(4.8) in the same way that (4.3) were obtained from
(4.2), i.e., by means of

Ti(’_m) — A(m)u,(ctp;c)bﬁ + ‘u(m)(uz"r?) + u;'Z'L) . (49)
Thus, at this stage, given an w, £ can be determined
from the appropriate dispersion curve, which was
calculated® from (4.4) and (4.5), after which the
a(™ and S may be found from (4.4), and then the
B and C'™ from (4.6), so that the L» and M{™ are
known. In the usual way, all quantities are now
substituted in (4.7), in which the independent varia-
tions are 641, 6DV, and D, and the integrations
through the thickness 2b are performed at the appro-
priate values of x,. Since the variations 64", 6D,
and 6D® are arbitrary, the coefficient of each must
vanish, thereby yielding three homogeneous, linear,
algebraic equations in the three constants AV, DD,
and D%, The vanishing of the determinant of the
coefficients of 4V, D, and D® in the three equations
yields the geometric ratios for the selected eigen-
frequency. There is no point in carrying the solution
any further, since we have no intention of presenting
any results because we are interested only in giving a
definite example of a specific situation in which (3.13)
can be used and (2.4) cannot. Since this has been done,
we proceed no further.

In closing, it should be noted that the method of
least squares®! could have been applied to the situation
presented in this section in place of (3.13). However,
when the method of least squares is applied in the
case of a surface of discontinuity and in many other
cases,?! there exists a dimensional problem in that
the different conditions are not naturally dimension-
ally compatible. All the procedures for making them
dimensionally compatible introduce a degree of
arbitrariness into the approximation. This undesirable
feature is automatically avoided by using the trans-
formed variational principle (3.13) in place of the
method of least squares in treating such a problem.
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The Gibbs approach to quantum dynamics is justified for nonrelativistic systems. It is shown that
infinite-time and microcanonical ensemble averages may be equated wherever the former exists and
whenever a maximal set of constants of the motion can be determined, provided that the ensemble average
is over states whose images under the maximal set are virtually stationary. The relevance of the demonstra-
tion for quantum-statistical mechanics is discussed in the light of the ensemble formalism and the classical

ergodic problem.

INTRODUCTION

It is generally accepted that the Gibbs approach to
Hamiltonian dynamics has been justified to a large
degree by the fundamental theorems of von Neu-
mann?! and Birkhoff.? These propositions, when taken
in a dynamical sense, assert the existence (in the
mean of order two or almost everywhere, respectively)
of the infinite-time average of any property of a physical
system expressible as a Lebesgue-integrable function
on phase space. Moreover, if the infinite-time average
is independent of almost every initial state (point in
phase space) of the system, it may be equated with a
Gibbs microcanonical ensemble average. These state-
ments admit of an interesting but unfortunate reci-
procity as regards their significance in mathematics
and physics: The first is difficult to prove but, in an
operational sense, is simple to verify experimentally,
while the second is easy to show but hard to apply.
The epigram is unfortunate because it is the second
statement which is of greater relevance to dynamics.
It was with this problem in mind that Lewis® has shown
recently that the infinite-time average need not be
independent of nearly every initial state in order that
it may be put equal to a microcanonical average,
provided that the meaning of the latter is generalized
somewhat. To be specific, if 2 maximal set of constants
of the motion is known, in that every infinite-time
average can be expressed as a Borel-measurable
function of it, then the time average may be equated
with a microcanonical average, wherein the average
is taken over those points in phase space whose
images under the maximal set (not just the Hamilton-
ian) are stationary. This represents a natural extension
of the microcanonical ensemble average and permits
the difficult task of ascertaining the independence of
the time average from initial states to be replaced

1J. von Neumann, Proc. Natl. Acad. Sci. U.S. 18, 70 (1932).

2 G D. Birkhoff, Proc. Natl. Acad. Sci. U.S. 17, 650 and 656
(1931).

3 R. M. Lewis, Arch. Ratl. Mech. Anal. 5, 355 (1960).

by the possibly less arduous problem of determining
a maximal set of constants of the motion.

The picture is not quite so clear as this if one looks
into the vindication of Gibbs’s approach as extended
to quantum dynamics. yon Neumann’s argument,?
for example, has an unsavory probabilistic air about it
since it invokes the random phase assumption. More
recently, Klein® and Emch® have dealt with the
problem rigorously by pointing out that von Neu-
mann’s classical mean-ergodic theorem applies to any
separable Hilbert space and so may be adapted to that
comprising the dynamical observables for a physical
system. However, their arguments are limited in the
same way as is von Neumann’s theorem and, there-
fore, cannot produce a general physical criterion for
equating infinite-time and ensemble averages whenever
constants of the motion exist which are not stationary
on every eigensubspace of the energy operator.

This paper represents an attempt to remedy the
present situation. A precise formulation of the
nonrelativistic quantum-ergodic problem is developed
which employs, in contradistinction to the work of
Klein and Emch, the notion of sfate in Lebesgue space,
rather than observable, as primitive. In this way it is
not difficult to illustrate the significance of the
formalism for quantum-statistical mechanics and to
outline its relationship with the ergodic problem in
Hamiltonian dynamics. The point of view taken here
thus differs in an essential way from that of the recent,
very interesting attempts to formulate quantum-
statistical mechanics as a problem in the theory of
Banach algebras.” In the C*-algebra approach, one
discusses only functionals on sets of observables for an

4 J. von Neumann, Z. Physik 57, 30 (1929).

5 M. J. Klein, Phys. Rev. 87, 111 (1952).

8 G. G. Emch, in Lectures in Theoretical Physics (University of
Colorado Press, Boulder 1966), Vol. VIII-A, p. 65. See also G. G.
Emch and C. Favre, “‘Coarse Graining in Liouville Space and Ergod-
icity,”” preprint, University of Geneva (1965).

7 See, for example, D. Kastler and D. W. Robinson, Commun.
Math. Phys. 3, 151 (1966); and R. Haag, N. M. Hugenholtz, and
M. Winnik, Commun. Math. Phys. 5, 215 (1967).
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infinite system, thereby obviating the existence of
recurrences. O the other hand, it has become
apparent”® that this approach has the bad side effect
of invalidating the use of compact density operators.
It will be observed that this phenomenon causes no
difficulty in what follows, when the limit of infinite
volume is considered.

THE QUANTUM-ERGODIC THEOREM

The ergodic problem is seen in the clearest light
when discussed in the language of measure theory.?
The physical motivation for casting the argument
into this form should become clear when the formalism
is brought to bear upon the subject of quantum en-
sembles in the next section.

Lemma: Let S be the product space generated by
the empty square @ X @ and the class of all rec-
tangles in £, x £,. Let A be the class of all subsets of
8. Then (8, M) is a measurable space.

Proof: 1f L is the class consisting of & (the empty set)
and all the subsets of £,, then L is certainly closed
‘under complementation and the taking of countable
unions. Thus L is a ¢ algebra. It follows by definition
that (£, L), where £} is £, adjoined to &, is a measur-
able space. Moreover, if A6 = L x L, then (£, x £,
L x L) = (S, M) is a measurable space because
there exist for every {y, ¢} € L) X £} the sets A and B
such that pe AeL and ¢ €B e L—which means
{v,9}eA xBelL x L.

Definition: The elements of the nonempty ordered
pair {y, ¢} € 8 are equivalent (y ~ ¢ in symbols) if
lpl = ¢l = (%, ¢)l = 1. An equivalence class in $
is therefore a square whose side is a unit ray.

Lemma: Let u be a function from the elements of
A into the set of extended nonnegative integers, such
that
cardinality of the collection of linearly

independent equivalence classes in

M x N if this collection is finite
+ oo if the collection is infinite

for any rectangle M x N € . Then (8, M, p) is a
measure space.

Proof: Evidently, x(M x N) >0 for any M x
N e Ut and pu( x @) = 0. If {M,} is a sequence of
disjoint rectangles, each of which contains at most a
countably infinite number of equivalence classes, then

#(M x N) =

8 The problem has been discussed carefully by G. G. Emch,
J. Math. Phys. 7, 1413 (1966).

® Those unacquainted with the basic notions of measure theory will
find them presented very clearly in P. R. Halmos, Mcasure Theory
(D. Van Nostrand Co., Inc., Princeton, N.J., 1950).
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the rule for adding integers requires that
p(UM) = 3wy
k=1 k=1

If one of the rectangles in the sequence contains an
uncountable number of equivalence classes, then the
above equality is perforce satisfied. It follows by
definition that u is a measure function on all of § and,
by the first lemma, that (8, A, x) is a measure space.

Lemma: Let {T;} be a single-parameter group of
one-to-one, unitary transformations of £, x £, onto
itself which are continuous in R. Then (S, A, u,
{T,}) is a measure-preserving space.

Proof: For any M € M and fixed t € R:

(a) T;' exists and T;'M € M because {T,} is a
group and T, maps £, x £, onto itself.

(b) w(T;"M) = u(M) because T, preserves the
scalar product on £, X f,.

For any M € 4G and any t in the Borel sets of R,
{T,} is a measurable transformation from (R! x 8,
B X M, vy X p)into (S, M, w), where B is the class
of Borel sets in R! and »,, is Borel measure. This is so
because {T,} is a continuous transformation and
because of statement (a) above.

Since T, is measurable and u(T;'M) = u(M),
(8, M, w) is by definition a measure-preserving space.

Definition: A Hilbert function is a composite,
elementary, complex-valued function on the ortho-
normal elements of 8. It is expressed by

(f(y) > H)(¢) =(k§,)fktk'x(Mk X M), 1
where t € R1,
My x Mgy = o (0 01 Mo e
My x My = {{, ¢} 3 (y, Hp)
= (om Hyl!) = fe}, ()

and the sum is over all {k,k'} corresponding to
distinct £, . Here H is a bounded, self-adjoint, linear
operator mapping £, into itself and ¢/ _is any one of the
countably many orthonormal vectors in £, which are
solutions of the Schrédinger equation
i
m%=3(:¢,",, (G=1"",min=1,--, o)
ot
&)
In Eq. (2) it is understood that unless (f(w)e-H)(g) is
identically zero, ¢}, ~yeM,, yi .~ ¢ € M,., and
the M, are not necessarily disjoint sets of orthonormal

eigenvectors. Moreover, |2, M, is equivalent to
the set of all orthonormal solutions of Eq. (3).
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Theorem. The infinite-time average
; .1 (T
v 1)) = lim [ UCfi) e ) di )

exists almost everywhere on (8, M, ) and is invariant
under the group of continuous transformations
{U,} generated by X in Eq. (3). Moreover, if S © 8
is a subset of finite u measure, then

f o) B du = f (ORI OYENG

almost everywhere (a.e.).

Proof: It is easy to deduce from Eq. (3) that, if € is
time-independent,
W:n = exp (—'JC’/h)% = Ull‘pfz’
where 4 is Dirac’s constant and o’ is one of the
orthonormal solutions of the eigenvalue problem

JC’)D1’1=E11'/):1 (j=1a"',"1n;n= 1,"‘,00),
E, being a real number. Thus

Ufuo(y) - H)(@) = (fo(U,p) ° H)(U,9) = (fi(y) > H)(9)

(6)
and, because {U,} is measure-preserving, each value
(at fixed {y, ¢}) of the time-dependent Hilbert
function is of the form

(,‘prjt ’ Hw;:i) exXp [—’(En’ - E")f/h],

which is strictly periodic in t. The measure | dt may be
suitably completed so that the integral in Eq. (4) is a
Lebesgue integral. In the present case the integral is
evaluated easily, with the result

(folw) e H)(9p) =(k2k,}f' we (M, x M),
where ’

My x My = {{, ¢} (v, Hp) = (vi, Hy}*) = f3-}.
@)

Equation (6) makes sense only if {y, ¢} is a member
of an orthonormal rectangle; the ordered pairs which
are not have 4 measure zero. It should also be noted
that
M, X M, ® M, X M.
But
p(My, x My) = u(M, x M). (3

The time-averaged Hilbert function is invariant under
{U,} because of Eq. (6) and because the ¢’ are
eigenvectors of J€.

Now suppose S is a subset of 8 such that {U} is

GARRISON SPOSITO

measure-preserving and u(S) < oo. Then
fs(f;)(’/)) > H)(¢) du E{kzk,ﬂk'ﬂ(s N M, x M)
and

[0 = 3 s M x m),

Because u assigns zero measure to every argument of
(fo(y) ° H)(¢) that is not an equivalent-ordered pair,
and because of Egs. (7) and (8) and the finiteness of

#(S),
fs (uw) » HX@) du = f JECRICYNE

except on sets of u measure zero.

QUANTUM-STATISTICAL MECHANICS

The principal result of the foregoing section,
insofar as equilibrium quantum-statistical mechanics
is concerned, is Eq. (5). Its application to the Gibbs
microcanonical ensemble becomes evident if, following
Lewis,® a maximal set of invariant Hilbert functions is

defined.
C=(C(y)° 0)gp) = {Cy, Cy, -~

is a maximal set of invariant Hilbert functions if
each of the C; = (C;(y)°0¢) (p)(j=1,---,N) is
invariant under {U,}, as defined in the previous section,
and if every measurable-invariant Hilbert function
(€(¥)° 0,)(¢) is a measurable function of (C(y)° 0.)¢)
almost everywhere on (8, A, u):

(g(y) ° 0,)(¢) = GI(C(y) ° O) ()] a.e.

If (8, M, u, {U}) is a measure-preserving space and
C is a maximal set of invariant Hilbert functions on
(8, M, ), then (8, A, g, {U,}, C) is called a complete

space.
Now suppose that a maximal set of invariant

Hilbert functions has been determined for some
physical system. Then, for all infinite-time averages,

(o(y) ° H)(9) = FI(C(y)° 0)(@)] ae., (9)

where H is a dynamical property of the system. If
some region of the “state space” (8, A, ) is measure-
preserving,

f FIC(p) = 0)(g)] du = f (v = BYXg) dies (10)
S S

according to Egs. (5) and (9). In particular, let
S = {{p, ¢} 3 [(C(y) ° Ox)(p) — K| < 0C}, (11)
where 3L e RY,
[(C()° 0p) (@) — Kl = {[(Cs(w)° Oc o) — Kil},

©, Cy}
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K; eR}, and 6C = {0C,;} is a very small interval in
RY whose (Borel) measure is determined by un-
certainty relations. Because (C(y)c°0:)(¢) is essen-
tially stationary on S,

F[(C(y) ° 0)(9)] = const = H(C(K). (12)
It follows from Egs. (9)-(12) that

A(S) = [ ) ) dufu(S),
or, in the notation of the previous section,

> fap(S O M, x M)

{k, k3
1y, ¢} [(C(y) ° 0c)(9) — K| < 6C)
(13)
Equation (13) is a generalization of the Gibbs micro-
canonical average.

The foregoing analysis provides a justification of
the Gibbs approach to quantum dynamics in the
following sense. If a maximal set of constants of the
motion is known for a chosen system, and if a
measure-preserving set in the “state-space” (8, M, w)
can be found upon which the maximal set is very nearly
stationary in value, then the infinite-time average of
any property of the system is equal to its (generalized)
microcanonical average over the determined set. It is
to be noted that

u(S O M, x M)
#{w, #}3 1(C(¥) ° 0p)(g) — K| < 6C)

is the “statistical weight” of the contribution of f3.
to the microcanonical average of H. The measure u
itself is analogous to the Liouville measure (Lebesgue
measure on phase space) encountered in the Gibbs—
Hamilton dynamics in that, if L is a subspace of
£, u(L x L) is the dimension of L.

Generalized canonical and grand canonical distri-
butions may be derived by considering physical
systems in weak interaction, in the sense of Lewis.3
The generalization of these distributions amounts to
replacing the conventional canonical partition function
by

(B) ={k2k’> [exp (= BOi(S N Py X Pyo),

where f = {f,, -

AcT&®) =

-, B} is an arbitrary vector in RY,
I\:
pC = },1/3 iCis
=

S is a measure-preserving subspace of S, and

P X Py = {{y, ¢} 2 (v, exp (—C)¢p)
= [exp (—BC)|x}-
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The arguments leading to this result are quite analo-
gous to those put forth for the classical case in Lewis’
paper, which may be consulted for details.

THE CLASSICAL LIMIT

In general, there is no classical limit of Eq. (13). A
classical limit will exist only if H and the maximal set
(C() ° 0)(@) possess classical analogs. If this condi-
tion is met, the facts that S is a product of invariant
subspaces and that unitary transformations on S are
measure-preserving may be used to rewrite Eq. (13)
in the “expanded” form

{Ek}fgw(s N My X M) =%(®p, Hzy), (14)
&

where &, is an eigenvector (in £,) of the kinetic
energy and P = {p;, p, " * *, Py} = {Ps}, P: being the
momentum of the ith of N particles making up the
system. [In writing down Eq. (14), the invariance
property of the trace under changes of basis is in-
voked.] The expression may be simplified a little by
noting that a sum over each of the P is the same as a
sum over the p; individually, provided the latter sum is
corrected by dividing it through with N!—the number
of ways of permuting the p; in a given P. Thus

1
D frwet(S "My x M) = — 3 (Zp, HZp). (15)
&,k N! @

The classical limit is obtained by writing

14
pz;_)ﬁ J‘dl’i

(in the sense of Lebesgue) into Eq. (15) and by
replacing @ p by its finite-volume, unsymmetrized
counterpart:

(kzk'}f;?k'#(s N M, x M)

—3N N
G feXp [—izpj . f;/h]H
N! i=1

N
X exp |:i2p,- . rj/h:I dv, (16)
=1

where » is the Liouville measure and the domain of
(Lebesgue) integration is understood to be the set of
all points in R*V whose images under the maximal set
of classical constants of the motion are, in a limiting
sense, stationary. Equation (16) is brought into the
desired form by making use of the following propo-
sition. Let 0 be observable and possess a classical
analog 0. Then

N N
0 = exp [—in,- : ri/h:|0 exp [iEPa- : r,-/ii], a7
i=1 i=1
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where N is the number of particles in the system
described by 0. Equation (17) is an immediate conse-
quence of the fact that observables with classical
analogs depend only upon fixed parameters, the
coordinates, and derivatives with respect to the
coordinates. Equation (17), when applied to Eq. (16),
yields
' -3y

S fou(S O My X M) _)(_2%%)'_ f Hg dv.

{5, 13 :
Once it has been noted that
wS = 3 (Yu pu) =

m,m'eMg

z (wm > Iwm'):

m,m’eMg

Mg = {{maml} 3 {Wm’ Wm’} €S; Yo ™~ Yo ™~ w:z}’
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where I is the identity operator, the denominator in
Eq. (13) can be transformed according to the argu-
ment just given. Equation (13) then becomes, in the

classical limit,
fHC dv
HET (X))~ lim ,
5Ce-0 v({p,r}3 |Ce{p, 1} — K¢l < 6Cp)
(18)

where C{p, r} is the classical analog of (C(y) ° 0:)(¢).

The quantity on the right-hand side of Eq. (18) is
Lewis’® generalization of the Gibbs microcanonical
average.
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The problem of finding a weighted average of an unknown solution to an inhomogeneous equation is
examined. An analytic approximation technique is developed in terms of an iterative series involving a
trial operator. By choosing the operator so that successive terms in the series vanish, one obtains a solution
which has characteristics similar to variational solutions to the problem. The iterative approach has the
added features of giving error estimates, the sign of the error, a testing ground for the quality of classes of
trial operators or functions, and a possible means of determining upper and lower bounds to the exact
result. Several examples are given for both self-adjoint and non-self-adjoint systems. It is shown that the
trial operator approach can give useful analytic approximations, with results which may be superior

to variational calculations.

Consider the class of problems characterized by
the equation
Hy =5, 1)
where H and s are a given operator and a given
source, respectively, and ¢ is the unknown solution.
Assuming that Eq. (1) is not amenable to exact solu-
tion, one must resort to approximate methods. A
conventional approximation technique to equation
solving is by iteration. Equation (1) may be put into
a form which is convenient for iteration, by formally
dividing H into two parts:
H = Hy+ H,. (2)
The hope is that the operator H, is a good representa-
tion of H. That is to say, H, is assumed to be the
major part of H, while H, is treated as a perturbing
operator. Using Eq. (2) and assuming that H, is
nonsingular, Eq. (1) may be rewritten as
yp = Hy's — Hy'Hiy, ©)

which is now in a form that is convenient for iteration.

A first approximation to ¥ may be obtained by
neglecting the term in Eq. (3) which involves the
perturbing operator H;:

= Hys. @

Iterating once on this first-order solution, a second-
order approximation is obtained,

v® = Hy's — Hy'H Hy's, %)

and this process may be continued.
Suppose one is interested in a weighted average of
the unknown solution

I= (w, ), (6)

where w is an arbitrary weight function and the
scalar product (f, g) denotes integration of the two
functions f and g over the entire domain of interest.
A first approximation to 7, the integral of interest,
may be obtained from Eqgs. (4) and (6):

IV = (w, Hyls). N
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To second order, from Eqs. (5) and (6) we have

I = (w, Hy's) — (w, Hy'H,Hy%). (8)
The general result is
It = Jm) 4 (=1D)"R,,
19 =0, C)]
where
R, = (w, [H3"H,]"Hys), (10)

forn=0,1,2,---.

Note that the “remainder terms™ R, are of nth order
in the perturbation H;'H,. Assuming that the itera-
tion procedure given by Eq. (9) converges, one may
write the formal solution for the integral I as the
Neumann series

I=3(—1)"R,.
n=>0
(Note that, by definition, R, = I¥.) How well the
iteration procedure (9) or the series solution (11)
converges, will depend, essentially, upon how well H,
represents H.

The remaining problem then is the determination
of H,. Clearly, one good criterion for finding the
“best” H,, would be to reduce the perturbation H,
as much as possible (in some sense); for example,
one might require that the norm || H;1H,| « 1. This
choice of H, and H, should certainly give a rapidly
convergent solution. Finding this best H, is, of
course, another problem.

Suppose, however, one is able to make only a
limited number of iterations due to practicality. This
may be due to time or economic considerations, or
perhaps the desire for an analytic solution causes this
limitation. We propose to treat H, as a trial operator,
determining it by a scheme which is especially useful
when one is limited to a smali number of iterations.
Furthermore, we give here a specific procedure for
the determination of H,.

Suppose we formally choose Hj such that R, = 0.
It follows from Eqgs. (9-11) that

I = [

(11)

(12)
and
]=[(1)+R2_R3+....

This choice of H, thus eliminates terms of first order
in H,, and the quantity of interest I is calculated
accurate to second order. In this sense, this procedure
should give results which are equivalent to a varia-
tional formulation of the problem which renders a
functional stationary to first order. Furthermore, if
we require that

Ri=Ry,=--=R,=0, (13)
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then, at least formally, the integral 7 will be calculated
accurate to order (n + 1). This should be equivalent
to higher-order variational principles.

A general expression for the remainders R, , which
involves only H, and known quantities, may be
obtained from Eq. (10). This is

R, = (w, [He'HI"Hgs) — (w, Hg's)
nt n!
-y ———R,,.
m=1 ml(n — m)!

(14)

Equation (14) gives a direct relation between H, and
the remainders R,. If we require that all the lower-
order remainders vanish (R,, = 0, for m < n), then
the nth-order remainder is given by

R, = (w, [H'H]"HG"s) — (w, H3"s),

forn=1,2,3,"--.

We still require a concrete method for finding an
operator H, which satisfies the set of conditions (13).
One approach is to introduce free parameters into
the trial operator and then fix the parameters by
requiring that the conditions (13) be satisfied. If one
wishes, the trial operator may be determined in
terms of a trial function y,. For example, let y, be
the solution to the fundamental equation (1), with H
replaced by H,:

(15)

Heyy,=s or Hy's=y,. (16)

Equation (16) does not yet determine H, uniquely.
How specific one must be about H, depends upon the
type of calculation one is performing. In some cases,
for example, if we require that H, be self-adjoint,
then only the combination Hj's may appear. In
these cases it is sufficient that H, satisfy Eq. (16) and
nothing additional is required. In other cases, an
explicit expression for H;! is needed, and then a
particularly simple choice, for example, is to choose
H{' as a multiplication operator. That is to say,

Hg' = wpyfs. a7

By the use of trial functions with free parameters
one also has an indirect means of introducing param-
eters into the trial operator:

Hg'(kchp+ - )s = plichp - - *). (18)
If we have an n-parameter trial operator, it may be
fixed by requiring Eq. (13) to hold, and then 7 is
estimated to order (n + 1).

We will now apply to some general examples the
formal theory which has been developed. At the same
time we will compare the iterative approach involving
trial operators given here with variational formula-
tions of the problems. Consider first a self-adjoint
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operator H. The functional

F(y,) = 2(s, v) — (v,, Hy,) 19

has the property of being stationary about the
solution g to Eq. (1), with the stationary value of the
functional being I = (s, ). If we use as the trial
function

Y = Af()C),

where A is a free arbitrary constant and f(x) is a given
fixed function, then the functional (19) becomes (note
that everything is assumed to be real here)

F(A) = 24(s,f) — A%({, HY).

The amplitude A which renders this functional
stationary is that satisfying the condition 9F/04 = 0.
Putting this value of 4 back into the functional
in order to obtain the stationary value, as the varia-
tional estimate to J we obtain

F = (s, /I, Hf). (21

The iterative solution to the problem is obtained by
requiring that R, = 0. In this example, the weight
function w is equal to 5. Putting this into Eq. (15) for
n = 1, we have

(20)

Ry, = (5, Hy'H Hj's) — (s, Hy's). (22)
The trial operator may be chosen as
Hy's = Af. (23)

This choice is consistent with Eq. (20) for comparison
purposes. For this problem, the only requirement
additional to (23) that need be made on H, is that it be
self-adjoint (and not necessarily multiplicative). In

this case, R; may be written as
R, = (H's, H Hi's) — (s, Hy's), (24)

and H, now appears only in the combination H's.
After applying Eq. (23) to (24), the latter becomes

Ry = A*(f, Hf) — A(s, [).

For R, to be zero, a nontrivial 4 must be given by

A= (s, NS HS). (24)

This gives, for the iterative solution to the problem,

[® = [V = (s, H's) = A(s, ) = (s, fV(f, Hf).
(25)

For this case, the iterative result (25) is identical to the
variational result (21).

A second parameter « may be introduced into the
trial function by putting it into the function f(x); in
other words, y, = Af,(x). The two methods again
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give the estimate
(8, /)*/(fas HD

for the weighted average I, but the values of « will
differ in general. The variational estimate is deter-
mined from the conditions

(26)

oF OF
A 27

whereas the iterative result comes from the solution to

Ry(A, @) = Ry(4, o) = 0. (28)

Whether one estimate will be better than the other
depends upon the particular problem. For example, if
the problem is such that /is an extremum for Eq. (26),
then the variational result will be superior, because
Eq. (27) is an extremum condition. However, if the
problem is not an extremum, then the two approxi-
mations are on a par with each other and it is difficult,
in general, to choose one over the other. The class of
problems which are not self-adjoint is an example of the
latter situation.

A specific example in which the iterative result is
superior to the variational result is given in the theory
of resonance absorption of neutrons. This example
will be discussed in detail later.

We are trying to indicate that the iterative approach
involving trial operators is useful for obtaining
analytic solutions and is particularly convenient when
a limited number of iterations are required. The latter
condition exists not only because higher-order
iterations may become increasingly complex, but also
because it is not always clear that the series (11) con-
verges. However, we have no intention of summing
the series, but only to obtain an “asymptotic type of
approximation” in the sense that we have described.

It is conceivable that with a particularly poor
choice of the trial operator, even though R, is chosen
to be zero, the next term in the series R, may be large.
But this same situation exists in variational calcula-
tions. One can render a functional stationary to first
order, but, by choosing a particularly poor trial func-
tion, the second-order terms may be large, thus
producing a poor estimate of the stationary value,

We do not claim to have a method which is gener-
ally superior to variational formulations, but only
claim that this approach is a comparable approxi-
mation technique. However, the iterative approach
does have the additional advantage of containing a
great deal of other information. If the solution
R,(H,) = 0 gives a reasonably convergent series, then
the remainder term R, contains much information
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about the approximation. This includes:

(1) If R, is small with respect to R, = I, this is
an indication of the reasonableness of the approach,
and R, gives one an order of accuracy estimate of the
approximation [ = ™,

(2) The sign of R, indicates whether the approxi-
mation is an overestimate or an underestimate of the
exact result. Again this depends upon the series ap-
proximation being good, since we are neglecting other
remainder terms.

(3) By putting different classes of trial operators
into R,, one has a means of testing their quality with
respect to the particular calculation. Hence, without
knowing the exact result, one has a direct means of
comparing different classes of operators or functions.

(4) By choosing forms for the trial operator or
function so that one obtains both positive and negative
values for R,, one may be able to bound the exact
result from above and from below. This would be an
accomplishment for non-self-adjoint problems, since
such bounds are especially difficult to obtain by other
means.

We now give some examples which we hope will
establish the utility of the technique. Mathematical
rigor is not intended. We simply wish to indicate that
when good trial operators are used, not only does one
obtain a good approximation to the exact answer, but
additional valuable information may be obtained from
the iterative series.

Consider the self-adjoint problem

Hy(x) =5, —a<x<a, yw(xa)=0, (29
where H is the one-dimensijonal operator
1 4
H=1-~=—
«* dx*

This system of equations may be used to represent
the diffusion-theory problem as treated in Ref. 1.
If we choose the trial operator as

Hy's = Af

for arbitrary A4, then the solution for R, = 0 is given
by Eq. (25). This is identical to the variational solution
of the problem. If s is spatially independent, then the
weighted average I = (s, p) is related to the spatially
averaged flux (¢ = I/2as). The approximate solution is
given by Eq. (25) or by

$ = (s/2a)(L, fY/(f, Hf). (30)

For any given shape function f(x), the approximation
to the spatial average ¥ is determined by evaluating

1 R. Goldstein, J. Math. Phys. 8, 473 (1967).
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the scalar products in (30). There are a number of
possible trial shapes. For example,

fi=a*—x? or f,=cos (m2a)x.

€29

Both of these functions are symmetric in x and satisfy
the homogeneous boundary conditions in (29).
Which trial function shail we use?

We can make use of the R, term in the iterative
series to test the quality of the trial functions without
reference to the exact answer. If we choose H, as a
multiplication operator (H;! = Af]s), then we have
from Eq. (15) that

Ry(Hy) = A: (f, HUHfD — AG.f).  (32)

From the equation for R,(H,) =0 [i.e., Eq. (24)],
the amplitude A is given by
A = (s, )/, Hf).
Applying Eq. (33) to Eq. (32), we have that
LOU HUHNL
(/. Hf)?

If each of the trial shapes (31) are now inserted into
(34), the results are

(33)

Ry(f) = }1‘“(f). (34)

_1 (xa)*
R =4 ey + stear 7%

which varies from 0 to 7.14 % of IV as kg varies from
zero to infinity, and

Ry(f2) = (0.081)1(fy),

which is 8.1% of IV for all «a.
We immediately learn the following from this
calculation:

1(1)(f1)9

(1) The results are accurate to the order of 10%.
This is not to be taken rigorously, because we are
using only the first remainder in the series and we have
not evaluated the other terms, R, for n > 2. We are
using this R, calculation as an indicator more than
anything else. The smallness of R, suggests the
reasonableness of the approximation.

(2) Because R, is positive in both cases, both trial
shapes yield what is apparently an underestimate to the
exact result.

(3) Since for all xa, Ry(f)/I™(f)) < Ro(f)IV(S),
/1 appears to be better than f; as a trial shape.

All of this additional information about the ap-
proximation was obtained from R, without much labor.
We now compare the approximate solutions (30) for
each f, with the exact result.
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F1G. 1. The exact solution (F) and the iterative estimates (/, and
F,) for the average flux () as a function of «a.

Let F = s*. The exact solution to Eq. (29) for
Fis
F =1 — (ka)™* tanh «a. (35)
The approximate solutions are
_Qa7'(1, ) _ _0811(xa)® (
(f1» HfY) (ka)® + 2.467

36)

and
r_ QL) 0.833(ka)®
T (o Hf) (ka)* 42500

Equations (35)-(37) are plotted in Fig. 1 as a function
of ka. From the figure, we note, indeed, that both
approximations F, and F, are reasonable, both are
underestimates to the exact result, and F; does give
the better estimate. The actual errors vary from 0 to
16 %, so that even the errors are reasonably predicted
by R,.

We chose a particularly simple case to illustrate the
utility of the method. Actually, the operator used here
is positive-definite, so that we had a maximum
principle.! Thus we had other means of obtaining
some of the above information. However, in the next
example, involving a non-self-adjoint operator, we do
not have an extremum and the information obtained
from R, is even more revealing.

We consider the problem of resonance absorption
of neutrons in a homogeneous mixture. The equations
here are not self-adjoint, in general, and they may be
put into the form of Eq. (1) by writing?

H=s + ¢ — Ko,,

where K is a slowing-down integral operator of the
Volterra type and the other terms are known cross
sections:

(37

u —(u—u’)
K = du’ .
u—A 1 —«

2 R. Goldstein and E. R. Cohen, Nucl. Sci. Eng. 13, 132 (1962);
R. Goldstein, “Intermediate Resonance Absorption” in Reactor
Physics in the Resonance and Thermal Regions (The M.LT. Press,
Cambridge, Mass., 1966), Yol. 11, p. 37.
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An appropriate trial function for the flux per unit
lethargy v is given by
S+ Ao,
s+ o, + Ao,

This trial function has the property of being normal-
ized to unity above the resonance and of yielding the
corresponding wide- or narrow-resonance solutions
when 4 is set equal to zero or unity, respectively.
The problem is to find the value of the parameter
A for each particular resonance, and then the corre-
sponding resonance integral. For the variational
solution to the problem one can construct a
functional analogous to Eq. (19), which has the
resonance integral as its stationary value. However,
since the problem is not self-adjoint, one has to
examine the equation adjoint to Eq. (1) and use
correspondingly appropriate adjoint trial functions.?

The iterative solution to the problem may be ob-
tained by choosing the trial operator as

Ya (38)

Hy's = v, = (s + 106,)/(s + 0, + Aa). (39)

When H,;1is needed explicitly, we take it as a multi-
plication operator, which means that we need not con-
cern ourselves with adjoint trial functions or operators
for this iterative approach. The iterative solution for A
is obtained from the equation R;(4) = 0 and is given
in the notation of Ref. 2 by

A=1—X,. (40)

The solution (40) has the appropriate behavior in the
limiting narrow- and wide-resonance extremes. Once
the parameter A is known, the resonance integral may
be found directly.

The R, calculation is more complicated. Assuming
that R, = 0, we obtain after some manipulation (in
the notation of Ref. 2, where I* stands for the
“infinite-dilution resonance integral’)

e IR R
/R %)E B ;2 ﬂ%(l + 2_A4tan-1 %)

N

B —ﬂf( A ! v—lA) ]
—— + —-tan” 1
+ B A2+4+A an— 3 +

2
+ (?) [1 + %(ZA tan'A — Atan™* %)

—~ log (1 + A?) + 21log (1 + %—)
A2
+ 250 -6, -8 - J(o,on] - 1},
(41)
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where
2 2
A = é?&_';'ﬁ& , A= fi,
ﬁ}. ﬁl
and
J(A, —A) =J ix stan”! (x — A) tan™! (x + A).
—® X

The J integrals are easily evaluated numerically
[/(0, 0) = #%/12].

As a specific numerical example, we consider the
192 eV resonance of U238 in a 1l:1 atomic-ratio
mixture with hydrogen. This resonance is chosen
because it is poorly represented by the narrow- or
wide-resonance approximations and thus constitutes
a good intermediate case.?

If we call i, the solution to Eq. (40), then the
resonance integral is given by

I = I*/ﬁlga

which is 0.165 b for the above example. Note that it is
not necessary to evaluate R, in order to obtain this
result.
If we do evaluate R, for this case, we find from Eq.
(41) that
Ry(4) = —0.010 b.

This calculation reveals two things: The accuracy is
of the order of 6 and the approximation yields an
overestimate to the exact result.

Consider now another possible trial operator

Hi's =y, = (1 — wfy + ph, (42)
where
f,1=—s—+—laL for A=0 or I.
s + o, + Ao,

This trial form has properties similar to that of
Eq. (39). Equations (39) and (42) are identical for the
limits 4 = A =0 and u = A = 1, but they differ for
the intermediate cases.
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If we call g, the solution to R,(x) = 0, then

I=1*%p, =0.159b
and
Ry(pe) = +0.003 b.

This approximation thus apparently yields an under-
estimate of the exact result, to an accuracy of the order
of 2%.

Assuming the two approximations are reasonable,
we have succeeded, therefore, in bounding the exact
stationary value (the resonance integral) to this
non-self-adjoint problem:

0.159b < 1 < 0.165b. 43)

A numerical evaluation of the integral equation?
gives for the “‘exact” resonance integral

T exaes= 0.161 b.

Not only does the exact result fall nicely between the
bounds of Eq. (43), but it is slightly closer to the lower
bound, as predicted by the R,’s.

The corresponding variational calculations for this
problem? yield for the resonance integral / = 0.173 b.
The iterative results thus give approximately a 5%
improvement over the variational estimates.

We see, therefore, that excellent results may be
obtained by the trial operator approach. We do not
claim that these isolated examples imply the universal-
ity of the method, but we hope to have established the
usefulness of the approach.
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The ladder-approximation Bethe-Salpeter equation for a bound spin-} fermion-antifermion system of
zero total mass is reduced in the general case to coupled radial equations for general radial potential
functions, Symmetries of the radial equations are also demonstrated.

I. INTRODUCTION

The angular analysis of the ladder-approximation
Bethe-Salpeter equation for a bound spin-} fermion-
antifermion system has been investigated by Giinther,!
Kummer,? and Delbourgo et al? In the last paper,
the Bethe-Salpeter equation is completely reduced to
a set of coupled radial equations for a special class
of representations of the symmetry group N,p of the
equation. We extend this by performing a reduction
for all classes of representation and by considering
general radial potential functions. A feature of the
approach is that only ordinary three-dimensional
Clebsch-Gordan coefficients appear.

II. MOMENTUM OPERATORS

With a spin-4 field operator (x), the momentum
operators P, , M,,, satisfy the commutation relations
(for details of conventions and notation, see the
Appendix)

[Py, p(x)] = i0,p(x),

M, (0] = {i(x,0, — x,0,) — dou}p(x). (1)
Taking the Hermitian conjugate of (1), and inserting
y, where appropriate, we have for the adjoint field
7 =97

[P, P(x)] = i0,p(x),

M,,, P] = $li(x,0, — x,0,) + }o,}. ()

Let |B) be a spin-} fermion-antifermion state in the
Heisenberg picture and consider the two-body wave-
function or amplitude defined as

11, X9) = O] T{p(x2)9(x2)} |B)> 3)

where T is the Wick chronological product operator.
[We follow the usual practice of regarding y as a
4 x 4 matrix whose (u, v) element is

Xy = OF T{w,(x1)%,(x2)} |B).}

1 M. Giinther, J. Math. Phys. 5, 188 (1964).
2 W. Kummer, Nuovo Cimento 31, 219 (1964). i
3 R. Delbourgo, A. Salam, and J. Strathdee, Nuovo Cimento 50,

193 (1967).

We wish to identify the operators &,, A,,, which,
acting in y, are equivalent, respectively, to P,, M,
acting on |B), i.e.,

Fux = O T{p(x)P(x)}P, | B),
Mowz = O T{p(x)P(x)}M,,, | B). @

Using the commutation relations (1) and (2), we
find indeed

ﬂ’”x = _iAqu
*MJ;WZ = -—i{(XyAv - X\'Ay) + (xyav - xva”)}x
+ %[G;‘v; x]a (5)

where x = x; — x;and X = y,x; 4+ p,x, for arbitrary
Ha> My satisfying g, + p, = 1 and where 9, A are
derivatives with respect to x, X, respectively. In the
center-of-mass system we have

2= e Ff(x), (6)
where FE is the total energy of state | B) in that system,
and X, = iT.

For a system so tightly bound that E vanishes,* the
expression for A, simplifies to

‘M’uv = _i(-xuav - -xvay) + %[o'uv, ] (7)

II. BETHE-SALPETER EQUATION

For a suitable range of £, Wick® showed that the
Bethe-Salpeter equation may be analytically continued
in the relative coordinate x, (and its conjugate
momentum p,) between real and imaginary axes. We
assume such a range for E in the following, taking x,
and p, real.

Separating x according to (6), in ladder approxi-
mation, the Bethe-Salpeter equation in the Euclidean
relative-coordinate space becomes

(y+ 0 — ipEys + m)f(x)(y - 0 + igEyy + my)
= —AUf(x),
or briefly
Bef(x) = —AUf(x), (8)

4 We ignore, in common with other authors, the fact that a
center-of-mass system does not exist for zero-mass states.
5 G. C. Wick, Phys. Rev. 96, 1124 (1954).

1462



BETHE-SALPETER EQUATION

where the linear operator U describes the interaction
between the fermion of mass m, and the antifermion
of mass m,.

The most general form of potential we shall con-
sider is given by

Vf = Vs(R)f + Vi (Ry,fy. + 2V r(R)o, fo,,

+ Va(Riysy,fiysyn + Ve(R)ysfrs. (9
The set of 16 linear operators {§ ,}, defined by
P4f(X) = v f(¥)y4 (not summed), (10)

forms an Abelian group whose simultaneous eigen-
functions are yp.
If we define
I, = E Pa>

A€i

(1n

summed over all y, in ', fori =1, 2, 3, 4, or 5, we
may write

VU =3 V(R (12)
Now f'may be expressed as
5

f=3 X, (13)

where for each i
fly=23 fyy4 (nosummationini,lhs), (14)
so that e
Vf = Z %(R)fjfipi = Z e VARV, (15)
where N Y
I, = ¢,T;. (16)

The numerical values of the coefficients c;; are given
in Table I. For E = 0, we find

(B, Uy — I51f = —20m, — m)To(fy - 3 — 5 - 3f),
[By, Iy — 11 f = =20m, — m)ls(fy- 0 — v - 3),
(17)

so that, when m, = m,, there are two operators that
commute with $,. They are, however, algebraically
dependent so we select one of them

®=T5 -1, (18)

TasLe I. Coefficients c;;: lA‘.»l‘, = ¢l

Fl PZ F3 Fl 1‘5

J A 1 1 1 1
., 4 -2 0 2 —4
" 6 0 -2 0 6
| Rt 0 -2 —4
1, 1 -1 1 -1 1
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for further consideration. Its eigenfunctions vy,

belong to eigenvalues —3 (for y, €Ty, I'y), 1 (for

y4€1s, Ty, and 5 (for y, € I'5).¢ One may regard

its commuting as being responsible for the well-known

decoupling of S-V, T-A4, and P sectors when m, = m,.
Clearly

[R, V] =0, (19)
and one may readily show that
[R, f,,] = 0. 0)
Since
[‘M’uv’ $0] = [‘M-’yw ‘17] = 0: (21)

we may require solutions of (8) for £E=0 to be
simultaneous eigenfunctions of a maximal commuting
set of the M,,,, and of R as well when m, = m,.
Define, for i, j, ke 1,2, 3,
Ji = deiphon, Qp = $(Moy — My)

or, since M, = — M

22)

uv >
Ji= Moy, = — My,
Qi = My = — My,
where i, j, k cycle 1, 2, 3.
Intercommutation relations between the M, imply
Vi, Il = iy, [Q:,s 0,1 = ie;pdys
Vi, Q1 = i€ Qr = [Q:, 7]

(23)

(24)

Also,
o= 3oy, Mo, = I* + QP
ﬂ = i‘/K";f:‘/K)uv = %e_uvn'pdk’lm‘M’yv = J ¢ Q (25)
commute with all A(,,, and hence with J; and Q.
A maximal commuting set is then given by
Set | {0(, ﬂ, JZ’ Ja}s (26)

where we recognize J as the ordinary angular-mo-
mentum operator. Indeed, for spin-zero particles,
the operators corresponding to M., are obtained from
(7) by omitting the }[o,,, ] term, and in terms of
spherical polar coordinates (R, v, 8, ¢),

_# .30 _a
D=3k TR &
2 2
oz=—a—2—2cotrpi+ ‘JZ
U oy sin’y @7
. 1 a(/. . @ J2
J =——7-—(51n0— —3
sin 6 90 o0 sin® 0
0
Jg= —iZL
3 ’a¢

¢ Since R has three eigenvalues, it satisfies a cubic equation so
that there exist no further algebraicaily dependent but linearly
mdependent’\ operators commuting with $, than the above, and
the triviall',.
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so that the four-dimensional surface harmonic?
sin® pCoi(cos ) Y, (0, 4)
is simply a simultaneous eigenfunction of-o, J2, and

J3 belonging, respectively, to eigenvalues n(n + 2),
I(/ + 1), and m. (In the spin-zero case # = 0.)

IV. BISPHERICAL BASIS

Let us exploit the homomorphism N, ;. ~ Ng;, X Nap
by considering the alternative maximal commuting
set:

Set 11 {2 I35 )3 I3, (28)
where 8
It =1(J £ Q). (29)

The J* behave as a commuting pair of angular mo-
menta, and we may write

JE = L+ 4 S=, (30
where

Lf = —4i{(x,0 — %:0,) & (x; — x:0)},

S* = How £ 04y ] GD

All commutators between L} and Sj vanish, other
than [LF, LT], [L7, L7], [S}, ST, and [S7, S5 1.

Combining eigenfunctions of (L*)2, L}, (S*)2, S in
the familiar fashion with Clebsch-Gordan coeffi-
cients, we can therefore build eigenfunctions of (J*)°
and J;, and simultaneously we can build eigen-
functions of (J7), J; from eigenfunctions of (L™)2,
Ly, (S7)% and S5 .

First, consider simultaneous eigenfunctions of (L*)?,
L} . Spherical polar coordinates are no longer ap-
propriate. Instead, consider “bispherical” coordinates
(R, v, w, $) defined by

x, = Rsin v cos ¢,

Xy = Rsinvsin ¢, (32)
x3; = Rcos v cos w,

x4 = Rcos vsin w,
and with ranges: R € [0, o), v € [0, 47], ¢ € [0, 27),
and o € [0, 27). R and ¢ coincide with the spherical
polar coordinates represented by these respective
symbols. Since (L+)? = (L")?, we denote these by L2
One finds that

= 12 ot 2 -y + @y
4 9r* ov sin®2y
- L) 69
sin® 2y

7 C. Schwartz, Phys. Rev. 137, B717 (1965).

8 At first sight, the complete reflection operator G, with Tf(x) =
ysf(—x)ys, would seem to extend Set 1I. In four-dimensional
Euclidean space, it is, however, not independent of the rotation
operators and one finds G = exp 2miJ *) = exp (—2miJ F).
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Ly = 34)

(2 2)
0¢ ~ do
Normalized, properly phased, simultaneous eigen-
functions are given in terms of Jacobi polynomials by
Z (¥, @, 45)
- (_1)%(m+1m|)N Sin|m| "
x cos' ™! vP,(lg'('[,lnﬂl)m,l,(cos 20)e "™

— (__1)%(m—klmI)Nglerm‘(v)ez‘mdzeim'w

= (=D} N H e (3, @, B), (35)
where / =0, §, 1, §,- - ; and given /, the m* are in
the set —/, —/+ 1, -, ]; m=mt4+m, m =
m* — m~, The normalization constant

2041 (L4 m)I(l — m-n}%

272 (I 4+ m(I - mH)Y

lm=| > |m*],

|

for
or

_ {21 +1 4+ m"H{I— mh) 2
27 (I 4+ m)( — m")!}
for

|m™| > [m~|. (36)

Next, consider simultaneous eigenfunctions of
(S*)?and S;° . If the quantum numbers corresponding
to (S%)? are s*, one finds that for y , € (I';,I'g), s = 0
while for y, € (I'y, Iy, st = }. One also finds that
the three linearly independent matrices of type
(1 — ys)'yhave st = 1 and s~ = 0, while the matrices
of type (1 + y;5)I's have s+ =0, s= = 1. Selecting
now eigenfunctions of S;° corresponding to quantum
numbers m/}, we have, after defining

of = 270 £ i)
1
oy =27 (ys £ iyy), (37
the results displayed in Table 1I. We may regard the

TasLe II. Dirac-space eigenfunctions.

Eigenfunctions

m, m; (not normalized)
st=s5 =0 0 0 I s
3 3 —oy, —iys0f
—_ —_ oT V507
st=35"=1% % % L1 .7,_5.1 —
B —3 103, i f?so'z N
—3 3 —ioy, —1iys02
1 0 aioy
st=1,s-=0 0 0 —2-ti(otoT ~ 03 03)
~1 0 —opo;
0 1 oy oy
st=0,5" =1 0 2-ti(oT o] — 0Z0%)
0 —1 —01 0%
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matrices shown as a bispherical basis for the Dirac
space of 4 x 4 matrices.

Since normalization of the Dirac-space-matrix
eigenfunctions is achieved by requiring Tr (4+4) = 1,
each eigenfunction in Table 11 must be multiplied by
a normalization factor, N = $.

Denoting o;°, by 0, , with u = (+ = —) anal-

12 n t212)p
ogous to the property [y,, 7.}, = 20,,, we have
[0, 0.}, = 20,,, where d,, = 1 when u, v have the
same numerical index and opposite sign index, and
d,, = 0 otherwise.

V. REDUCTION OF THE EQUATION

Consider now the equal mass case m, = nmy, = m.
In the S—V sector, since st = 0 for the § term, we
must have j*+ = j~ (=, say). Distinct radial func-
tions will exist for each / value for each type (S or V)
of term. For the S term we have simply /g = j, but for
the V terms, since s* = }, we have /;, = j 4 3 for
j # 0. Written in full, the solution must therefore be
of the form

Simtm (R, v, ©, ‘?S)
= fs(R)Z; s m-31
+ /R 2 G+ imf mi|jm®)
x (j + —% % mi_ m; Ij'n_)zj+%mz+m;‘Ams+mg‘
FhAR) 3 (= dami | jm)
X (.] - % % mr m: ljm—)zj"%ml+merms+ms" (38)

where (/sm, m,| jm) are Clebsch~Gordan coefficients
and A, +,, - are [';-type eigenfunctions from Table 11,
normalized. In order to perform the reduction, the
Bethe-Salpeter equation must now be written in terms
of bispherical coordinates and matrices, and this is
done in the Appendix.

Define
0 ,2(j+ o)
Df = — 4 =4, 39
OR R (39)
We note that
D:+1D;—% = D;—ID:F%v (40)

and that if y,, . is an eigenfunction of L? with quantum
number j + a, then

e = D;%D:+11/f'a‘+a = D;+%D;’Pi+a- (41)
If we define
5
V= Zlcjz‘Vj(R)’ (42)
iz

the radial equations obtained after substituting f;,,+,,-
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into the Bethe-Salpeter equation are
{ Dj Dy

D—%D+}S + 2m(Div, + Dyvy) = ~(m’ + A7y)s,
4Dy

(43a)
Dy{Div, + 2(j + (D30, + ms)}
= —(2j + D(m® + AV)v,, (43b)

D'f{—D;l_,v2 + Zj(Dg.rv1 + ms)}

= —(2) + D(m? + APv,, (43¢)

where
s=@Q+ DY, o=~ + O, va= it
(44)

In Eq. (43a), the operator pairs DyDy, D7, Df are
to be regarded as alternatives according to Eq. (40).

When j = 0, [, has only the value §, then instead of
Eqgs. (43) we have

Di(Dys + 2mv,) = —(m’ + AP)s,
Dy(Div, 4 2ms) = —(m’ + APpv,.  (45)
In the T4 sector, if the / quantum numbers for the
(1 + y)l'y, (1 — y,)Ty, and T'; terms are respectively

Ip+, lp-, and 14, then j* and j~ must simultaneously
satisfy a combination of the following possibilities:

Jt=1Ip, lp- lp- 21, L+ 4,
Jo= e lpy £ 1, Ip-, S 2
where the signs in the last column are not correlated.

There are therefore three possibilities:

(A) jr=j=j (G#0, lp=lp =}
ly=j+1%;

®) jr=j —1=j lpe=j Ilp-=j+1,
Ly=j+4;

© jr—l=j=j  lpe=j+1, Ip-=}
li=j+43.

Case A: There are four radial functions f;(R),
Jr2(R), f41(R), and f,,,(R) corresponding respectively
to terms of type (1 — yu)l's, (1 + y5)I'y, Iy with
ly=j+ 4%, and Ty with [, =j— }. The coupled
equations obtained after substitution into the Bethe-
Salpeter equation are

DDy + - ) _
{D?D—}w + 2m(Dga, + DZia,) = —(m* + AVy)w,
20 (46a)
DE{—Dgal + 2j(D_3a; + mw)}
= —(2j + D(m* + AV)a,, (46b)
D{Dl3a, + 2(j + 1)(Dia, + mw)}
= —(2j + D(m® + AV,)a,,

{DID; — (m" + AVy}w = 0,

(46¢)
(47)
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where
a = j*fAl y ax=(j+ l)ifAzs
w =242 + D} fp + fr0),
w =274 + O} fp — fro).

Case B: The three radial functions fpy, f7,, and f
give the coupled equations

(48)

D; D}
{ ? +}a + m(D§t, + Dyty) = —(m® + AV)a,
D, Dy (492)
D}(Dyt, + 2ma) = —(m" + AVy)t,,  (49b)
Di(Dit, 4+ 2ma) = —(m" + AVt,, (49c)
where
a=fy =2, =20 (50

Case C: There are three radial functions as for Case
B satisfying

D:D; —s & D+ 2

2 ila + m(Dgty + Dity) = —(m* + AP)a
Dy D3

(51a)

Di(Dyty + 2ma) = —~(m" + AV, (51b)

Dy(D;t, + 2ma) = —(m" + AF)t,. (5lc)

In Case A when j = 0, there are no tensor terms,
and /, = } only. Instead of (46), we therefore have
the single radial equation

{DyDf — (m* + APp}a; = 0. (52)

In the P sector, since s* = 0, we have j* = j~ =
lp = j and (with p = fp) the equation

{DiD; — (m" + AVy}p = 0. (53)

Equations (43), (46), and (47) are the analog, for
general potentials, of the momentum-space equa-
tions obtained by Delbourgo et al® A complete
solution fj+;-+n~(R, v, ®, ¢) of the Bethe-Salpeter
equation, involving angular variables, can be
obtained from any radial solution by appropriate
combination with Z functions and Dirac matrices
[see, e.g., Eq. (38)].

To recover the ordinary angular-momentum con-
tent has only to note that

J=J+7J,
m=m"+ m,
so that
; (j+j_ mt m” I IM) [ mtm s (54)

m m

fitiam =

where once again three-dimensional Clebsch-Gordan
coefficients only appear.

R. F. KEAM

VI. SYMMETRIES

Consider the substitution j — —(j+ 1). Under the
simultaneous substitutions s — s, v; — v,, and vy — vy
Eqgs. (43) are invariant. Under the simultaneous
substitutions w — w, @, — a,, and a, — a, the equa-
tions (46) are invariant. Similarly (47) and (53) are
separately invariant.

Under either the substitution j — —(j+ 2) or the
substitution @ —a, t; —t,, and t, —t,, the Egs.
(49) and (51) interchange; and under the combination
of these substitutions the equations are separately
invariant.

The quasisymmetry between equations in the
S-V and T-A4 sectors noted by Delbourgo et al3 is
apparent alsoin the coordinate-space sets (43) and (46).

When the interaction potential contains only
scalar and pseudoscalar contributions, Eqs. (47) and
(53) are identical.

VII. UNEQUAL-MASS CASE

When m, # m,, except for the case j = 0, terms
of all type (S, V, T, A, P) are coupled. Since for the
S and P terms s* = 0, we have j* = j~ = j. There
are eight distinct radial functions corresponding to
the quantum numbers g = lp = lps = lp- =,
ly=jxbl4=j%4%

When j = 0, there are no tensor terms and the
V, A quantum numbers are restricted to /;, = I, = £.
In this case the radial equations reduce to the coupled
pairs

D{{Dgs + (mg + myv} = —(mgm, + AVy)s,

Dy {Djvy + (m, + my)s} = —(m;m, + AF)v;, (55)
and

Dy{D}a, + i(m, — my)p} = (m,m, + AVpay,

D}{Dyp — i(m, — my)a,} = (mgm, + APy)p.  (56)

Under the simultaneous substitutions m, — —m,,
A— 41, a,> vy, and ip«> s, the two sets interchange
where the positive sign with 4 applies when the
potential contains only vector and axial-vector inter-
actions, and the negative sign when there are only
scalar, tensor, and pseudoscalar interactions. Indeed,
since the ladder-approximation Bethe-Salpeter equa-
tion (8) is invariant under m, — —m,, f— fys, and
A — 42 with the same restrictions on the potential
for the alternative signs of A as above, we see that
the Delbourgo et al. pseudosymmetry is the remnant
of a true symmetry that exists when particle and anti-
particle masses are unequal.
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APPENDIX
We take /i = ¢ = 1. Greek letter indices have the

range 1, 2, 3, 4 with x, = it. 9, is the derivative with
respect to x,. We take y, to be Hermitian and
satisfying y,¥, + v,¥, = 20,,I. As a basis for 4 x 4
matrices we take the set of sixteen Hermitian matrices
4 in the sets:

=1,

Fz = Y15 V2> 73, 74,
3 = 023, 031, O12; O14, 024, O34,
= iYs¥1, V5V2s IVsV3, iV5Vas
= Y5>

= =
[

g

where

Ow = —3Hury = VW) = =0 V5 = Y1Ve¥Vaa-

Cast in bispherical form, the Bethe-Salpeter equation
(8) for E = O reads

(A-A+ m)f)A A + my) = —AUf(%),
where
A A =ATAY + ATAT + AFAY + AN
= }(—ofA] + o1AT — i03A] + ioz A7)

=y-0,
so that
Fié r 9 . 0 . 0
A:f=2*Resinv[ta~¢:Fsmv(cosv-a—v+s1ana—R)],
~iw a
A =t ¢ [ ; 9 _
2 Rcosy ilaw cosw

.0 0
= —~ R—) .
X (sm v o cos » aR):l
If f(x) is expanded as

f=SH+VA+T.BF+T .2

+ A-iysA + Py,
where

T B = TESF + 22 TE5 4+ 14,32,

we obtain in the equal mass case, m, = m, = m, the
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equations
OS — mA" - V= —(m® + AF,)S,

mAT,S — OVis — 3AT,(A - V) = —(m® + AV)V5,
— (ATAT + AIA)TE + (ATAITS, + ATA; TT)
—m(ATAT — ATAT + A7 A F At A7)
= —2(m* + le)T(j):,
HADTE, + (ADTT — 2A7A7 TS}
— m(ATA] — ATAT)
=—(m"+ AVTE,
HADTT + (AD’TT, — 2A7AF TG}
+ m(AFAT — AT 43)
= —(m® + AVyT%,
m{£AN(T§ + To) F (AT + ATH)}
+ 047 + 3AT(A - 4)
= —(m* + AV AT,
m{FANT§ — Tg) + (AT T — AT}
+ 047 + 1A5(A - 4)
= —(m* + AV)A4,
OP = (m® 4 AV,)P,
A" X = ATXT + ATXT — Af X5 — As XY
Of importance are the following formulas, valid for
m and m’ positive:
27421 + DATH, ¢
= =+ m)H,_y,+ 34 Df
+ (= m* + DH, 4, 4, 3Dg,
2421 + DATH, ¢
= —( — m)H, 4 }m 4 DY
+ (I + m™ + DHy 0t 3003 D5,
27421 + 1)ALH, .+
=+ m)H,_ 4+ 4m3DY
+ (L + m* + DH g0t 4,3 Dy,
2421 + 1Az H,
= (= m)H, 3+ 314 DY
+ (—m" + DH 4+ 4,03 D5.

+ -
m m
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We consider states prepared by a series of actions performed in a finite space-time region in the presence
of a background state described by a density matrix. It is shown that there will always be some observable
whose expectation value in such a state will depend to some extent on the background. There will,
however, be a certain set of observables whose expectation values will be independent of the background.
We obtain a characterization of such sets of observables.

1. INTRODUCTION

The state set up in any experiment consists of a part,
the local state, which is under the control of the
experimenter, and also of a part not under his control,
the background state.! The local state is set up by a
series of actions performed in a finite space-time
region. The background state describes the rest of the
universe. The expectation values of observables may
depend on both the background and the local state.

It is generally assumed that an experimenter can
perform a measurement or a finite series of measure-
ments that sets up an ideal state in which the back-
ground has no influence on expectation values.? Such
a state we say is background-independent. We show
here that such an ideal state cannot be set up by
measurements made in finite space-time regions. In
every experiment there will be some observable whose
expectation value will depend to some extent on the
background state.

For a given local state, however, there will be a
certain set of observables whose expectation values
will be determined by the local state independently of
the background. We say that such observables are
fixed by the local state. We give here a complete
characterization of such sets of observables for a
wide class of local states.

In Secs. 2-4 we consider mainly those “pure-
selective”® local states prepared by measuring the
value one for a projection in a finite space-time region.
The more general case is reduced to this special case
in Sec. 5.

In Sec. 2 we show that a pure-selective state is
background-independent if and only if it is formed by
measuring a one-dimensional projection. A heuristic
discussion is given to show that every projection
measurable in a finite space~time region is infinite-
dimensional. This result is proven rigorously in
"% Part of this work was done in 1966 at the Institute for Advanced
Study, Princeton, New Jersey.

1 A. L. Licht, J. Math. Phys. 7, 1656 (1966).

2 R. M. F. Houtappel, H. Van Dam, and E. P. Wigner, Rev.

Mod. Phys. 37, 595 (1965). See Postulate (a) on p. 611.
3 Reference 1, Secs. 3A and 4B.

Appendix A. We conclude that no local pure-selective
state is background-independent.

In Sec. 3 we discuss the notions of observables
determined and fixed by a local state. Propositions 3
to 6 are used to characterize the set of all observables
fixed by a pure-selective state.

In Sec. 4 we consider in greater detail the set of
projections fixed by a pure-selective state. The notion
of linked projections is introduced.

In Sec. 5 we consider the more general case of local
states consisting of finite sequences of pure-selective
and nonselective local states. We show in Proposition
9 that no such state can be background-independent.
In Proposition 10 we show that the sets of local
observables fixed by such general states can be
considered in terms of the sets fixed by certain purely
selective states.

In the following we will use some of the concepts
and notation of Ref. 1. In particular, we assume that
to each observable there corresponds an operator
on a Hilbert space J€. The operators corresponding
to observables measurable in a space-time region o
generate a weakly closed ring R(«). We will occasion-
ally speak of an operator 4 being measurable in «,
by which we mean 4 € R(«).

2. DIMENSIONALITY

Suppose a local state § is prepared in the presence
of a background state 7. The total state is then
denoted by T'S. The expectation value of an observable
A in TS we denote by E(TS, 4).4

We regard both T and TS as being described by.
density matrices p,, ppg, respectively. Then

E(TS, A) = Tr (ppsA). Q.1

We assume that the vacuum state exists and is a
possible background. It has been shown® that any

4 This is the ‘“‘mathematical’ expectation value determined by a
density matrix as in Eq. (2.1). It may differ from the physical
expectation value if 4 is measured prior to the preparation of S.
See Ref. 1, Sec. 3C; Ref. 2, Eq. (4.7); and also S. Watanabe, Rev.
Mod. Phys. 27, 179 (1955).

5 Reference 1, Theorem 4.
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density matrix state can be approximated in a certain
sense by a series of measurements performed in the
presence of the vacuum. We will therefore accept any
density matrix state as a possible background.

We will consider in particular the purely selective
local state S = p prepared by measuring the value one
for a projection p. This state can always be prepared
in a background T if E(T, p) # 0. It is well known
that®

pr; = pprp(Tr prp)~. (2.2)

In the ideal state of ordinary quantum mechanics
the expectation value E(7p, 4) will be independent
of T for all observables 4. We show in Proposition 1
that this is possible if and only if p projects onto a
single vector state, i.e., if p = |@)(¢| for some unit
vector state ¢ in the Hilbert space J€.

All actual experiments take place in finite regions
of space-time. Suppose p is a projection measurable
in the finite region «. According to Proposition 2, p
must project onto an infinite-dimensional subspace
of J. We conclude that the ideal state cannot be
prepared by a finite experimenter.

Proposition 1: Let p be a projection, T any back-
ground state such that 7 is a possible state. E(Tp, A)
is independent of T for all operators 4 if and only if
dim [p¥] = 1.

Proof: Sufficiency: If p = |@)(¢|, for a unit vector
@, then

E(Tp, A) = Tr (py |@) (¢l A 19)(@D)[Tr (pr @) (gl)
= (¢ 4 |9),
independent of T for all 4.

Necessity: Let{g,},n =1,2,--+,d = dim [pX], be
an orthonormal basis for pJ€. Let

Pr, = le)(@id, A4, = l)(g,l.
Then
E(T:p, A)) = (@s, pAspe)(@ss ppi) ™
= {(@:, @)
= 0y;.
By hypothesis this is independent of i, which is con-
sistent only with d = 1.

Proposition 2: Let p be a projection measurable in
a finite space-time region «. Then dim [pJ€] = co.

Proof: This was first proved by Guenin and Misra’
under the assumption that the local rings of observ-

® G. Ludwig, Die Grundlagen der Quantenmechanik (Springer-
Verlag, Berlin, 1954), Chap. I, Sec. 3. Also see Ref. 1, Theorem 1.

M. Guenin and B. Misra, Nuovo Cimento 30, 1272 (1963),
Corollary to Theorem A.
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ables are factors. We give a proof that does not
require this factor hypothesis in Appendix A. Here
we will only show the plausibility of the proposition
by considering two examples drawn from non-
relativistic quantum mechanics.

Consider first a single nonrelativistic point particle.
The Hilbert space J, for this particle is spanned by
the functions u(x), L? integrable over Euclidean
3-space. Let p, denote the projection corresponding
to finding the particle in the volume V. Clearly

Poy(X) = 2,(X)p(x),

where y,(x) is the characteristic function for the
volume V. For any V there exists an infinite sequence
of disjoint subvolumes {V,,n = 1,2, -}. The unit .
vectors

Pa(¥) = V3 Ez,(x)

are all orthogonal eigenfunctions of p, with eigenvalue
1. They span an infinite-dimensional subspace of
ps3€y, which therefore must itself be of infinite
dimension.

Consider now the nonrelativistic quantum mechan-
ics of any number of point Bose particles. A vector
state ¥ in this model is a sequence of symmetric
functions,

‘F={%(X1“'Xn),n=1,2,"'},

such that the norm
PN =3 d®; - - dP, [pu(xy - - X))
n=1

is finite. It is an element of the Hilbert space
=% & eX)o ek eok)od: .

Suppose one particle is observed in the volume V.
Strictly speaking, this says that some one particle
is in V and all other particles are not in V. This
observation corresponds to the operator

p—v=Pv +Pv®(l —Pv)+ (1 —pv)®Pv

The subspace €, includes p,JC,, which is infinite-
dimensional by the previous argument. It also
includes tensor products of p,J¢; with (1 — P,
which are again infinite-dimensional. Thus

dim [pJ,] = oo.

We conclude from these two examples that a
projection p measurable in a finite region « is likely
to be infinite for two reasons. First, the event corre-
sponding to the eigenvalue 1 of p could occur within
o in an infinite number of disjoint ways. We see this
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in the first example, where the particle in ¥ could be
in any of an infinite number of disjoint subvolumes.
Secondly, an infinite number of disjoint events could
occur outside «, as in the second example, where
particles could be distributed in an infinite number
of ways outside V.

3. FIXED OBSERVABLES

Suppose the operator A is such that E(TS, A) is
independent of T, as T runs over all backgrounds
such that TS is possible. Then we say that S determines
A and write

S— A. (3.1

If A is self-adjoint, then a sequence of independent
trials that gives the mean value E(TS, 4) also gives
as higher moments the expectation values E(TS, 4"),
forn=2,3,---.

If A is not self-adjoint, we would measure E(TS, 4)
by combining the mean values for the self-adjoint
operators A + A', iA — iA!. Suppose we measure
independently all the self-adjoint operators €4 +
e ®4". By suitable combinations of the higher
moments we could determine the expectation values
E(TS, B), for all operators B in the ring R.(4) of
finite polynomials in 4, 4" and the unit operator.

It is clear from Eq. (2.1) that S — A4 implies
S — A', and of course always S — 1. However, there
may be other elements of R,(4) not determined by S.
The measurement of A is then not completely inde-
pendent of T. If, however, S — B for every B € R,(4),
then we say that S fixes 4 and we write

8= A. (3.2)

Let F(S) denote the set of observables fixed by the
state S. In this section we will derive a complete
characterization of F(S) in the case when S = p. We
will show in Sec. 5 that for a wide class of local
states the set F(S) can be considered in terms of this
special case.

Proposition 3: Let p be a projection, and let 4 be
some operator. Then p — A if and only if there is a
scalar a such that

pAp = ap. (3.3)

Proof: Sufficiency: If Tp is a possible state, then

E(Tp, A) = E(T, pAp)|E(T, P)I”
independently of T.

=a’

This number a is the expectation value for 4, given
a measured value for p equal to 1.

Necessity: Let pp = [p)(wl, with (y, py) # 0.
E(Tp, A) = (y, pApy)(y, pp)~! = a, say, independent

A. L. LICHT

of 9 by hypothesis. Therefore
(v, (pAp — ap)y) = 0,
for any . This implies, by polarization,? that
pAp = ap.

Remarks: In the particular case when 4 is a projec-
tion, 0 < a < 1. We then call a ‘“the probability of
A given p” and write

a=Pp|A.

Let N’ be some set of operators. Suppose p deter-
mines each element of N, that is,

p—>N.

Let ¢ be some vector such that pp # 0. By Proposi-
tion 3, for all Be N,

pBp = (@, pBpo)(@, pp)~'p.

This equation is weakly continuous.® We can therefore

extend it to the weak closure N’ of . Since N° o N,
we see that:

Corollary 1: p — N if and only if p — N.

Let R (A) denote the weak closure of the ring R,(4).
It is a von Neumann algebra.l® We also see that:

Corollary 2: p = A if and only if p — R(A).

Proposition 4: Let M be some von Neumann algebra,
and let p be some nonzero projection in G, Then
p— M if and only if p is minimal for .1

Proof: Necessity: Let r be some projection in A,
0 < r < p. By Proposition 3 there exists a scalar p
such that

pre = pp.

But prp =r, and we must have r = p. Thus p is
minimal.

Sufficiency: Let A be some positive operator in M.
Consider the positive operator

B = pAp.
Since Bp = pB = B, there is a spectral resolution of

8 F. Riesz and B. Sz-Nagy, Lecons D’analyse Fonctionelle,
(Akadémiai Kiad6, Budapest, 1953), 2nd ed., p. 227, Sec. 92, Eq. (2).

? J. Dixmier, Les algebres d’operateurs dans I’espace Hilbertien
(Gauthier-Villars, Paris, 1957), p. 33. Referred to in the text as
Dixmier.

10 Reference 9, Chap. I, Sec. 3.4, p. 44, Theorem 2, Corollary I.

11 Reference 9, Chap. I, Sec. 8.2, p. 122, Def. 2.
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p, F(3) in £, such that F(3) < p, F(1BI) = p, and
1Bl
B= f 2 dF().
0

The projection p is minimal; therefore F(1) = 0 for
A < ||Bf| and
< 13l an B =Bl p.

Any operator 4 € A may be written as a sum of
positive operators; therefore pAp = ap for some
scalar «. By Proposition 3, p — AC.

Proposition 5: Let N’ be a von Neumann algebra
fixed by p. Let A be the von Neumann algebra
generated by p and N’. Then (a) p— M and p is
minimal for AG; (b) 4G is a direct sum M = A, +
Sy, With Mop =0, p € My; (¢) M, is isomorphic
to £(3C), the ring of all bounded operators on some
Hilbert space X.

Proof: Part (a): Let ¥ denote the ring of finite
polynomials in p and N. The ring A is weakly
generated by 7. By repeated application of Proposition
3, we see that p — 7. By Corollary 2 to Proposition 3,
we see that p — . Proposition 4 then shows that p
is minimal for M.

Part (b): Let C be the central support of p.!® Let
Moy = (1 — O)M, M,=CAN, and Part (b) is
immediate.

Part (c): This is essentially Example 4 of Dixmier
(Ref. 9, Chap. I, Sec. 8, p. 126). For completeness we
give the proof in Appendix B.

Remark: Let ® denote the isomorphism that takes
M6, onto £(XK). Clearly ® takes minimal projections
onto minimal projections. The minimal projections of
£(X) are just the one-dimensional projections. We can
find an orthonormal basis for X, {¢,,,n = 1,2, - - -}14.15

such that
O(p) = |p (1l
The operators |@, ) (@] span £L(I). Define

O e XPwl) = Vim

Clearly V.
1 =D
Vankl = 6m.kans (34)
V;ram = an'

12 Consider the operator B as restricted to pX, and apply the
spectral resolution theorem of Ref. 8, Sec. 107, p. 272, and Proposi-
tion 2 of Ref. 9, Chap. I, Sec. 1.2, p. 3.

13 Reference 9, Chap. I, Sec. 1.3, p. 7. The central support of p
is the least central projection greater than p.

1 In general X does not have to be separable. However, we assume
the over-all Hilbert space to be separable. This forces M., to be
countably decomposable [Ref. 9, Chap. I, Sec. 1]. The set {Vyn}
must then be countable, and J therefore separable.

18 Reference 9, Chap. I, Sec. 8, Example 2, p. 126.
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Any operator B € A, can be written as
B =32 cumVams
with scalars c,,,, determined by
VerBV um = ComVam-

A set of operators {V,,,,} that satisfy Eq. (3.4) will be
called a set of matrix units. 18

This leads to the following complete characteriza-
tion of all operators fixed by a given projection p.

Proposition 6: p=> A if and only if 4 = 4, + 4,,
where A,A, = A,A,=pA, = A,p =0, and there
exists a set of matrix units V¥, as in Eq. (3.4) and
scalars c,,,, such that

A, = Z ComV am-

Proof: Necessity: Take N = R(4) and apply
Proposition 5. Let 4, to be the part of 4 in M, 4,
that part in 4G, , and the result follows by the above.

Sufficiency: The orthogonality conditions imply
that R(4) is the direct sum R(4,) + R(4,), with
PR(4,) = 0. The weakly closed ring generated by the
Vams> B({Van}), is clearly fixed by p and contains
R(A,). Thus p — R(A4,), and therefore p = 4.

4. FIXED PROJECTIONS

An important subset of F(p) consists of the pro-
jections fixed by p. In this section we will construct
explicitly the decomposition of such projections
according to Proposition 6.

Proposition 7: Suppose p->gq. Let a = P(p|g).
Then, as in Proposition 6, g =g, + g, where (a)
95 =qpqa’; (0) §,—>p and p—gq,; (€) g, =
aVy + [a(1 — )}f(Viy + Vi) + (1 = @)V3,, where
the operators

Viu=p, Va=( —p)q,,(l ~p(l —a),
Vau = (1 — p)gypla(l — o)l
are matrix units.

Proof: Part (a): The ring R(g) is the set of all
operators of the form «l 4 fg, for all scalars «, S.
Therefore the relation p — g is equivalent to p =-g.
Let M denote the ring generated by p and R(g), and
let C be the central support of p in M. According to
Proposition 6,

q9=4q; + dps with qs = a - C)q,
9, = Cg.

18 I. Kaplansky, Ann. Math. 56, 460 (1952).
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By Proposition 3, pgp = ap. Consider the operator
e =gpqa~’.
This is a projection, as

e® = gpqqpga* = q(pgp)qa® = e.
Also

e =qCpga™ = q,pq,a>* = Ce.
Thus e < C and <gq,. The operator ¢’ =¢, — e is
clearly a projection <¢, and <C. Since
ep = Clg —qpga™)p

=0,
we see that ¢’ commutes with both p and ¢. It is there-
fore in the center of M.C. In Proposition 5 it is shown
that M is a factor. Therefore ¢’ = C or 0. It is
orthogonal to p; therefore e’ % C. Thus ¢’ = 0 and

9, = qpga.

Part (b): By Part (a),

P9sp = plgpgpa = (pgp)(pgp)a

= ap;
thus p —¢q,,
9:P9» = (qpa)p(gpg)a® = q(pqp)(pgp)qa*
= aqT’
and ¢4, — p.

Part (c) follows immediately from Parts (a) and (b).

Remark: 1f two projections p, g are such that both
p—q and ¢ — p, then we say that both p and q are
linked and write p<> g¢. In Proposition 7 we see that
every projection fixed by p breaks up into a part
orthogonal to p and a part linked to p. For linked
projections the following interesting reciprocity rela-
tion holds:

Proposition 8: If p«> g, then P(p | q) = P(¢| p).
Proof: By Proposition 3, the respective probabilities
are the constants a, b in the equations
pap = ap; (4.1
qrq = bq. 4.2)
If @ = 0, it follows that ¢ and p are orthogonal and
b = 0 = a. Suppose now that a # 0. Consider the
operator W = gpat. By Eq. (4.1)
Wiw = p;
therefore W is a partial isometry.)” The product WW'!

17 M. A. Naimark, Normed Rings, translated from the first
Russian edition by L.F. Boron (P. Noordhoff, Ltd., Groningen, The
Netherlands, 1959), Chap. 1, Sec. 5.14, p. 112.
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must therefore be a projection. It is ba~'q, by Eq.
(4.2), and this is a projection only if b = a.

5. LOCAL STATES

In the previous sections we have investigated those
local states that can be prepared by the measurement
of a projection. We will consider in this section a
wider class of local states.

In the following, the von Neumann algebra of
observables based on a region « will be denoted
R(x).® The spacelike complement of « will be
denoted by «’. The ring R(«") will be assumed to be in
the commutant of R(«), i.e.,

R(a') < R'(a).

The commutant of R(«), R'(«") then includes R(x).

There are two main types of local states, selective
and nonselective.! In a pure-selective state p, a
projection p is measured in a finite space-time
region « and those independent trials are selected in
which the measured value is one. A selective state
takes the background density matrix p into®

pr; = pprp(Tr prp). (.1

In a nonselective state S, some action is performed
in the region «, but no selection of trials is made.
The density matrix py is taken into'

AN t
Prs = ZlAnPTA'n ’ (52)
where {4,,n = 1,2, -} is a sequence of operators
in R'(«’) such that
A4, =1. (5.3)

We will consider in this section local states S, set
up in the region « by preparing a finite sequence of
selective and nonselective states. For example, suppose
S, = pS. Applying in turn Egs. (5.2), (5.1), and (5.3),
we find

A t
P18 = Z Aini)An

=3 A,pprpANTT prp)™*

—1
=3 A,pprpAl (Tr pr3 pALAmp) .
n m

By repeated application of Egs. (5.1)-(5.3), it can be
shown that for any such state S, there is a sequence of

18 R, Haag, Colloque internationale sur les problemes mathematique
de la theorie quantique des champs, Lille, 1957 (Centre National de la
Recherche Scientifique, Paris, 1959); H. Araki, Lecture Notes,
University of Zurich (1961); H. Araki, Progr. Theoret. Phys.
(Kyoto) 32, 844 (1964); H. J. Borchers, Lecture Notes, Princeton
University (1966).

19 Reference 1, Theorem 5.
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operators B, in R'(«’) such that

0 —1
Prs, = ZanPTBZ(Tr pr 2 B;’,Bn) ,  (5.4)
n= n

where 3, BIB, is a bounded operator.

We will show in Proposition 9 that no states S, of
the above form can fix all operators. We will then
investigate in Proposition 10 the local operators fixed
by such a state.

Proposition 9: Let S, be a local state preparable in
the finite region « and specified as in Eq. (5.4) by the
sequence {B, € R'(¢),n =1, 2, -+ -}. Then S, cannot
fix all operators.

Proof: Let A be some operator. If S, determines A4,
then the expectation value

-1
E(TS,, A) = Tr (pT > BlABn) (Tr or3 Ban)

is independent of 7. Just as in Proposition 3, this is
equivalent to

S BlAB,=a Y B!B,, (5.5)
n n

for some scalar a. Suppose S, fixes all operators. Then
in particular it fixes all 4 € R(«’). For such A4, Eq.
(5.5) implies that

S B!B,(4 — al) = 0. (5.6)

If R(«") were a factor,2® this would imply that
A=al,

for all A € R(«"), and R(2") would be the trivial ring
of scalars, which we assume is not the case. Thus we
need only consider the case when R(«') is not a

factor. There then exists a projection G in the center
3 of R(a) such that®

GA = aG (5.7
and
GY BB, =3 B!B,. (5.8)
Equation (5.8) implies that
GB,= B,, foralln, (5.9)

and we can take G to be the smallest central projection
such that Eq. (5.9) holds. Thus Eq. (5.7) holds for all
A eR(¢') and G fixed. Let Q denote the vacuum
vector. Then®?

[R(2)Q] = X. (5.10)

%0J. von Neumann and F. J. Murray, Ann. Math. 37, 116
(1936), Corollary to Theorem IlI.

21 Reference 9, Chap. I, Sec. 2, Example 6.

22 H. Reeh and S. Schlieder, Nuovo Cimento 22, 1051 (1961).
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By Eq. (5.7),
GAQ = (Q, GAQ)(Q, GQ)'GQ.

Let GQ ||GQ|~! = ®. Then GAQ = (®, 4Q)D. By
Eq. (5.10) the vectors AQ are dense in JC. Therefore

G = |D)(®|,

and thus G is a finite-dimensional projection. But
Ge3 < R(») and, as shown in Appendix A,
dim [GX] = o0, a contradiction.

Definition: Let B be some finite space-time region.
Let Fg(S,) denote the set of all operators 4, in the
local R(B) such that

S, = 4;.

The following proposition shows that this set can be
completely characterized by Proposition 6.

Proposition 10: Let y be some finite region space-
like relative to « U f. Let 6 = a U p. There exists a
projection ¢ € R’(d’) such that

Fy(S,) = R(B) N K(g).

Proof: Let A, € Fy(S,), then S, =~ 4, and Eq. (5.5)
holds for all 4 in R(A4,). Let H =Y, B!B,.

It is known that R(y) is of infinite type.?®2* In
Appendix A we show that therefore there exists an
infinite sequence of orthogonal projections, summing
to 1, and each equivalent to 1 mod R(y). There
exist then partial isometries W, € R(y) such that

WW, =6, .1,

(5.11)
S WW o= 1.

Consider the operator
B=73BW,.
Since y is spacelike relative to «,
B'B=S B'Ww,B,
=3 B!B, =H.
Thus |B'B|| = [|H||, and B must be a bounded
operator, with ||B|| = |H| ¥ The operators W, are
in R(y) and the B, are in R'(a"). Thus B € {R'(«),
R(y)}". The region 6 = o U » includes both « and y.
It follows that ¢ < o'. By Assumption (Al) of

Appendix A,
R(®) = R(»)

23 Reference 7, Theorem A.
24 R. V. Kadison, J. Math, Phys. 4, 1511 (1963).
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and R(6") = R(«'), which implies
R'(¢") © R'(«').
Since also R'(6") > R(8), we have
R'(¢')> B.
We claim that Eq. (5.5) is equivalent to
B'AB = aH. (5.12)

For, since v is also spacelike relative to 8,
B'AB =Y B awW!w,B,,
=3 Bl4B,.
By the polar-decomposition theorem,? there exists
a partial isometry W e R'(6") such that
B = WH?,

where W'W = E projects onto the range of H and
WW?' = q projects onto the range of B.
Let F(4) denote the spectral resolution of H?8:

BHY
H= f A dF ().
1]

Note that E = 1 — F(0). For 5 > 0, consider the
operators
ity i

G, =J; A2 dF(2).

We have
HG: = G}H = G, HG, = 1 — F(n).
The upper strong continuity of the spectral resolution
F(2) implies that
E = strong limit,_,, HG}

= strong limit,,, H*G,,.

From Eq. (5.12) we get
G, HYW'AWH}G, = oG, HG,.

Taking the strong limits as first  and then z — 0, this
becomes

W'AW = aE.
Premultiplying by W and postmultiplying by W7 yields
qAq = aq. (5.13)

Equation (5.5) thus implies Eq. (5.13). It is actually
equivalent to Eq. (5.13), as may be seen by pre-
multiplying Eq. (5.13) by H¥W?' and postmultiplying
by WHY.

Thus S, — A4 if and only if Eq. (5.13) holds. By

28 J, von Neumann, Ann. Math. 33, 294 (1932); Ref. 9, Appendix
III and p. 5.
26 Reference 8, Sec. 107.
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Proposition 3, this equation is, however, exactly the
condition that § — A. The operator A4 is an arbitrary
element of R(A4,), and thus §=- 4, if and only if
S, => A,. Since A, is an arbitrary element of Fy(S,),
we see that
Fy(S,) = R(B) N F(g).
6. DISCUSSION

We have seen that a local state composed of a
finite sequence of selective and nonselective local
states will not fix all operators. According to Proposi-
tion 10 it will fix in each region just those operators
that are also fixed by a pure-selective state.

Propositions 5 and 6 serve to characterize all
operators A4 that are fixed by a pure-selective state 4.
Essentially, A must be such that ¢ is a minimal
projection for the von Neumann algebra generated
by 4 and q.

It is an open question at present whether a local
state of the above type exists that will fix all operators
measurable in a finite space-time region «. This would
require the existence of a projection ¢ measurable in
some larger region f that was minimal for the ring
{R(«), ¢}
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APPENDIX A

Let o be any region such that its spacelike com-
plement «’ contains an open subregion. Let p be any
projection in the local ring R(x). We will prove here
that dim [p¥] = oo.

We assume the standard axioms for local rings.1®
In particular, we assume:

Isotony: « < B implies that R(x) < R(f), (Al)
Locality: R(2’) < R'(a), (A2)

and we assume the existence of a common vector Q»
cyclic and separating for all the local rings?®?
[R(x)Q] = X.

We do not assume that these rings are factors.

By Kadison’s Lemma (2),2%-% Assumptions (Al)
and (A3) imply that the rings R(«) are not of finite
type. The same lemma can be seen to show that no
direct summand of a local ring R(x) can be of finite
type. Therefore by Ref. 9 (Chap. I, Sec. 6.7, Proposi-
tion 8, p. 97), the rings R(ax) must be properly
infinite.??

(A3)

27 “Proprement infini’’ in Ref. 8. A properly infinite factor would
be either type I , Ileo, or I .



BACKGROUND DEPENDENCE OF LOCAL STATES

For the regions a considered here, there always
exist open regions 8, v, d such that

B>« and 0 < 8.

We will show that any projection p € R(x) is properly
infinite in R(f).2 The result will then follow. For then®®

yepfnd,

0
P =23 Pu

n=0

the p,, all orthogonal and nonzero. Since
pl =3 @p,l, dim[pk]= co.
Following Borchers,® we consider the projection

g% = [R(B)pQ).

Borchers shows that ¢ is the central support of p in
R(B) and also that P~ g mod R(f). By Ref. 9,
(Chap. 1, Sec. 6.7, Proposition 7, p. 97), the projec-
tion ¢ must be properly infinite in R(f). Therefore p
must be properly infinite in R(8).

The identity operator is in each R(«). Therefore the
identity is properly infinite in each R(«).2® Applying

28 Reference 9, Chap. 111, Sec. 2.1, p. 241, Definition 1.

29 Reference 9, Chap. 111, Sec. 8.6, Theorem 1, p. 319, Corollary 2.

30 H. J. Borchers, ‘“A Remark on a Theorem of B. Misra,” pre-

print, Institut fiir Theoretische Physik der Universitit Gottingen
(1967), Theorem III. 3.
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Ref. 29, we sec that the identity can be written as a
sum over an infinite sequence of nonzero orthogonal
projections, each equivalent to 1 mod R(x).

APPENDIX B

We give here the proof of Part (c) of Proposition 3.

Part (c): The projection C is minimal for the center
3 of M. For if not, there exists r €3 or r < C. By
Part (a) and Proposition 3, there exists a scalar p such
that prp = pp. But re€3; therefore prp =rp and
rp = pp. This is possible only if p = 0 or 1. In the
first case the central projection C — r < C is greater
than p. In the second case r < C is greater than p.
In either case we have a contradiction to the definition
of C.

Thus C is minimal for 3. The center of M, is 3C
and must therefore consist of just the scalar multiples
of C. The ring A, is isomorphic to A, restricted to
C®, A,|, .3 The center of Ab,|, is then the scalar
multiples of the identity, and A(,|, is a factor. It is
clear that p|, is minimal for A,|,. By Dixmier
(Ref. 9, Chap. I, Sec. 8, Theorem I, Corollary 3, p.
124) M|, is isomorphic to £(X), for some Hilbert
space K. Therefore M, is isomorphic to £(J).

31 Reference 9, Chap. I, Sec. 2.1, Proposition 2, p. 19.
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The notion of coherent superposition is generalized so as to apply to local states.

1. INTRODUCTION

A unit vector state |x) can always be formally
constructed by superimposing two other vector states,

0 =1laly) +blp]laly) + bipl—

In practice |x) would be set up by measuring the value
one for the projection p, = [)(x|.

This process of coherent superposition applies only
to vector states. The projections onto single vector
states are however not observable in finite regions of
space-time."'* A finite observer therefore cannot
construct a vector state from an arbitrary background,
but only from a background that is already a vector
state. The coherent superposition of vector states is
then strongly background dependent.

The coherent superposition of local states is, how-
ever, a common laboratory practice, in which the
influence of the background state is generally felt to be
negligible. This laboratory superposition cannot
therefore correspond exactly to the simple addition of
vector states.

In the following we will derive a generalized defini-
tion of coherent superposition that does apply to local
states. In Sec. 2 we investigate a typical example of
coherent superposition in a finite laboratory. This
leads to a general definition in terms of sets of linked
projections® in Sec. 3. Proposition 1 in Sec. 4 gives
the mathematical structure of these sets. Proposition
2 in Sec. 5 shows the relationship of the general
coherent superposition to the usual addition of
vector states.

Notation: The results and notation of Refs. 2 and 4
will be used throughout. To each observable there
corresponds an operation on a Hilbert space JC. The
measurement of the value one for a projection p
produces a state denoted by p. If this measurement
takes place in the presence of a background state 7,

* Part of this work was done in 1966 at the Institute for Advanced
Study, Princeton, New Jersey.

1 M. Guenin and B. Misra, Nuovo Cimento 30, 1272 (1963),
corollary to Theorem A.

2 A. L. Licht, J. Math. Phys. 9, 1468 (1968), Proposition 2. This
reference will be referred to in the text as BD.

3 Reference 2, Sec. 4.

4 A. L. Licht,J. Math. Phys. 7, 1656 (1966).

described by a density matrix pp, the total state
we denote by 7p. It is described by the density matrix

Py = pprp|Tr (prp).
An observable A is said to be determined by the state p,

P4,

if the expectation value of A4 in the state 7p is inde-
pendent of 7. It is said to be fixed® by p,
p=A4,

if every operator B in the von Neumann algebra
R(A) generated by A is determined by p.

The relations p — ¢ and p => ¢ are equivalent if g is
a projection. The expectation value of g in a state Tp
then depends entirely on p. We call it the probability
of ¢ given p, and write P(p |g). If two projections

D, q are such that p — ¢ and ¢ — p, then we say that
they are linked,® and write

P9
2. ELECTRON SPIN

Consider the apparatus shown in Fig. 1. Enclosed
in an evacuated chamber are an electron gun G, an
electron counter C, and several devices for measuring
spin X}'¥,Zy |, Yy , . Electrons are emitted by G in
a well-collimated beam directed along the y axis.
The counter C records each electron without absorbing
it or causing it to deviate appreciably from its path.
The counters Z;, Z | when turned on record the
passage of an electron with spin up, down, respec-
tively, relative to the z axis. The counters X}'7, Y; |
do the same for spin relative to the x and y axes.
The x spin may be measured either immediately
before the z-spin measurement in X!, or immediately
afterward in X2 We reserve the right to introduce
other counters into the chamber without changing the
diagram.

Let ¢ denote the projection corresponding to the
observation of an electron by C. Let x}, xf ,i=1,2
be the projections corresponding to finding the x spin
either up or down in counters X*2 Letz,,z, yy,»,
be the corresponding projections for the z and y spin.

% Reference 2, Sec. 3.
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FiG. 1. Electron spin apparatus; G is an electron gun, C an
electron counter; X};1,Z4,;, Y},) are counters that record electrons
with spin up, down, relative to the x, z, y axes.

The whole apparatus is of finite size, and is assumed
to be in existence for only a finite time, so these
projections are all measurable in some finite space~
time region «. They are then infinite projections,
according to BD Proposition 2.

We assume ideal collimation and sensitivity. This
is, of course, unobtainable in practice. There is
always a small probability that an electron will
diverge from the beam between counters and be
absorbed by the chamber wall. A counter may fail to
record an electron that passes through it. Spurious
electrons may be emitted by the walls. We consider
here the ideal case, and assume that such possibilities
can be ignored.

If the z- and y-spin counters are turned off, and the
x-spin counters are turned on, in this ideal apparatus
X1 will click if and only if the X} counter clicks.
This implies® that

1 2
x1 = X = x1, say.
Similarly we must have
X =t =x,.

If X clicks, then X, does not and vice versa. The same
holds for the pairs Z, , Zl and Yy, Yl . This implies
that the corresponding projections are orthogonal,

XpX, =)y, =21z, = 0.

Every electron counted by C will be recorded by the
X, Y, or Z counters if they are turned on, and every
electron recorded by a spin counter must have been
counted by C. This is equivalent to

c=xt+x =y ty =25tz

Let 7 denote the background state. The condition
of the universe outside the chamber, the temperature
of the chamber walls, the stray magnetic field within
the chamber, etc., are all specified by 7. Suppose
the counter Z; clicks. The state is then 77;. We
would then expect X} or X‘f to click, each with
probability 3.

8 Reference 2, Sec. 4.
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Stray magnetic fields in the chamber could cause the
electron spin to flip between Z and X*. The proba-
bility of X} clicking would then be different from § by
an amount depending on T. In a magnetically well-
shielded chamber the probability will be very close to §
for a wide range of T. In the ideal chamber it will be
exactly 4, independently of T. Then z; fixes x|, x;,

ZT»xl,xT,

with P(z; | x) = P(zy | x|) = &.

If counter X} or X1 were to clicl_(, then in the ideal
chamber we expect that z, will click with probability
%, independently of 7. Thus

xl,fq —>Zi,

and z, is linked to x4 and x| .

We expect in fact that all pairs of projections in the
set § = {z},, x4, yy,)-are linked with probabilities 4
or 0.

Consider the operators formed from products of
projections in S, x4y, y1x;y, etc. We expect also
that in this ideal apparatus the expectation values of
all these operators should be fixed by each projection
in S.

It is customary to regard the state 7Z; as a coherent
superposition of the states 7%, and T, and also as a
coherent superposition of 7x; and Tp;. By BD
Proposition 2, these are not likely to be vector states,
so that this type of superposition is not just the
addition of vector states. We give below the mathe-
matical structure of this type of superposition. We
will show first that {x;, x&}, {xy,p i} are examples of
“coherent sets of projections.” We will then give a
general definition of the coherent superposition of
such coherent sets, and we will show that z; fits this
definition,

Remarks: In this ideal apparatus the two different
counters X}, X} correspond to the same operator x; .
They measure x, in different places and at different
times, The states 7x} and 7x} are therefore very
different.

The state Tx} is prepared before the measurement
of zy . The expectation value E(7x}, z;) is therefore
a prediction.” We expect it in this apparatus to equal
} independently of T.

The state 7x{ is prepared after the measurement of
zy . The expectation value of z; in this state, denoted
by M(T%3z zy), is therefore a retrodiction.” It can be

7 See Ref. 6 and also S. Watanabe, Rev. Mod. Phys. 27, 179
(1955).
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shown® to equal E(7¥¢, z;), and will not be independ-
ent of T.

The state Tx, is therefore not well defined. It is
not completely specified until the place where x; is
measured is given. We will however use Tx; as an
abbreviation for either Tx} or Tx}.

A retrodiction is only in certain very special cases
independent of the background.® It follows that the
relation p — g is physically meaningful only if g can be
measured after the measurement of p. We will
assume this to be always possible for the projections
considered here.

3. COHERENCE

Let Q={g,,i=1,2,--'} be a sequence of
projections. Let W(Q) denote the weakly closed
* ring generated by Q. The projection g = Ugq; is
the biggest projection contained in W(Q), and is not
necessarily the identity.

Each operator 4 in W(Q) we interpret as a measure
of the relative coherence of the states ¢;. We will say
that Q is a coherent set if all such measures are
background independent, that is:

Definition 1: Q is a coherent set if for all q,€ Q
and all 4 € W(X),

g, —~ A.

Since W(Q) contains the ¢,’s themselves, it follows
from this that the g,’s must be pairwise linked.

Example 1: A collection Q; of one-dimensional
projections ¢; = |@,)(¢;| is automatically a coherent
set. The ring W(Q,) consists of operators A of the
form

A= z % |‘Pi)(‘7’j| (9 I ?5),

for appropriate scalars «,;.

Example 2: Q, = {x;,x,} is a coherent set. The
projections x;, x| are orthogonal, therefore trivially
linked.

W(Q,) = {xx; + fx,, for all scalars o, f3}

Note that x; U x, = x; + x| =c.

Example 3: Consider the set Q5 = {x;, y;}. In our
ideal apparatus we must have x,«>y,. By BD

8 From Ref. 6, Eq. (2.14),
M(T%, 2¢) = M(T, 243z PIM(T, zgxqz9) + M(T, 2 xz)]
= YM(T, zDUIM(T, z29) + JM(T, z )1 ' = M(T, z)[M(T, )] !
= M(T, cz ¢} M(T,c)] "= M(Té,zy) = E(T¢, 2 ).
® Reference 6, Scc. 3.
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Proposition 3, we then have

xXpypxy = dxy,

3.1)
yixppy = tyy.
It then follows that
W(Q,) = {axy + Byy + yxyy + dypxy,
for all scalars «, 8, , 6}.

Equations (3.1) imply that Q5 — W(Q;), and therefore
0, is a coherent set. Indeed, it is clear that any pair of
linked projections forms a coherent set.

Note that x; Uy, =c. For, let e = x4 Uy;.
Since ¢ > x; and ¢ > y;, we have ¢ >e. Now
e > xy and e > y,. Therefore

ey =1
ecyy = cyy,
e(xy + x )yt = (x; + x )y
=xyyy + ex,yi.
Thus

ex\yy = X yy- 3.2)

We assume that x| <> y; with probability . By BD
Proposition 3, x,y;x, = }x,. Applying this to Eq.
(3.2) yields

ex, =x,

and e > x,. We have e > x, and e > Xy, therefore
ex>xy +x;=c Thus e = c.

Remark: Consider the projection z, . We have seen
that zy is linked to each projection in both @, and Qs
with probability 4. Therefore it neither equals nor is
orthogonal to any such projection. Also

zy < =Xy le =x3 Uy,
and we expect that in both cases
zy — ‘ID(Q).
This suggests the following definition:
Definition 2: Suppose that @ = {g,,i= 1,2, -}
is a coherent set of projections. Let p be some

projection. We will say that p is a coherent super-
position over Q, if:

(1) p<>gq,, foralli;

2) p—W(Q);

(3) P(p|q) #0, 1 for all i;
@@ pLYy;.

These conditions (1) to (4) can be interpreted as
follows. Condition (1) states that the relationship
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between p and g; is background-independent. Con-
dition (2) insures that the relative coherence of the
¢;’s is determined in the state p, independently of the
background. Condition (3) states that p is a coherent
superposition over no subset of @, and Condition (4)
states that p is a coherent superposition over no set
Q’ greater than Q.

In Examples 2 and 3, z, is clearly a coherent
superposition in this sense over {xi, xl}‘ or over
{x1 s V1 }

In Example 1, let p, be the projection onto the
vector state y = Ya,p,. The state p, is the vector
state 9. The projection p, is a coherent superposition
in this sense over the g; provided that y neither equals
nor is orthogonal to any of the ¢,’s.

Remark: 1f p, @ are as in Definition 1, we will
occasionally say that the state p is a coherent super-
position of the states g,.

If Q consists of just one element g, = ¢, then it is
clear that Conditions (1), (2), and (4) are automat-
ically satisfied by p = ¢. Indeed, BD Proposition 8§
can be used to show that if @ = {g} then these
conditions are only satisfied by p = ¢. In this case
we will relax Condition (3) and say that g is a coherent
superposition over g.

4. MATHEMATICAL STRUCTURE

Let p be a coherent superposition over Q. The pro-
jection p may not be in the ring W(Q). For example,
if the g;’s are mutually orthogonal, then it is easily
seen that no projection in ‘W(Q) can be a coherent
superposition over Q. Consider however the weakly
closed * ring“W generated by p and W(Q). This ring
does contain p. It is completely characterized by the
following proposition.

Proposition 1: (a) The projections p and ¢, are
minimal for ‘W; and (b) “W is isomorphic to £(XK), for
some Hilbert space J.

Proof: The projection g is the biggest projection in
the rings W(Q) and U. These rings are therefore
isomorphic to their restrictions to ¢X. The restricted
rings W (Q),W,, are von Neumann algebras. We can
therefore apply BD Proposition 5 with N° = W (Q)
and M =U,. We see that p is minimal for W and
that C°Us is isomorphic to £(J), for some Hilbert space
X, where C is the central support of p. It remains only
to show that the ¢,’s are minimal forW, and that
C=gq.

By hypothesis, p<>g;, and P(p|g,) = a;, > 0. By
BD Proposition 3,

q:; = q;pq,a7’.
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Let 4 € W.. The operator B = ¢,4q; is in W, therefore
by BD Proposition 4,

pBp = fp, for some scalar .

Now
0:44; = a;7°4,p4,A9,04; = a;"q:;pBpg;
= a;°fq,pq; = a; f4;.
Therefore, each ¢, —%W, and each g; must be minimal
for W by BD Proposition 4.
By definition, C is the smallest central projection
in WU such that
Cp=p.

Consider

Cq; = Cq,pq.a;" = q.Cpq.a;’

= q,pq.a;" = ;.

Therefore C > g, for ail /, which implies C > gq.
But C €W, therefore C < ¢, and we must have C = ¢

5. LINEAR SUPERPOSITION

Let @ denote the isomorphism taking U onto
£(X). Under @, minimal projections must go into
minimal projections. Therefore, for each projection
r minimal inW, there exists a unit vector ¥'(r) e X
such that

@) =FENEO)

In particular, let ®, =¥(g,). Since ®(g) =1, the
®;’s must span X. Therefore there is a least set of
scalars «(r) such that

Y(r) = Dai(r®;. G.D

We see from BD Proposition 4 that each such r
is a coherent superposition in the sense of Definition 2
of some subset of the gs. This subset is clearly
specified by just those «(r)’s in Eq. (5.1) which are
nonzero.

Let A be any operator in W. From BD Proposition
3 there exists a scalar « such that

rAr = ar, (5.2)
and for any T such that 77 is a possible state,
E(TF, A) = a.
Under the map @, Eq. (5.2) becomes
IEEE O D Y O)F O] = a VN

Thus
E(T?, A) = (W (r) |0V (r)).

We summarize thes¢ results in the following
proposition:
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Proposition 2: Any minimal projection r in W is a
coherent superposition in the sense of Definition 2 of a
subset of 0. To each such projection r there corre-
sponds a unit vector ¥'(r) in X that is a coherent
superposition in the usual sense of the vector ¥'(g,).
No possible state of the form 77 can be distinguished
from ¥'(r) by the measurement of an operator in ‘.

The Eq. (5.1) expresses a certain linear relation
between the states 7 and the ¢,, in terms of the
corresponding vectors in J. It is interesting to note
that it can also be expressed in terms of operators on
Je. Let |6) be any unit vector in J. Equation (5.1) is
equivalent to

¥ ()] = 20°(r) 10)(0).

s = O(16)(6)),
Vis = OH(F()OD,
Vig = @70 (6D-
The projection s is minimal in W. The operators V,,

Vs are partial isometries in W that take s into r, g;,
respectively; that is,

viv

(5.3)
Denote

W= Vili=s,
V=1 VVa=a.
Equation (35.3) is equivalent to
Ve = 2ai(r)V;,. (5.4)
We see that in general coherent superposition, the

linear superposition of vectors is replaced by the linear
superposition of partial isometries,

A. L. LICHT

6. DISCUSSION

The operators in the weakly closed * ring W(Q)
generated by a set of projections @ = {g,} we interpret
as measures of the relative coherence of the states g,.
If all such measures are fixed by each ¢,, then we say
in Definition 1 that Q is a coherent set.

A state p is defined in Definition 2 as a coherent
superposition of the ¢;. Such a state p fixes each
element of W(Q). The projection p is linked to each
q;, it is not orthogonal to any ¢;, and it is less than the
projection U,g,. The projection p does not equal any
g;, except when Q contains just one element.

In Proposition 1 we have seen that such a projection
p and the g, together generate a Type I ring ‘U for
which they are minimal. According to Proposition 2
any minimal projection r, say, in W is a coherent
superposition over some subset of Q.

The measurement of an operator in ‘W cannot
distinguish the state # from a vector state in a certain
auxiliary Hilbert space JU. This vector state is a linear
superposition in the usual sense of the vector states
corresponding to the ¢,. This linear superposition,
when expressed in terms of operators on the over-all
Hilbert space X, yields a linear relation between
partial isometries that generate the projectionsrandg; .
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The solution of systems of equations of the Wiener~Hopf type leads directly to the problem of factoring
matrix-valued functions of one or more complex variables. The matrix-factorization problem is solved
here for matrices that can be diagonalized by a similarity transformation and also have eigenvalues whose
logs are analytic and quadratically integrable in a set of strips. As an application of the technique, Green’s

tensor for the elastic wave equation is factored.

1. INTRODUCTION

The local particle-displacement vector U(x, ¢) in a
perfectly elastic solid whose volume is ¥ and whose
boundary surface is S satisfies the time-dependent
elastic wave equation

2 o°U

pVU 4+ (A + wVV .U — -a?
where 4 and u are the Lamé parameters characterizing
the elastic material, p is its density, and f(x, ¢) repre-
sents the local body-force density acting at position
x and at time ¢. If the body force is time-harmonic and
of the form

= —f(x, 1), (L.1)

i(x,t) = F(x, w) exp (iwt), 1.2)
then one seeks solutions of (1.1) of the form
U(x, t) = u(x, o) exp (iwt), (1.3)
where
sV + (A + w)VV - u + po’u = —F(x, ). (1.4)

For an aperiodic body force turned on at t = 0, it is
convenient to assume that the initial-particle velocity
and displacement vanish at t = 0. Then a one-sided
Laplace transform in time applied to (1.1) yields

uVau + (A + wVV cu — psu = ~F(x,s), (1.5)
where
u(x, ) =JwU(x, 1) exp (—st) dt (1.6)
and °
F(x, 5) = f “f(x, 1) exp (—st) dt. 1.7
0

The reduced wave equations (1.4) and (1.5) have the
integral solution!

u,(x) =JVGiJF sav +fscikaiJ(aup/ 9é)my, dS

+ (a/axq)f CixpgTigt My, dS,  (1.8)
]

19‘5?. T. De Hoop, Sc.D. thesis, Technische Hogeschool, Delft,

where
= Ad,;0

437 pe + M((Sipaia + 651761'(1)‘ (19)

d,; is the Kronecker delta, and the summation con-
vention on repeated indices is understood with
(i,J, p,» q) running from 1 to 3. For the time-harmonic
case (1.4) the infinite-medium Green’s tensor Gy
appearing in (1.8) is given by!

G, (x — E w)

Ciipg

_ _i_<l 0° {exp(—-iksr) _exp (—ikyr)
4mp \w® 0x,0x, r r }

+ u;ﬁ‘?ﬁ(—r‘—@ a,.,.}, (1.10)

where
= {(x, ~ £ 4 (xa — &) + (x5 — &),

k,=o/v,, k, = ofv,, Im (k,) £ 0,Im (k,) <0, and
pvy = A+ 2u, pv} = p.

The corresponding form of the infinite-medium
Green’s tensor for the aperiodic case (1.5) is given by

G(x — &, 5)

- L{l_ 0° {exp(—k,,r) _exp(=k,)
dmp (5% 0x,0x; r r }

+ v72 exp (—k,r) 5ij;, (1.11)
r

where k, = sfv, and k, = s/v,.

In what follows we shall be interested in obtaining
certain factorizations of the double-bilateral Laplace
transform of the Green’s tensors (1.10) and (1.11).
Let £ represent the double bilateral Laplace-transform
operator:

£ =f f exp (—s;X; — S9X) dx; dx,, (1.12)

where 5, = 0, + iT; and s, = 03 + iT,.

1481
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Operating on (1.10) with £ yields
£{G,(x, w)}
= (po®y {LEK (51, 52) exp (Ix5l/2K})
+ ngKs(Sl , S2) €Xp (lxslfzKa)}, (1 .13)

where for purposes of computing £{G,;}, &, &, and
&, can be equated to zero in (1.10) without any loss of
generality. In (1.13) the matrices L? and L, are given

by
53 5352 5y sgn (x3)/2K,,
L}, = { 535z 53 5y SgN (x,)/ZK,,], (1.14)
5,580 (x3)/2K, 55 58N (x3)/2K, 1K;?
s34+ 1K.7%) —81 8, —5, sgn (x3)/2K,
L = { —515; (s2 + 1K;%)  —s,sgn (xs)/ZK,],
—s, 580 (x3)/2K, =5, sgn (x3)/2K, (s2 + 53)
(1.15)
where
Ky(s1,59) = (23 + st + kE, (1.16)
K(s1, 80 = (23 4+ 5 + kY, (1.17)
1; x3>0
sgn (x;) = 0; x3=0 (1.18)
—1; x;<0.

The branches of the radicals in (1.16) and (1.17) are
fixed by the conditions that

Im{s?+s2+ Kk} <0 (1.19)

and
Im {s} + s3 + K} <o
This guarantees that as [x3| — o
£{G,} — 0.

(1.20)

The corresponding result for the bilateral Laplace
transform of (1.11) when &, = &, = &3, =0is

t{G”(X, S)}
= o, SR ) e Pyl o)

2psy, 2psy,
where
52 515, s y
s—; —;Tz —sgn (x;) =<2
2
wp={ i |
—sgn (x,) ‘7” —sgn (x3) 27}” vh
(1.22)
2 —_
('yf:‘ +§—:) __S;Ziz_ sgn (x3) 222 1’)’a
_ 2
M= —Ts;iz ( ?+s—;) sgn (x3) 27‘ , (1.23)

sg (o) 22 sgn (g 222 (44 :2-;2)
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with
vy = [k2 — (s} + sHF. (1.24)
sy, = [k — (s + sDP. (1.25)

In order to ensure that £L{G,}, as given by (1.21),
vanishes as [x3] — oo, we require that the branches
of the radicals in (1.24) and (1.25) be chosen so that

Re (sy,) > 0, (1.26)
Re (sy,) > 0. (1.27)

2. FORMULATION OF THE FACTORIZATION
PROBLEM

In another investigation? the writer showed that the
analysis of diffraction of a plane elastic wave by a rigid
right-angle wedge, occupying the first quadrant
(x; > 0, x, > 0) of the x; = 0 plane in an unbounded
elastic medium, could be reduced to the problem of
solving a system of Wiener-Hopf equations in two
complex variables. A solution of this system was
suggested by analogy with the known solution for a
system of Wiener-Hopf equations depending on only
one complex variable.® In developing the analog
solution, the problem arose of obtaining a product
decomposition of the matrix £(G )., into matrix
factors analytic in certain pairs of half-planes. It is
to this problem that the present paper is addressed.

As preparation for the analysis which we are about
to undertake, consider the problem of obtaining such
a product decomposition for a scalar function of
several complex variables f(z;, z,, * - * , z,). Sufficient
conditions for the existence of the decomposition have
been stated by Bochner.

Bochner’s Decomposition Theorem?

Let log f(z,, z5, - * - , 2,) be analytic and of bounded
Lynorminthetube y; < Re(z) < 4;,j=1,2,---,
k, where the L, norm of log f(z,, - - , z) is defined
by

nlogfnz={ f_ f Hog f(x: + iver- - » % + iyl
xdyl,---,dyk}. @.1)

Then log f(z,, - - -, z;) can be additively decomposed

into the sum of 2* functions [log f(z;, ", z)].»
n= 1,2,---,2",sothat
logf(zls"':zk)_ Z[logf(zlr""zk)]n, (22)

n=1

2 E. A. Kraut, Bull. Seism. Soc. Am. 58, 1083 (1968).

3 B. Noble, Methods Based on The Wiener-Hopf Technigue
(Pergamon Press, Inc., New York, 1958), p. 157.

4 S. Bochner, Am. J. Math. 5§9, 732 (1937).
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where for each n the function {[log f(z;, - - -, z)], is
analytic and bounded within a set of k half-planes
containing the interior of the tube y; < Re (z,) < 9,,
j=1,-+-,k The functions [logf(z,, ", z,)], are
uniquely determined® and are representable by Cauchy
integrals. For example, [log f(z,--",2z)) is a
bounded analytic function in the set of & half-planes

Re (z;) > y;,j =1, -, k and is represented as
llog f(z1s """zl
=_1_wa log f(&, -, &) dl dy - - - dE,
(2mi)t )z, zi(zy — L)z — L) (ze — &) ,
2.3)
where Z; is a rectilinear contour running from

y; — {00 to y; + ico in the {; plane. The required
product decomposition is given by

f(zrs o hz) = leICXP llog f(zy, - -

3 zk)]n . (2'4)

Examples
Consider the problem of obtaining a product
decomposition of the form (2.4) with k = 2 for the
function
sy = (k& — (2 + D)L, (2.5)
where k is real. Bochner’s theorem is not immediately
applicable to (2.5). However, on differentiating (2.5)
with respect to k, one finds

ldy _ _k_

ydk  (sy)*
The right member of (2.6) is analytic in the tube 7(B)
defined by

(2.6)

IRe (s)] < b, (j=1,2), 2.7

b; >0, (b} + b)Y <k, (2.8)

and has a bounded L, norm in 7(B). Therefore,
Bochner’s theorem guarantees a unique additive
decomposition for the right side of (2.6). In order to
obtain this decomposition, we make use of the follow-
ing result:

f‘” J“’O Ko[k(xf + Xé)%] exp (—s;x; — SpX5) dx; dx,
= 2n(sy)"* = L{K(kr)}, (2.9)

where K| is 2 modified Bessel function of the second
kind of order zero.

Proof: The function K,(kr) satisfies the reduced
wave equation

(V2 — k) Ky(kr) = —2m0(x,)d(xs),  (2.10)

 E. Kraut, S. Busenberg, and W. Hall, Bull. Am. Math. Soc.
74, 372 (1968).
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where & is Dirac’s delta function. On multiplying
(2.10) by exp (—s;x; — 55%5) and integrating by parts
over all (x,, x;) space, the result follows immediately,
provided s, and s, are restricted to be in the tube
T(B) of (2.7) and (2.8).

With the aid of (2.9), it follows that

247 K tkykn).

Sak 2 (2.11)

Now let £ be expressed as the sum of its restrictions to
the four quadrants of the (x,, x;) plane, i.e.,

(2.12)
where £, is the operator
o= [ [ s drtcnxpHte

X exp (—s1X; — 55%) (2.13)

and H is Heaviside’s unit step function with

€ =1 (n=1,4),
€ea=—1 (n=2,3),
€0 =1 (n=1,2), @14)
€= —1 (n=3,4).

The convolution theorem for Laplace transforms can
be used to show that the operators £, map K,(kr) into
functions analytic in the pairs of half-planes (B, n)
defined by

(B,1): Re(s) > —b;, Re(sy) > —b,,
(B,2): Re(s) <by, Re(sy) > —by, @.15)
(B,3): Re(s) < b, Re (sp) < b,, ’
(B,4): Re(s)) > —b;, Re(s,) < by,

with b, , b, subject to (2.8).

Proof: From the convolution theorem, it follows
that

J; J; Si(x1s x2) falxy, x5) exp (—s1x; — $px5) dx, dx,
o ¢1+700 egtio
= (2mi)~ J f g1(z1, 25)

where X gz(sll—— zl,zs2 — 25)dzy dz,, (2.16)
821, )
=J;wﬁwfi(xl , Xg) €XP (—X;2; — Xp2,) dx; dx,,
i=1,2 (217

and if f; is chosen so that fy(x;, x,) = H(x))H(x,),
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then
8281 — 21, 83 — 2Zp) = (5, — z;) sy — zp) L.

Therefore

(2.18)

[ [ HeamGa fion xpexp (=six, = sax sy dx,

cﬁmfcﬁm gl(zla 2y) dz, dz,
a—io (81— Z)(S2 — 25)

(2.19)

= (27i)®
Cy~10
= gi(s1, 82),

for Re (s;) > ¢, Re (55) > ¢,.

We conclude from this that the operator £, defined
in (2.13) maps f;(x; , x,) into a function analytic in the
pair of half-planes Re (s;) > ¢;, Re (5;) > ¢;. Now
letf;(x,, x3) = Ko[k(x? + x%)}] and choose ¢; = —b,,
¢y = —b,; then £, maps K, into (B, 1) and similar
arguments suffice to show that £, maps Ky(kr) into
functions analytic in (B, n).

Equation (2.11) may be written as

4

d k 1
<" log (s7/k) Zl[z—;ﬁn{Ko(kr)}—Z;c], (2.20)

and, on integrating both sides of (2.20) with respect to
k, one finds

() = kexp k[EI:_T £, {Kokp)} — 4—1} (2.21)

and therefore the required factorization of (2.5) is
given by
: Erk 1 :
sy(k) = kT exp f {— £ {Ko(kr)} — —] k. (2.22)
n=1 w |27 4k

For computational purposes, consider the integral
V(sy, 82) = Li{Ko(k)}
=f f Ko(kr) exp (—syxy — SpXo) dxy dx; (2.23)
0 JO
and observe that by symmetry
La{Ko(kr)} = V(emsy, €uase), n=1,2,3,4, (2.24)

where ¢,, and €,, are given in (2.14). To evaluate
(2.23), let (2.10) be multiplied by exp (—s,x; — SX5)
and integrated from 0 to co with respect to x; and x,
with the understanding that

f ” f " B(x)0(xg) dxy dxy = 1.
0 0

The result is
L, {Ko(kr)} = (3 + 55— K

X {_ -+ s1f Ko(kxs) exp (—sqXg) dXg

(2.25)

szf Ko(kx,) exp (—s1x,) dx;}, (2.26)
0
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where use has been made of the relation
0
{5— Kol(x2 + B}
X1
= {Kil(: + D + i, o= 0. (227)
x3#0

The one-sided Laplace transforms remaining in (2.26)
are well known and lead to the following expression
for V(s;, 55):

V(si,s9) = Li{Ko(kn)} = (5T + 53 - kB
(3 — k3t
” x log Lo + (53 — K97 L7 5 ss >k,
172 2(k* — st
X tan™ (k 52); sp < k
(s — kot N
x log L + i = K] (sllc =L ;o5 >k,
52\ g4 yd (2.28)
X tan™! (II: ; :), s, < k.

The definite integrals

f kkﬂ,,{'K(,(kr)} dk

involved in (2.22) unfortunately are not expressible
in terms of elementary functions and this complicates
the further analysis of the factorization.

If, instead of (2.5), we wish to factor

K(si, 89 = (if2)(s2 + 2+ k7, (2.29)
the same technique gives®
K(sy, 53) .
= (i/2k) T1 expf [ —ik/OC, {HP(kr)} + 4_1]1::| dk
n=1
(2.30)

where H{®'(kr) is a Hankel function of the second kind
of order zero. In this case

tn{Hf)m(k")} = W(Enlsla €n252), (231)
where
1
o) = e
. 5 20 s+ (52 4+ kz)%]
xloig—2 g Zog T T R)
i+ (s2 2y kz)%|: - g k
b (14 Tt (00
( + k%) k
(2.32)

and where (s2 + kD)t =k ats; =0,i=1,2.
¢ J. Radlow, Arch. Ratl, Mech. Anal. 8, 139 (1961).
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In the case of (2.29) it is understood that Im (k) < 0.
The tube T(B) on which (2.29) is analytic is defined as
in (2.7) and (2.8) except that k, where it appears in
(2.8), must be replaced by {Im (k)|. The factors in
(2.30) are then, respectively, analytic in the pairs of
half-planes (B, n) defined in (2.135).

Now consider the following matrix version of the
factorization problem.

Problem: Given an (N X N) matrix-valued function
Kii(zy, -+, z,) of k complex variables analytic in the
tube y;, < Re(z)<9;, j=1,2,---,k, obtain a
product decomposition for K;; of the form

2lc
Kijzy, 7)) = II1 M{P(zy, 05 z), (2.33)
where for each n the matrix M{P(zy, -+, z,) is
analytic in a certain set of k half-planes contain-
ing the interior of the tube y; < Re (z;)) < 6;,j =1,
2, k.
3. DISCUSSION OF THE MATRIX-
FACTORIZATION PROBLEM

When log K;;(z;, - -+, z;) represents a matrix which
isanalyticinthetube y; < Re (z;) < 6;,j=1,2,---,
k, and if the required Cauchy integrals exist, it is
possible to additively decompose log K;; in a manner
analogous to (2.2), i.e.,

2k

10g Kij(zl 5T, Zk) = Zl[log Ki]'(zl s T, Zk)]n . (31)

However, the required product decomposition corre-
sponding to (2.4) can only be obtained if the matrices
[log K;;1, commute with one another? and this usually
is not the case. An exception to the rule is the instance
in which K;(z,, - -+, z) is diagonal. Then the matrices
[log K;;], must also be diagonal, and of course they
will commute. We shall exclude this special case from
further consideration.

The next simplest class of matrices to consider are
those matrices which can be diagonalized by a similar-

ity transformation. Suppose that K(z;, -, z,) is
such a matrix and let
K@, -, z) = SIKS (3.2)

be the representation of K in diagonal form. By our
previous remarks, a product decomposition for

k(zl, - -+, z,) of the form
A 2t
K(zy, s zp) = I:[lM(”’(Zl, oz (33)

can be obtained when the eigenvalues of K (and thus

? G. H. Weiss and A. A. Maradudin, J. Math. Phys. 3, 771 (1962).
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of K) can be factorized using Bochner’s theorem. A
product representation for the original matrix

K;i(zy, -, z;) can then be immediately written as
2k
K(zi, -+, ) = [T (SM™S™). (3.4)
n=1

Commutation is not a problem here because the
matrices M™, being diagonal, commute with one
another and commutation remains invariant under a
similarity transformation. Another problem arises to
plague us instead. In general, the matrix (SM("S™)
will not remain analytic and bounded in the same set of
half-planes as M™(z,, - - - , z,). The analyticity do-
mains of the factors appearing in (3.3) unfortunately
are not generally invariant under a similarity trans-
formation because the matrices S(z,, -, z,) and
Sz, * -, z;) themselves depend on the k& complex
variables.

Consider the example mentioned in the beginning
of Sec. 2. We have from (1.13)~(1.15)

c{Gij}:ca:o = K;i(s1, 82)

(4 + 5%’{’) $189% 0
= (pw®)! 5182Y (2 —sty) 0
(3.5)

for the time-harmonic elastic-wave Green’s tensor,
where

o= {3K7% + (52 + DK, (3.6)
Ay = {1K'KT + (5 + sD}K,, (3.7
Ay = (3K;'K;T 4 (53 + sHIK,, (3.8)
y=(— AT+ 53) = K,~ K, (39

and
ﬁ{Gu‘}ms:o = K;i(51, 52)

N
= (2ps)~" —s;s2 (12 + Z_z 'P) ol
0 0 Ay
(3.10)
Av= {8 + (51 + sD}G™y) (3.11)
do = {sPy,p, + (5T + DI (3.12)
Ay = {sPy,ps + (51 + s}y (3.13)

p =54 — B/t + s2) = (7' — ), (3.14)
for the corresponding aperiodic case (1.21)-(1.23).
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The functions 4,, 4,, and 4, in (3.5) and (3.10) are the
eigenvalues of K;;(s,,s,) and the matrices (3.5) and
(3.10) are both diagonalized by the same matrix

"—52 Sl 0
S=@t+s)H s, s 0
0 0 (s2+sd

The columns of S form the eigenvectors of K;;(sy, 55)
and S satisfies the relation § = S—1,
In diagonal form K(s,, s,) becomes

(3.15)

Al(sx s 52) 0 0
KGp,80 ={ 0  Ig(sy,8%) 0
0 0 13(51 s Sz)

(3.16)

and the corresponding factor matrices M (s;, s5)
appearing in (3.3) are given by

A7 (1, 52) 0 0
M(m(sl s Sp) = 0 lg")(sl s S3) 0 N
0 0 }*:(;n)(ﬁ s Sa)
3.17)
with
A(sy, 89) = ﬁ M(s,, ), i=1,2,3. (3.18)

n=1
For a fixed n each of the three scalar factors A{" (sy, 5,),
i =1, 2,3, is analytic in the pair of half-planes (B, n)
of (2.15). In the time-harmonic case (3.5), the k, and
k, appearing in (1.16) and (1.17) are complex and b,
and b, in (2.15) are chosen so that

(6% + b} < {Im (k). (3.19)

In the aperiodic case (3.10), it is assumed that &,
and k, in (1.24) and (1.25) are real and that

162 + BDY < Ik, (3:20)

The problem of factorizing the matrix Kj;(sy, $3)

has now been reduced to that of factorizing its

eigenvalues as indicated in (3.18). Consider the time-

harmonic case (3.6)-(3.8) first. The eigenvalue

A4(s, , 55) given by (3.6) is a special case, for on using
(1.17) one finds

M(sy, 59) = *kng(slﬁ Sa)s (3.21)

and this has already been factored in (2.30). The
remaining eigenvalues (3.7) and (3.8) each involve the
product of

N(si, s9) = {(4K,K) " + (5T + 59}, (3.22)
with K, or K,. These latter functions factorize as

EDGAR A. KRAUT

shown in (2.30). To complete the factorization in
(3.18) it is necessary to obtain a product decomposition
for (3.22) of the type indicated in (2.4). For this
purpose we shall obtain an additive decomposition of
log N(s,, s,) with the aid of a double Cauchy integral.
Using (1.16) and (1.17), N(s,, 5;) becomes

N(Sl » 52) = (Sf -+ 52)
~E+ SIS S+ L (3.23)

It follows from (3.23) that with the choice of branches
made in (1.19) and (1.20) N(s,, s,) is bounded and
never vanishes,

Proof: To establish that N(s;,s,) is bounded it
suffices to observe that for large |s;| and |s,|

_(k§+k§){l+o(21 )}

lim N(s;, sp) =

i:; ::2 2 hl + Sg
3.24)
Next note that N(s;, s,) can vanish only if
k2k?
2 2 pits
Sy + Sg) = — ———. 3.25
(sy + s2) T (3.25)

On substituting (3.25) back into (3.23), one finds

Rk _.{ K }*{ K }*
K4+k2 U+ kY R+ kY

(3.26)

N(sy, 59) =

and in order for (3.26) to vanish the signatures of the
two square roots which appear must differ. However,
because of (1.19) and (1.20), this is not the case and
consequently N(sy, 5;) never vanishes.

Let a parameter ¢ be defined by

c= —2(k% + k). (3.27

Then, when |s,| or |s,] is sufficiently large, there is some
positive real number 4 such that
A

[si + s3]

0 < flog eN(sy, s9)l < (3.28)

Furthermore, the analyticity and boundedness of
¢N(s;, 5p) in the tube T(B) of (2.7) and (3.19) guar-
antees that log cN(sy , 5p) is also analytic and bounded
in T(B). Therefore, the double Cauchy integrals

[IOg CN(SI * 32)]13

f logcN(z, 20 4, 4z, (3.29)
(Zm) —io0 J—iw(§; — Z1)(Ss — Z3)

converge and yield a complete additive decomposition
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of log ¢N(s,, 5) of the form
4
IOg CN(SI H 32) = 2 [log CN(S]. > S2)]n 1 (330)
n=1

where [log ¢N(sy, $5)], is analytic in the pair of half-
planes (B, n) defined in (2.15) and (3.19).

The required product decomposition of N(sy, 85) is
then given by

4
N(sy, 52) = ¢ > ] exp [log ¢N(s,, 59)],.  (3.31)
n=1

In the time-harmonic case the factors appearing in the
product decomposition (3.18) are given by

A = ido-texp (5;—77)

X exp f " [(—ik/4)£”{Hf>2)(kr)} + ‘ﬂ dk, (3.32)
}én) — (__21'](1,(;)_i exp [log ¢N(s;, 52)]n

y expjk, [(_ik/4)ﬂﬂ{1’1f)2)(k")} + ::};:l dk, (3.33)
A = (—2iksc)—i exp [log ¢N(s;, 5],

X exp j " [(—m/&t)tn{er)} + 41[(] dk. (3.34)

Using (3.15) and (3.4), the original matrix (3.5) is seen
to have the product decomposition

4
Kii(s15 $9) = I_I1 K{P(s15 sp), (3.35)
where
K = (st + )7
AP+ s~ 0
x | sisad” — 27 (st + 205k 0

0 0 ASV(sT + 53)
(3.36)

The results for the aperiodic case (3.10)-(3.13) are
quite similar. The factors appearing in the product
decomposition (3.18) are now given by

AW = k‘glexpj

o0

ks

—k 1
I:ET— £ {Ko(kr)} + Zk:\ dk, (3.37)
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l(gn) — (__zckp)_% exp [l()g CN(SI s s2)]n

x expf:' Bi‘ £ {Ko(kn) + ;:7(] dk, (3.38)

ks

Zé") = (—2cks)_i exp [log ¢N(s1, S9)ln

ks
X exp L [Ei‘ £ {K(kn) + 41~k] dk, (3.39)

™

where in this case

N(s1» 89 = [{K2 — (s + s}t 1
X {k%~ (s} + D} + (st + sp). (3.40)

The matrix (3.10) has a product decomposition (3.35)
with factors of the form (3.36), however, with A{®
(i = 1,2,3) given by (3.37)-(3.39) instead of (3.32)-
(3.34).

Each of the matrices K{'(s;, 5,) in (3.36) would be
analytic in a pair of half-planes (B, n) defined in
(2.15), (3.19), and (3.20) if it were not for the singular
scalar multiplier (s3 + 52~ appearing in (3.36). The
factorization which we have actually obtained has the
form

1
K515 59) = f(51, 52) I:Il Ki?)(sl ,S2),  (3.41)
where the K{(s;, 5;) are analytic in the desired half-
planes (B, n) and f(s,, s;) is a singular scalar factor
given by
f(s1,89) = (5% + s (3.42)

The tube in which an expression like (2.29) is analytic
disappears in the case of (3.42). This prohibits us
from using Bochner’s theorem (see Sec. 2) to factorize
(3.42) and thereby prevents us from further simplifying
(3.41). The source of this difficulty is clearly seen to be
that the eigenvectors of K,(s, 5;), i.e., the column
vectors of (3.15), are singular on the manifold
(s2 + s2) = 0, and therefore have no tube of analyticity,
whereas the eigenvalues A,(s;,s,) (i=1,2,3) of
K;;(sy, 52) do share a common tube of analyticity.
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Zak [J. Math. Phys. 1, 165 (1960)] has given a method for constructing the irreducible representations
of space groups which involves inducing the representations of the full group from those of an invariant
subgroup. When a representation of the subgroup is self-conjugate, Zak’s prescription for the induction
is subject to a restriction which makes it inapplicable in some practical applications of the method. This
paper presents a general prescription for carrying out the induction from self-conjugate representations.

When a space group is nonsymmorphic, the irreduc-
ible representations of its little groups at the Brillouin-
zone edge cannot be constructed by the usual methods
applicable to symmorphic groups. Zak® has given a
method whereby these little-group representations can
be constructed. The method utilizes the fact that every
space group contains an invariant subgroup of index
two or three and consists of a procedure for inducing
the irreducible representations of the full group from
those of the invariant subgroup. If the invariant
subgroup of the little group is symmorphic, its
representations can be obtained in the usual way and
the induction procedure can be applied to obtain the
representations of the little group. 1f the subgroup is
not symmorphic, one relies on the fact that it also
contains an invariant subgroup of index two or three.
The process is continued until 2 symmorphic subgroup
is encountered. Then, by a series of inductions, the
irreducible representations of the little group are
constructed from those of its symmorphic subgroup.

However, Zak’s induction procedure is not com-
plete. When an irreducible representation of the
invariant subgroup is self-conjugate, the prescription
offered by Zak is applicable only in special circum-
stances which are not always met in practical applica-
tions.? Below we present a simple, general prescription
for effecting induction from self-conjugate representa-
tions. This prescription provides, in conjunction with
Zak’s prescriptions for other cases, a complete
induction procedure.

We begin by sketching the well-known* formal
procedure for inducing associated irreducible repre-
sentations of a group G from a self-conjugate irreduc-
ible representation of an invariant subgroup H of

1 G. F. Koster, Solid State Phys. 5, 173 (1957).

2 J. Zak, J. Math. Phys. 1, 165 (1960).

3 The representations of the space group D (the “‘rutile” group)
have been constructed by Zak's method [J. G. Gay, W. A. Albers,
Jr., and F. J. Arlinghaus, J. Phys. Chem. Solids (to be published)).
It was necessary to use the prescription given in this note to obtain
certain of the representations.

1 H. Boerner, Representations of Groups (North-Holland Pub-
lishing Co., Amsterdam, 1959), pp- 95-101.

index two or three. Let a be any element of G not in H.
Then, if H is of index two, let its coset be aH; if H is
of index three, let its cosets be alf and a~'H. Let
r, s, t be typical elements of H, and let D(r) be the
matrices of a self-conjugate irreducible representation
of H. Because the representation is self-conjugate,
there exists a matrix B such that

D(ara—') = BD(r)B-1.

In the index-two case, a® € H and we have

D(a*)D(r)D~'(a®) = B*D(r)(B~")?
or

D(r)D~1(a?)B? = D~1(a?)B2D(r),
so that by Schur’s lemma
B2 = AD(a?),

where 1 is some constant. Introducing A = A~¥B, we
have A2 = D(a?). This suggests that we can let the
matrix A represent the element g and thereby obtaina
representation of the group G = H + aH. Indeed,
two associated representations of G may be induced

from the representation of H. One is obtained by
adding to D(r) the matrices

Dj(ar) =AD(r),
and the other by adding to D(r) the matrices
Dy(ar) = —AD(r).
The index-three case is analogous. Namely, because
D(r) is self-conjugate, there exists a matrix A such that
D(ara™') = AD(r)A1,

all reH,

and such that
A = D(a%).

Then the representation D(r) of H induces three
representations of G = H 4 aH + a”'H. Each of
these is obtained by adding to D(r) one of the follow-
ing three sets of matrices:

D,(ar) = AD(r),
or

Dy(ar) =

Di(a'r) = ATID(r)

e2ni/3AD(r)’ D2((l_ll‘ = e—27ri/3A—lD(r)
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or
Dy(ar) = e 2*AD(r), Dy(a™'r) = & *A7D(r).
With these formal results, all that is required to
obtain the representations of G is a prescription for
obtaining the matrix A. The prescription given by Zak
is valid only when A turns out to be a scalar matrix.
The prescription given below is applicable in general.
We consider the matrix

C(X) = > D(ara )XD(r ™),
reH

where X is an arbitrary matrix. We first observe that
C does not vanish for all X. Namely, because D(r)
is self-conjugate, there exists a nonsingular matrix B

such that 51y — BD(PB,
d th
andtien @) = 3 D(ara)BD(Y)
reH
=3 BD()D( )
= mB,
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where m is the order of H. Second, we observe that for
arbitrary X

C(X)D(s) = 3 D(ara " )XD()D(s)
reH

= Y D(asa 'ata " )XD(r™)
teH

= D(asa™)C(X); forallseH.

We may thus infer from Schur’s lemma that, as long as
C(X) ¢ 0, C(X) has an inverse and accomplishes the
similarity transformation from D(r) to D(ara™).
Thus, A is equal to a constant times C(X), as long as
C(X) = 0.

We thus have the prescription that, to obtain a
matrix A to represent the coset representative element
a, one first computes the matrix C(X) for a succession
of simple matrices X until a nonzero result is obtained,
and then one normalizes the result so that A2 = D(a?)
or A% = D(a®), according to whether the subgroup was
of index two or three.
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(Received 1 May 1967)

It is shown that, under reasonable assumptions about inelasticity and asymptotic behavior, the usual
diffraction picture combined with the N/D approach to =—x scattering leads to a singular integral
equation. The authors’ formalism is then used to show that, in conformity with the nearby-singularities
philosophy, a constant left-hand discontinuity is by itself incapable of producing resonances in the GeV
region. Next, a model for the creation of vector resonances, which combines a long-range force (defined
by exchange of a cutoff vector meson) plus a short-range force (compatible with diffraction requirements),
is introduced. The effect of the short-range force on the self-consistent (bootstrap) solutions is investi-
gated in an approximate scheme. For a self-consistent solution with the correct p-meson mass, which is
found to exist, inclusion of the short-range force is shown to decrease the self-consistent width by a factor
of 2, which is nevertheless still greater than the experimental value.

1. INTRODUCTION

Most of the low-energy calculations on strongly
interacting systems are based on the assumption that
the scattering in the GeV region is determined by
low-energy singularities and that the effects of the
high-energy region are completely unimportant. This

* This work was done under the auspices of the United States
Atomic Energy Commission.

t Postal address: Laboratoire de Physique Théorique et Hautes
Energies, Faculté des Sciences, Orsay, France.

assumption is fully justified in pion-nucleon scattering,
notably below 500 MeV, where detailed quantitative
agreement between dispersion calculations and experi-
ment has been found.! It is also justified in nucleon-
nucleon scattering, where reasonable models account
for all the important experimental features.?

1J. Hamilton, ‘‘Dynamics of the #-N System,” Fiinfte Inter-
nationale Universititswochen fiir Kernphysik, Schladming (1966).

2 A. Scotti and D. Y. Wong, Phys. Rev. 138, B145 (1965); H. G.
Dosch and V. F. Miiller, Nuovo Cimento 39, 886 (1965).
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notably below 500 MeV, where detailed quantitative
agreement between dispersion calculations and experi-
ment has been found.! It is also justified in nucleon-
nucleon scattering, where reasonable models account
for all the important experimental features.?

1J. Hamilton, ‘‘Dynamics of the #-N System,” Fiinfte Inter-
nationale Universititswochen fiir Kernphysik, Schladming (1966).

2 A. Scotti and D. Y. Wong, Phys. Rev. 138, B145 (1965); H. G.
Dosch and V. F. Miiller, Nuovo Cimento 39, 886 (1965).
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No similar agreement can be claimed for pion—pion
scattering—in particular, for a self-consistent deter-
mination of the parameters of the p meson. For this
system, it is quite possible that the effects of the high-
energy region are less unimportant.>* Furthermore,
in a determination of the parameters of the p, the mass
of which is rather high, the features of the amplitude
in a region which starts at 2 or 3 GeV are, perhaps,
of some importance.

The purpose of this work is to give a hint concerning
the effect of the high-energy region on the features
of the vector-meson resonances. For this, the ex-
perimentally well-established picture of diffraction
scattering is combined with the usual N/D approach
employed in self-consistent calculations of pion—pion
scattering. This leads to a marginally singular integral
equation® which can be solved by an application of
methods developed by the authors elsewhere.®

In Sec. 2 it is shown that, under certain assumptions,
both Regge behavior and the conventional diffraction
picture (with nonshrinking forward peak) lead to
marginally singular N/D equations. In Sec. 3 the
possibility that the distant singularities (short-range
forces) produce resonances in the low-energy region is
studied separately. For this the basic integral equation
formulated in Sec. 2 is applied to a model which
consists of a constant left-hand discontinuity (and
constant inelasticity). This model is compatible with
the requirements of unitarity and of the diffraction
picture, but completely neglects the structure of the
nearby singularities; as a result it is known to be
incapable of generating resonances in the GeV region.
Section 4 contains the formulation of a more realistic
model whose left-hand discontinuity combines a
long-range part determined by vector exchange with a
short-range part compatible with the requirements of
diffraction scattering. Finally, in Sec. 5, the results of
an approximate numerical calculation involving the
model of Sec. 4 are presented and compared with the
solutions of the conventional vector-meson bootstrap
(without short-range part). The conclusion is that
the short-range part tends to decrease significantly
the coupling necessary to produce a resonance,
affecting its width to a lesser extent, to reduce the
self-consistent mass, and, for low cutoffs, to change
the self-consistent width in the correct direction. In
particular, the width of the self-consistent solution

3 H. Burkhardt, Nuovo Cimento 42, 351 (1966).

4 1. Van Hove, “Theoretical Problems in Strong Interactions at
High Energies,” CERN 65-22 (1965).

5That in pion-pion scattering the usual diffraction requirements
lead to a singular integral equation has independently been con-
cluded by D. H. Lyth, Phys. Rev. Letters 17, 820 (1966).

¢ D. Atkinson and A. P. Contogouris, Nuovo Cimento 39, 1082
(1965).
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which corresponds to m? ~ 30 m? is reduced by a
factor of 2.

In Appendix A, the model of Sec. 3 is reconsidered
in the approximation of contracting to zero the gap
between left- and right-hand cuts; this approximation
has the advantage of providing explicit and relatively
simple solutions. Again, it is concluded that a
featureless left-hand discontinuity and inelasticity are
incapable of producing acceptable resonances. Finally,
in the contracted-gap case, certain features of the so-
lutions and, in particular, the positions of the zeros of
the denominator function are studied in Appendix B.

2. FORMULATION OF THE
BASIC EQUATIONS

Consider the elastic scattering of two pseudoscalar
particles of mass unity, and assume that the partial
P-wave amplitude A4;(») admits the usual decomposi-
tion:

A,(v) = N(»)[D(); @.1)

v is the square of the center-of-mass momentum. It is
convenient to consider a once-subtracted representa-
tion for N and D, with the subtraction point at v = 0.
Due to the usual threshold properties, N(0) = 0, so
the equations are

NQ) = 5 f_—:L & "—5;:—)_9(:)—) (2.2)
v [ pORGING)
D(»)=1 - J; dv o ) (2.3)

Here o(—») is the discontinuity along the left-hand cut
—0<r< —wp, p(¥) =W+ )]} is the usual
phase-space factor, and R,(») is the inelasticity of the
P wave’; thus the unitarity condition reads
Im 4,(») = p(R, () |4, (M, 0<v < 0. (24)
To derive the basic integral equation of the problem,
one can substitute (2.2) into (2.3). Then the definitions

— D)y = f(w) 2.5)

Y= —w,
f(w) = ;1 + :17 fwd(u 'K(w, o)o(0')f(0), (2.6)

® R
K(w,w')=1f dx —PORX)
7 Jo (x + o)(x + o)
Next, assume that, for » - 400, A4,(») becomes
purely imaginary. Equation (2.4) implies
p(R(») ~ [Im 4, ()]}

7 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

27
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According to the Phragmen-Lindelof theorem,8 if

A () ~ v**(log »Y*'(log log »)*2 - - - (log log - - - log »)*"
for »— o0,

and

Ay(v) ~ " (log |¥))™
X (log log [#))**'- - - (log log - - - log |#))*

for »—> —o0,

and if

|4,(»)) < lae™|, where a = const,

for all complex v and € > 0, then oy = o, «; =
ol ©, %, = o and

o(—v) ~ Im A4,(»), 2.9

Lest it be felt that these conditions are too restrictive,
one may prefer simply to assert (2.9). Any N/D
system for which Im 4,(») has different limits for
v — £ 00 would constitute a pathology lying outside
the scope of this paper.

It is now shown that all the important models of
high-energy elastic scattering imply an Im 4,(»), and
hence a o(¥), such that the kernel of (2.6) has an
unbounded norm, so that (2.6) is a singular integral
equation. For energies above a few GeV and
momentum transfers ||} < [ GeV/c, a good param-
etrization of the observed ¢ dependence of the
scattering amplitude is?

|AQ, DI = |A(», 0)[%e"™.

It is assumed that, as v — o0, A(», t) becomes purely
imaginary: Then projection onto the P wave gives®

for v— 0.

1]
A () = —lf dt Ay, t)Pl(l +i)
411 ~4v 2 v oo

Vv
~ b7 (#)0,0,(7); (2.10)

g10t(¥) is the total cross section, which is taken to be
asymptotically constant. As for b(»), the width of the
diffraction peak, two cases are of interest:

(i) b(») ~log, in accord with the hypothesis of
asymptotic dominance by a Pomeranchuk-Regge
trajectory of nonzero slope [a},(f = 0) 5 0]

(i) b(v) ~ const, corresponding to the conventional
diffraction picture, or to a flat Pomeranchuk trajec-
tory.1¢

8 E. C. Titchmartsh, The Theory of Functions (Oxford University
Press, New York, 1960).

?1In deriving (2.10), it is assumed that the contribution to the
integral from large |7] can be neglected.

108ee, e.g., L. Van Hove, Rapporteur’s Report at XIIith Inter-
national Conference on High Energy Physics at Berkeley, CERN
preprint (Th. 714), 1966.
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Consider first Case (i), when for ¥ — +-00:
(2.11)

The behavior of K(w, o) for large w, ' is controlled
by the large values of the integrand in (2.7). Thus,

Im A4;(») ~ (log v p(»)R,(v) ~ log ».

log x
(x + w)(x + o)
With the lower limit of integration taken at x = 0,
this gives
K(w, ") ~ }[(log 0')* — (log o)}’ — w). (2.13)

In view of (2.9), o(w)~ (log w)™. Thus for large
w, o' the kernel of (2.6) reduces to

K(w, ') ~ f " dx (2.12)

log w

) (2.14)

K(0, ')o(a') ~ % log (w//w) (1 +
w

- log w

The norm of this diverges (logarithmically) for large
o, @', so that (2.6) is a marginally singular integral
equation.1?

Consider now Case (ii). The above considerations
can easily be generalized to include the asymptotic
behavior Re 4,(v) ~ const together with Im A4,(») ~
const (for » — o0). In view of (2.4), (2.7) can be
split as follows:

K(w, w")
_ 1Im A4y(o0) log(w'[w)
7 |Ay(o0)f?
1 f ® 4 POIRY(X) = Tm Ay(0) | 4y(o0)|* .
0 (x + w)(x + w')
(2.15)

o —w

+

w

Then use of (2.9) reduces (2.6) to the form

f) =2+ 2 % dor 0BT £
w m Jor w w

!

L1

T

" do'K p(o, o) f(o), (2.16)

where
1= {Im Al(oo)}z_
|44(0)]
Kp(w, o) of (2.16) contains the integral of (2.15)
and the difference o(w) — Im 4,(00). Thus, with suit-

able assumptions about the way R,(») and Im 4,(»)
approach their asymptotic limits, the norm of

(2.17)

111 S. Gradshteyn and 1. M. Ryzhik, Tables of Integrals, Sums
and Products (Academic Press Inc., New York, 1965).

12 Note that in (2.14) the first part of the kernel }{log (w'/w))/
(w” — w) has been treated in Ref. 6; and the second part leads to a
singular equation which is reduced to the forms of Ref. 6 by a
simple change of the unknown function [f(w) — log® - f(w)].
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Kyp(w, w') is finite. Then (2.16) is a standard form
solved and studied in Ref. 6.1

Furthermore, the definition (2.17) implies

0<i< L (2.18)

Then it is known that solutions free of unwanted
poles on the physical sheet of v (ghost-free solutions)
can be constructed by the N/D approach®14-16 (see
also Appendix B).

The rest of this work is restricted to models of the
type (ii), for which the methods developed in Ref. 6
are directly applicable.

3. INABILITY OF SHORT-RANGE FORCE TO
GENERATE RESONANCES
As a first application of the foregoing formalism,
consider a model with a constant left-hand dis-
continuity

a(—v) = Im 4;(0), —o <7 < —o;, (3.1)
and constant inelasticity
R,(») = R,(0) = Im A;(c0) |4,(c0)72; (3.2)

also, the approximation p(v) =1 will be made.
Then, it is asked whether resonances can be produced
in the GeV region. This example, which neglects
basic features of the low-energy part of the amplitude
and of the long-range part of the potential, cannot be
realistic for low-energy calculations. Nevertheless,
it can give some idea of the relative importance of the
distant singularities in the generation of the strong-
interaction resonances.

Before consideration of the main problem, it is
shown that a ghost-free amplitude can be constructed
by direct application of the N/D equations. Sub-
stitution of (2.3) in (2.2) gives

N(») = B(») + < Ry(0) foodv, B(v) — B'(v’)' N(?:'),

y—7 4
(3.3)
where
B() =~ f_mLtlv’ A=) , (3.4)
7 J-oo v'(v' — )
or, due to (3.1),
B(v) = [Im 4,(c0)/=] log (1 + v/w,).  (3.5)

In view of (3.2),
Ry(o0) Im 4,(0) < I
then Ref. 6 concludes that an iteration solution of

13 Other possibilities, e.g., 5(#) ~ ¥4, lead also to marginally
singular integral equations of the type treated in Ref. 6.

11D Atkinson and D. Morgan, Nuovo Cimento 41, 559 (1966).

15 D, Atkinson, J. Math. Phys. 7, 1607 (1966).

16 A, P, Contogouris and A. Martin, Nuovo Cimento 494, 61

(1967).
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(3.3) (Neumann-Liouville series expansion) cxists.
On the other hand, it is easy to see from (3.5) that,
for any »,v' > 0,

B(») >0, [B( — BO)llv—+1>0. (3.6
Hence, all the terms in this iteration solution are
positive and

N@) >0, »>0. 3.7)
Then (2.3) implies that — D(v) is a Herglotz function,
€., Im D(¥) <0, Im» >0, (3.8)
and that

D >0, »<O. (3.9)

Thus D(») has no zeros on the first sheet of the
complex » plane. It is concluded that the solution of
Eqs. (2.2) and (2.3) which admits a Neumann-
Liouville expansion will be free of ghost poles.

With (3.1), (3.2), and the approximation p(») = 1,
Kp(w, o) of (2.16) vanishes ; then, with the simplifica-
tion wy, = 1 (no loss of generality), Eq. (2.16) can be
written

Jy=1+2 f dor PBLIO) iy (3.10)
w ™ 1 o — @

A is given by (2.17). A solution of this equation is
flw) = ! + Zf dow'R(w, »'; ) —]—, ., (@G.a1n
w 1 ©®

where R(w, o’; 2) is a resolvent of (3.10). Reference
6 shows that there exists a unique resolvent with a
branch point only at 1 = 1:
R(w,®’; ) = 1 J‘“’ _stanh (7s)
2J-w cosh®(ms) — A
X P_j ;2w — DP_y, (20 — 1). (3.12)
Thus, the extra requirement of analyticity at 4 = 0
(and thus the existence of a Neumann-Liouville
expansion) leads to the unique choice (3.12); in the
next section this choice is further supported by
certain continuity arguments.
Substitution of (3.12) into (3.11) and use of the
identity??

coshms @
P_yl2) = J
T 1

gives the solution
D(~w) = of (@)

Ao % s tanh (7rs)
=14+~ ls —————
T f-wcscoshz(m)—l

P 3,20 — 1)
cosh (7s) )

dx
X+ z

z> -1,
(3.13)

P——%-Hs(x) ’

(3.14)

Y7 Higher Transcendental Functions, A. Erdelyi, Ed. (McGraw-
Hill Book Co., New York, 1953), Vol. 2.
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The foregoing conclusions on the absence of ghost
zeros of this solution can be checked directly, at least
for » real and negative (according to Appendix B,
this is a particularly relevant region). Figure 1
presents plots of (3.14) in the interval 1 < < 700
for various values of the parameter 4, subject to the
condition (2.18); no ghost zeros of D(—w) are
indicated.

An analytic continuation of (3.14) to @ <0 is
necessary in order to look for resonances. This is best
accomplished by means of the identity'”

. 2 .
P(—z)=¢"""P(z) — - sin (71)Q,(2)

(&£ according as Im z 2 0), which gives

D»)y=1— Mm}f "dS_La:nh_(zs_)_ Py (2v+1)
o cosh®(ms) — A
@ tanh (7s)
- js SR a2 40D,
”J_,,‘Scosh‘l(m) myEE R

(3.15)

To simplify the first integrand, use has been made of
the symmetry property'®

P,%+ is(z) = P--é~is(:)'

For v > 0, because of (3.16), the contribution of
the second term of (3.15) is purely imaginary. Hence
the condition for a resonance at » = v, is

(3.16)

s tanh (7s)
cosh® (ms) — 2
x ReQ_y ;(2v, + 1)=0. (3.147)

The functions Re D(»), for A = 0.25, 0.50, 0.75,
0.95, and |, are plotted in Fig. 2. For 0 < v < 50,
there are no zeros of Re D(v); with the beginning of
the left-hand cut defined by two-pion exchange
(m,, = m? = 1), this region extends up to 2 GeV.
Moreover, the weak dependence of Re D(») on » at
large » indicates that, probably, there are no zeros at
all.

Re D(ry) = 1 — 2wy, f ds
0

T 8
A=095
r 7
- 6
- 5
| P
X075 2
| 3 1Q
L. A=0.50
A=0.25 2
F——— T e
(9]
700 600 500 400 300 200 100 ]
-—wE—y

F1G. 1. The function 5(1'), given by Eq. (3.14), for real negative ».
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FiG. 2. The function Re 5(:;), given by Eq. (3.17), for
real positive v.

For 2 close to unity (A — 1—), the majorizations of
R(w, w'; A) given in Ref. 6 and the asymptotic
properties of the Legendre functions for large argu-
ment indicate that, apart from logarithmic factors,

(3.18)

Since a once-subtracted representation for D(v) is
used, this behavior is in agreement with the conclusions
of Olesen and Squires.®

The conclusion of this section is that a constant
left-hand discontinuity along with a constant in-
elasticity is incapable of generating strong-interaction
resonances: the real part of the corresponding
denominator function does not vanish at all, at least
in the GeV region. This conclusion is further streng-
thened by the explicit solution of Appendix A (approx-
imation m;, = 0).

In this model, a constant left-hand discontinuity
and inelasticity can be considered as an abstraction
representing the effects of the high-energy region.
In this sense it can be said that for the generation of
the known resonances, the high-energy effects are not
primarily responsible; the resonances are generated
by the long-range forces. This conclusion is, of
course, hardly surprising. However, the model also
shows that an asymptotically constant left-hand
discontinuity, which is compatible with the present
experimental information in the diffraction region,
in no way contradicts the basic principles of domi-
nance by nearby singularities.

On the other hand, although not primarily respon-
sible, the short-range force may have a significant
effect on certain features of the resonances. This
question is taken up in the next two sections.

Im D(») ~»¥, for v— co.

4. MODEL COMBINING LONG- AND
SHORT-RANGE FORCES

The next application of the formalism of Sec. 2 is a
more realistic model with a left-hand discontinuity, of
which the nearby part is given by the exchange of an

¥ P, Olesen and E. J. Squires, Nuovo Cimento 39, 956 (1965).
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Oy (-V)

' T
Y Nu’l(-u,mz)
|
@i \:‘”L
|
-— )= -y 'l

FiG. 3. Onepossible way to combine long- and short-range forces;
however, the attraction is insufficient to generate resonances at
v < 50.

o

elementary vector meson of mass m (long-range
forces), and the distant part is constant (short-range
force). Thus, for —w;, < v < —wp = —m?/4,1°

2 2
o=y, m?) = y(l +o 2 4) (1 + -'"—)
8v 2v

x 0(—v - —’Z—z)e(wl +), (@&1)

where y is proportional to the mmp coupling (the
width T, =~ 120 MeV corresponds to y =~ 3.8);
and for v < —w,,

0y(—7) = A(—v — w,),

For simplicity, elastic unitarity [R,(¥) = 1]is assumed,
the generalization to any asymptotically constant
inelasticity being straightforward.

One way to combine (4.1) and (4.2) is indicated in
Fig. 3: o,(—v, m?) rises on the left until it reaches
the value A. Correspondingly, w, is the larger zero of
the equation

Y[l — (m? + 4/8w)][1 — (M?2w)] = A. (4.3)

Unfortunately, in this model, which has the advantage
of not introducing additional parameters, calculations
with 0 <4 <1 and 1 < y < 50 give no indication
of zeros of Re D(v) for energies up to » = 50. It can
be said that the attractive part of the potential (=
positive part of left-hand discontinuity) is not suffi-
ciently strong to produce physical resonances.
Notice that increase of y strengthens the repulsion
rather than the attraction.?

Thus one is led to a combination of (4.1) and (4.2)
according to Fig. 4, where a sharp cutoff A is imposed

with 0<i<1. (42

12 A, P. Contogouris and D, Atkinson, Nuovo Cimento 39, 1102
1965).

¢ 20 The particular case y = A(w; = o) corresponds to a left-hand
discontinuity given entirely by exchange of an elementary vector
meson. Here, for 0 <y < 1 no zeros of Re D(v) are indicated in
the region » < 50. For y > 1, A. Bassetto and F. Paccanoni
[Nuovo Cimento 44A, 1139 (1966)) report the existence of a boot-
strap solution free of arbitrary parameters, which in fact gives both
the width and mass of the p in very good agreement with experi-
ment. However, as has been stressed by those authors, the corre-
sponding D function is expected to have unwanted zeros.
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on the vector meson contribution, so that
w, = A(Gm? — 1), 4.4

It can be shown again that forall 1,0 <1 <1, a
ghost-free amplitude exists, because an iteration
solution of (3.3) can be constructed; and B(v), as
defined in (3.4), has been found to satisfy (3.6), at
least for 4 < m? < 50 and A > 10.

The defect of this model is that it contains two free
parameters, A and A. In view of the smallness of the
real part of the forward amplitudes observed in high-
energy p—p and m—p scattering,* it is perhaps reason-
able to assume that 1 is close to unity, say 0.9 < 1 <
1. However, A remains in principle undetermined.
Still, important information may be obtained by
comparing the resulting solutions with those from a
model with the same o,(—v», m?) (i.e., the same A)
but with 4 = 0. By keeping the same long-range part
one may expect to get some information about the
effect of the short-range force on various features
of the amplitude.

This program is pursued in an approximate scheme
defined as follows: With the left-hand discontinuity
of Fig. 4, suppose that Eq. (2.16) is written in operator
form:

f=fo+ Ks-f+ Kp"f,

where f, stands for 1/w, Kg for the singular kernel
7 2[log (w'/w)/(w" — w)], etc. When the last part
(K * f) is neglected, the solution of (4.5) is given in
Sec. 3 and can be written

F=fo+ AR fy;

R represents the resolvent (3.12). The approximate
solution that will be used is

F=/fo+ GKs+Kp) - f-

To compare this with the exact solution, note that
(4.5) can be written

S=U0+ARfH+ (1 + AR) - Ky - f.

“4.5)

(4.6)

(4.7

(4.8)

1
{
|
]

wl=A(a—n?—l)

-— -y

FiG. 4. Left-hand discontinuity in a realistic model combining long-
and short-range forces.
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Reference 6 has shown that for 0 < 1 < 1, and with
the resolvent (3.12), Eq. (4.8) is Fredholm; hence,
for sufficiently small 4, an iteration solution exists.
The first iteration gives

fi= (L +ARfy + (1 + 2R) - Kp - f.
Use of the well-known identity*
Ks-(1+AR)=R

shows that £, differs from f to terms of order A || R K|/
1Kz

Equations (2.15) and (2.16) show that, for 2 — 0,
K, tends to a finite limit, say K{', so that (4.5)
becomes

S=fo+ K@ f (4.9)
(a Fredholm equation). On the other hand, since R

is the resolvent analytic at A =0, lim AR =0,
A—0

and (4.8) reduces again to the form (4.9).

Suppose, however, that the calculation is carried
out, not with R, but with another resolvent RW,
which contains a multiple of the homogeneous
solution corresponding to f = f; + AKg* f. It can be
seen [Eq. (2.11) of Ref. 18] that, in the limit A — 0,
F-— fo and ARW 4+ 0; hence in this case (4.9) is not
reproduced. Clearly, on grounds of continuity, it is
desirable that the limit 2 — O reproduce the situation
that corresponds to simple exchange of a cutoff vector
meson [Eq. (4.9)].

Note that in the limit 42— 0, with f— f,, the
approximate solution of (4.7) tends to f — £, + K2'f, .
Clearly, this is the first iteration of (4.9), usually
called the “determinantal” solution??; most of the
numerical results of bootstrap calculations have been
obtained with this type of solution.

In terms of the solution D(—w) of (3.14), Eq. (4.7)
can be written as

D—w)=1+2

™

o ’ ’ 2
x f do’ Ko, o )",(“’"")D”(-—m/), (4.10)
@z {m*)

o)

where o(w, m?) is given by (4.1), (4.2) (or Fig. 4), and

3
K(w, o) = 2 @ log [coé + (0w — 1)’1‘]
m(m — o) (o —1

0%
o —1

2L F. Smithies, /ntegral Equations (Cambridge University Press,
New York, 1962).

22 F, Zachariasen, Scottish Universities’ Summer Schoo! Lecture
Notes, Edinburgh, 1964.

)Elog [0} + (o — 1)4‘]}. (4.11)
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Again, to determine the resonances (» > 0), an
analytic continuation to @ < 0 is needed. For this,

let o = cosh® (}im + y) = —sinh?y

and, for o <0,
sinhy = (—w)t, ie., y=log [(—w)?

+ (o + D).
Hence,

b 1
( @ ) log [} + (& — DY
w — ]
= (3im + y)tanh y

o\
= tim + log (=)t + (o + DI (22 ).
With this, one has

Re D(—w) =1+ 2
v

i w, ' )o(w', m?
xf de RE K(w, w)o(o', m*)
wg(m?) o'

where

Re K(w, o)
—w \ .
=2 (7% toslt=e) + (o + v
m(w — o)\l —o

A
—( o 1) log [ + (o — D}, (4.13)
o —
and

Im ﬁ(—(v))

_w f” de’ Im K(ow, w")o(w’, m®)
7 Jog(m?) w'

D(~w'), (4.12)

D(—w"), (4.14)

where

1 o \F
Im K(o, ') = ( ® ) (4.15)
ow—o\l—ow
The condition, then, for a (narrow) resonance at
v = —w = vy is Re D(vp) = 0, and this results in an
equation of the form

Ly =y0g,m).
The coupling necessary to produce a resonance at
v = vg (input coupling) is determined by 1. The
self-consistent (bootstrap) solutions are defined by
the condition

’

Y om=4(p+ 1),

and by the relation of the width of the produced
resonance (output width) to the coupling of the
exchanged vector meson, which is
% ~
Ny 67T((1 + ! Im HG) .
v*  (d]dv) Re D(¥)v=vg
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This expression is approximate and is not a good
estimate for the large widths which will prove neces-
sary. Nevertheless, the main point, that the widths
are reduced by the addition of a short-range force, is
clearly valid.

5. NUMERICAL RESULTS AND DISCUSSION

Numerical calculations of the program of Sec. 4
have been carried out for several cutoff values in the
range 5 < A < 80. For each A, two cases were
compared:

(a) A =0 (i.e., without short-range force);
(b) 4 = 0.95 (i.e., with short-range force).

In Fig. 5, four curves are shown between y, the
coupling, and »,/m?, the resonance position, for the

‘SOL[l‘lllll L B L ) S A R R R L

i A=10 ﬁ

- i

00—  {Ib) (La) ._j

, | 1

50+~ —

- (o) R

I (I b) T

L 4

[o] TN EUTTIN ro1ov el L1y
1.0 10 100

VR/ms

FI1G. 5. Bootstrap solutions in the model of Fig. 4 for a cutoff
A = 10. The curves I represent equation (1) of Sec. 4 subject to the
condition (I'); the curves 11 represent equation (i1). Case (a) corre-
sponds to the absence of short-range force and Case (b) to the
presence of short-range force.

cutoff A = 10. Curve (1a) is a plot of equation (1),
subject to equation (1), that is to say, the relation
between the input, or cross-channel coupling y, and the
mass of the produced resonance, this latter being
constrained to be the same as the mass of the input
resonance. Curve (1b) is a similar plot, but this time
with the short-range force added. Curve (ua) is a
plot of equation (1), so that y is now the (reduced)
width of the output resonance, »g/m? being, as before,
the self-consistent resonance position. Curve (iib)
repeats this with the short-range force added. Finally,
Fig. 6 is a similar graph for the cutoff A = 40; for
other values of A the results remain qualitatively
unchanged.

D. ATKINSON AND A. P. CONTOGOURIS

T T TT1Tr ”—r LZ R |||'! T LR
- ]
A=40

150 — —
I ]
100 +— —
. b
b4 r T
’— .
50— —
L .
b 4

o] Pl el
[eN] 1.0 10 60

2
R /m"_

FiG. 6. The same as in Fig. 5 for A = 40.

Several observations can be made within this
approximate model, on the basis of Figs. 5 and 6:
In general, bootstrap solutions exist both without the
short-range force [intersection of curves (1a) and (11a)]
and with the short-range force [intersection of (1b) and
(ub)].

For each case (a and b), the self-consistent mass
and width as a function of A is presented in Fig. 7.
For all A the addition of the short-range force
decreases the self-consistent mass. For large A,
the differences y,, — ¥, and (m,/m )¢, — (m,[m, )3,
are small, as they should be (most of the left-hand
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F1G. 7. The self-consistent mass ratio mp/ms and coupling » as
functions of the cutoff A. As always, Case (a) corresponds to the
absence of short-range force and Case (b) to the presence of short-
range force. Experimental values: (mp/mx)? = 30, y = 3.8.
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discontinuity being given by the p exchange); but
as A decreases, these differences increase.

It is of particular interest that a bootstrap solution
with the correct p-meson mass (m2 = 30) does exist.
Here the short-range attraction decreases the self-
consistent width by a factor of 2 (from y,, ~ 48 to
Yoy = 22).

However, even with a short-range force, this width
remains about six times as large as the experimental
value. Thus, the conclusion is that the addition of the
short-range attraction acts in the correct direction,
but is not sufficient to explain the whole magnitude
of the discrepancy.

(i) For a given resonance position vp/m2, the
addition of the short-range force significantly de-
creases the necessary input coupling y [cf. curves (1a)
and (ib)]. This is true for each cutoff and is an
eminently reasonable state of affairs: if a short-range
attraction is present, the long-range force needed to
produce a resonance at a given position is reduced.
Similarly, for a given y, the resonance mass is de-
creased by the addition of the long-range force.

(ii) For a given vy, the short-range force increases
the width of the output resonance, however [cf.
curves (i1a) and (1b)]. This is not surprising, for it is
known that what is required to narrow the output
resonance, for a given mass, is the addition of a
long-range repulsion,* rather than a short-range
attraction,

Of course, in this calculation many important
contributions to the binding force have been omitted.
For example, the exchange of two pions in relative S
state could be significant, either if its contribution is
strongly repulsive,2 or if it is strongly attractive,
with perhaps a resonance.® It is even possible that
multiparticle exchange is important. Moreover, this
simple model has neglected inelasticity. It is possible
that a one-channel calculation would require a CDD
pole, even if the correct inelasticity were used,?s-26
and that a dynamical calculation could only be done
with good accuracy in a many-channel scheme. An
SU(3) model in which the KK channel was also
incorporated suggested that this channel might not be
too important®’; but an SU(6) model, in which the
mw channel also occurs, would, if it is to be believed,
require a one-channel CDD pole, or equivalently

23 G. F. Chew, Phys. Rev. 140, B1427 (1965).

# C. Lovelace, R. M. Heinz, and A. Donnachie, Phys. Letters
22, 332 (i966).

25 E. J. Squites, Nuovo Cimento 34, 1751 (1964).

28 D. Atkinson, K. Dietz, and D. Morgan, Ann. Phys. (N.Y.) 37,
77 (1966).

27 D. Atkinson and M. B. Halpern, Phys. Rev. 150, 1377 (1966).
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a many-channel D! system.*” In this connection,
it is interesting that a calculation by Fulco, Shaw,
and Wong® of the p meson in the three-channel
system (mm, KK, mw), with a cutoff and no short-
range force, gives, as usual, a resonance width that is
too large, although the KK and 7w channels do assist
in reducing the p width. It can be expected that the
direction and order of magnitude of the effect of a
short-range force will be the same in a more sophis-
ticated model of this kind as it was in the work pre-
sented here. That is, we may expect a singular tail to
assist materially in the narrowing of the m-m P-wave
resonance.

From the mathematical point of view, the fact that
the numerical calculations were done in an approxi-
mate scheme may be considered as unsatisfactory.
It would certainly be of interest to repeat the whole
program with the exact solution of (2.16) [or (4.5)];
and in view of the presented formalism and of the
methods developed in Ref. 6, which reduce the
singular to a Fredholm equation, this can be done in a
straightforward manner.
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APPENDIX A

In this appendix, Eq. (3.10) is solved under the
assumptions (3.1) and (3.2), plus the additional
approximation involved in eliminating the gap
between the left- and right-hand cuts (w; = 0).
This simplification, along with (3.1) and (3.2), can be
characterized as a high-energy approximation. Such
a situation is even more unrealistic than that of
Sec. 3; however, insofar as one is concerned with the
effects of the distant parts of the discontinuities on the
resonance region, and because of the possibility of
obtaining explicit and relatively simple solutions, its
study is, perhaps, of some interest.

A disadvantage of this treatment is that, by replac-
ing oy, = 1 by w,;, = 0, the mass scale has been lost.

28 J, R. Fulco, G. L. Shaw, and D. Y. Wong, Phys. Rev. 137,
B1242 (1965).
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Thus, it is necessary to subtract the N and D equations
at some point ¥ = v, = —@, (not the normal thresh-
old), at which D(») can be normalized to unity; the
value of w, reintroduces a mass scale. With

Ry (0)N(—w,) = a, (A1)
the integral equation becomes
F(w) = 1 + a log (w/w,)
w—w, T O— W,
A ,log (o'
+ % [T BB 0, ag
r '
In operator notation this can be written
S=a, + ay + (A7)Kf, (A3)
where
a, = g log ((o/(u(,)’ K- log (w’/w)‘
W — wy T O — W, o —w
Then, defining f;, f; by
fi=a,+ AYm)Kf; for i=1,2, (A4)
one has
f=hH+1e (A5)

The functions f; are solutions of (A4), which can be
expressed in the form

fi=a; + ARa,, (A6)

where R is a resolvent of the kernel K/n2, satisfying
R = (1/m)K + (=K - R. (A7)

It was shown in Ref. 6 that R exists but is not unique:
it has a two-parameter manifold. However, if the
solution is required to have no singularity at 1 =0,
and thus to admit a perturbation expansion in powers
of A, a unique resolvent is singled out, which has a
branch point only at A =1 (see also Appendix B).
This resolvent is

1 _sinh [S, log (»'[m)]

R(w,w'; 1) = ;
#[A(1 — F

' — m
(A8)
where

A = sin? (wSg)S, = (im)~'log [(—=A)F + (1 — B,

with0 < Sy < ifor0 <A <1

One might solve the two equations (A4) by using
the resolvent (A8). To find fi(m) it is necessary to
evaluate (A6) for i = | by performing the integral
explicitly. The result is

filo) = cosh [S, log (:m/my)]. (A9)

0 — (),
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The equation for f,() is trivial, since
ay(w) = (a/m)K(w, w,), (A10)

so that by comparing (A4) for i = 2 with (A7), one
has immediately

fo(w) = anR(w, wy; ).
Finally, by (A5), one has the solution
D) = (@0 — wo) f(w)
= cosh [, log (w/wy)]
=+ B 1sinh [S; log (w/w,)],

(All)

(A12)
where

B = [A(1 — D}¥/a.

Substituting @ = —v, one has, for v real and positive
(= physical region), the following real and imaginary
parts:

Re D(v) = cos (wSo)[cosh (So log _v_)
Wy
1. y
—sinh {S,log — 1,
+ B ! ( 08 wo):'
Im D(») = sin (S,) [sinh (s,, log —”—)
Wy

1 v
—cosh | S, log —}]|.
+ oo (Soror )

Now, the condition for a resonance at » = v, is
Re D(v,) =0, i.e.,

tanh [S, log (v,,/m,)] = —B.

(A13)

(Al14)

As v, changes from zero to infinity, the left-hand side
progresses monotonically from —1 to +1. Accord-
ingly, if | B| < I, there is one, and only one, solution of
(A14), while if |B| > 1 there are no solutions. In the
former case the coupling (or, equivalently, the width)
of the resonance is

g 3 [ Im D()
47 w, L(d/dv) Re D(’V):lv=v0

IR
- Sitan (7S,) = (——) 37

Al5
o 1 — 2/ arcsin A% (A13)

In the first equality of (AlS5), the phase-space factor
[(v + 1)/7,]* has been replaced by unity. Notice that
the subtraction point my and the subtraction con-
stant N(—wmy) (or equivalently B) have disappeared,
and (Al5) is a simple equation involving only 4
and the width g%/4m.

Hence, in the approximation o, = 0, and provided
that |B| < |, a constant left-hand discontinuity is
capable of producing a resonance at some point
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v = vy, satisfying (A14). However, one can see from
(A15) that for all 4, 0 < A <1, the corresponding
width is exceedingly large (g%/4= > 3w; compare,
for example, with the experimental value for the
width of p—2m: g2 [4m ~0.6). Such a wide
resonance can hardly produce any of the usual effects
on the cross section of the corresponding process [and
hardly justifies the use of formulas like (A15), which
are meaningful only for narrow resonances]. Thus it
cannot be considered acceptable.
To find solutions of the equation

g¥f4n = (3/S,) tan (7S,)

corresponding to g*/4m = 1, one needs S, outside the
interval 0 < S, < 3. As the first Riemann sheet of the
A plane corresponds to —} < S, < §, this means that
one has to go to higher A sheets. On the higher sheets,
branch points exist at both 2 =0 and A =1 (see
Appendix B); moreover, the continuation of a
solution onto a higher sheet is not necessarily a
solution of the original equation, because the integral
in (A2) will no longer converge. The continued
solution corresponds to a higher CDD class.’* Thus,
in fine, there is no resonance with acceptable width
generated by a featureless, constant left-hand dis-
continuity.
APPENDIX B

The purpose of this appendix is twofold: First,
to present the sheet structure in 4 of the resolvent of
Appendix A [Eq. (A8)]; second, to study in certain
simple examples (corresponding to w; = 0) the zeros
of the denominator function. As the approximation
wyp = 0 leads to relatively simple explicit solutions
having a number of features in common with the
exact ones, the conclusions are expected to provide
useful insight.

To find the structure of (A8) it is convenient to
map the infinity of Riemann sheets in A onto the
complex plane of another appropriate variable w
defined by

A = cos? (7w). (B1)

Under this mapping,

2 _sinh [(§ — w) log (o'/w)]
(0w — o) sin (27w) '

R(w,w'; A) =

(B2)

This is a meromorphic function of w; its poles corre-
spond to branch points in A and appear at

w=m, m=0’il§yi1’i%>'.'- (B3)

Thus, the various sheets of A are mapped onto
parallel strips of the w plane (Fig. 8).
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FiG. 8. Appropriate mapping [defined by (B1)] of the resolvent of
Eq. (A8), which determines its structure in A

The point A = O correspondstom = £}, £35, .
In particular, w = } does not lead to a singularity of
(B2); and as the first sheet of A corresponds to
0 < Rew <1, it is concluded that (B2) has no
singularity at A = 0 on the first sheet. However, on
higher sheets 4 = 0 is a branch point.

Sheet 11 is defined to be the sheet connected to
sheet I across the cut 1 < 4 < o0 and maps onto the
strip I < Re w < §. Here there are branch points at
both A=0 (cut —0 <1<0) and A=1 (cut
1 <A< ), and this is true for all higher sheets.
It follows that a double circuit around 4 = 1 which
does not enclose A = 0 (C, of Fig. 8) brings one back
onto sheet 1; however, circuits enclosing 4 = 0 and
A =1 (C, of Fig. 8) lead into higher sheets. Notice
the similarities with the sheet structure of the exact
resolvent (for w; % 0)!%: as in that case, the branch
points may be said to behave individually like square
roots but together like a logarithm.

Consider now the zeros of D(v) corresponding to the
resolvent (B2), and take (for simplicity) N(~my) = 0.
Then Eq. (A12) reduces to

D(—w) = cosh {S; log (wfmy)]. (B4)
Clearly, the physical sheet of o is
—r<argo < (BS)

and corresponds to 0 < arg » < 2.

Suppose now that A varies over real values. At
first —~o0 < 1 <0 corresponds to w=k + 1 + i,
k=0, £1, £2,---,and 0 <v < @ (or —0 <
v < 0). Hence 4 = —sinh? (mv), S, = —ir, and the

zeros of (B4) appear at
w = ogexp [(n + I(n/0)], n=0,+1, £2,---.

(B6)



1500

This gives two sets, each of an infinite number of
zeros, lying on the positive real w axis; for 0 < v <
oo, the one set, which corresponds to n = —1, —2,
—3, -+, accumulates at w = 0, and the other set
(n=0,1,2,---) accumulates at ® = co. In view of
(BS), these zeros lie on the physical sheet of the com-
plex » plane (along the negative real » axis).

Next, suppose that 4 varies on its first sheet along
0 < 2 < 1. From Fig. 8 this corresponds to w = real,
0 <w < 1. Now, the zeros of (B4) appear at

W = (g €XP [_——’(2’1 + 1)7T
2w — 1

Forallnm,and win 0 < w < 1,

} n=0, 41, 42,

larg w| > .
Hence, none of these zeros lies on the physical sheet
of w (or »).

Finally, let 2 > 1. This corresponds to w =k
+iiv, k=0, 1, £2,:--, and 0 <v < o (or
—o0 < v < 0). Hence A = cosh? (mv) and the zeros
of (B4) appear at

20— i
w = W, X 2n + o —— |,
o P[( )77'(20)2 n 1}
n=20 41, +£2,---.
For all v, 0 < v < o, this relation gives at least one

pair of complex zeros on the physical sheet of w.
Note that the zeros of each pair do not appear at

D. ATKINSON AND A. P. CONTOGOURIS

complex conjugate positions; in this case the Rie-
mann-Schwartz reflection symmetry is violated.

The conclusion is that for 2 <0 and A > 1, the
denominator function has zeros on the physical sheet
of the complex » plane which correspond to un-
wanted poles of the amplitude (ghosts). However,
for 0 < 4 < 1 these zeros disappear from the physical
sheet.

This conclusion can be further strengthened by
similar analysis of a different resolvent. For example,

RY%w, 0'; 2)
_ 1 _sin g, log (v'fw)] o + o
2afA(4 — DY ('0)t

o —o
where

go = mtlog [ + (2 — D)}
is one of the resolvents of (A2) having a branch point
at A = 0.% Here, for —o0 < 4 <0, D(v) has at least
one complex pair of zeros on the first sheet of »
(violating the Riemann-Schwartz symmetry); and for
A > 1 it has a double infinity of zeros along — o0 <
v < 0. However, again for 0 <1< 1, no zeros
appear on the physical sheet of »,

In view of these examples and of more general
theorems on the existence of ghost-free solutions of
partial-wave dispersion relations,!® one presumes that
only the case 0 < 4 <1 (considered in Secs. 2~5)
can possibly lead to solutions of physical interest.
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For nonrelativistic P-wave N/D equations we consider the two different cases depending on whether
the solutions of the subtracted equations, assuring automatically the right threshold-behavior conditions,
satisfy the unsubtracted equations or not. In both cases we investigate the meaning of the corresponding

interactions.

I. INTRODUCTION

Among different theoretical and practical difficulties
connected with the use of partial-wave dispersion
relations as well as N/D equations, a current one is the
requirement of correct threshold behavior for the
solutions.

When we consider the unsubtracted equation and
assume for the left-hand-cut discontinuity some
general condition, such that the solution exists, then
in general this is not sufficient for the solution to
exhibit the threshold-behavior requirements. Of
course it can be argued that this comes mainly
because we can determine only a part of the left-hand-
cut discontinuity, and if the whole discontinuity were
known this problem probably would not occur.
Nevertheless it can be realized that these threshold-
behavior conditions for the solutions of the unsub-
tracted equations are in fact intrinsic conditions for
the left-hand-cut discontinuities.

Furthermore, it is usual to consider as ‘“‘ansatz
equations” some subtracted equation where the
threshold behavior conditions are automatically
satisfied. Whether or not such procedure is always
allowed is not so clear. For instance, it is well known
that in the N/D equations in general we modify the
asymptotic D behavior. We have in fact two different
cases. In the first case the solution of the “ansatz”
subtracted equation is also a solution of the unsub-
tracted equation. This means that the above intrinsic
conditions for the left-hand-cut discontinuity are
satisfied. In the second case these intrinsic conditions
are not satisfied and the solutions of the ansatz
subtracted equations are not solutions of the un-
subtracted equations. In that Jast case the following
question arises: What is the meaning of the ansatz
subtracted equation?

Consider for instance the nonrelativistic N/D
equations; we know that the Yukawa-type family
belongs to the first case. But we recall that dispersion
relations leading to N/D have been proved only for
Yukawa-type family. It follows that if we can show
for the second case that our considered ansatz

subtracted equation has a meaning at all, then we
must necessarily find some kind of singular inter-
actions. We recall that the Marchenko! inversion
formalism is a powerful tool? for studying the meaning
of the N/D equations in the / = 0 case. We shall use in
this paper BlaZek’s® extension for / ## 0 of the Mar-
chenko formalism. In the following we shall give for
I # 0 some general results concerning the inversion
problem (mainly the dispersive formulation of the
Jost solutions). However, we shall investigate explicitly
whether or not we can attribute a real meaning for
some ansatz subtracted equation only for the P-wave
case.

II. SUBTRACTED AND UNSUBTRACTED
EQUATIONS IN CONNECTION WITH
THRESHOLD BEHAVIOR FOR [ # 0

In order to reconstruct the S,(k) matrix from the
left-hand-cut discontinuity, we consider the resulting
integral equation of f,(k)/f,(—k) [an approach equiva-
lent to N,/ D, fi(k) being the Jost function f,(—k) =
D,(k?)] such that S;(k) = f,(k)/f,(—k).

Unsubtracted Equations

We assume in this section that the potentials are
of the generalized Yukawa-type family “regular” at

the origin
[RECT
m o

AV(r) =f e AC(«) da and
In that case we have* the following resulting integral
equation:

Ji(k = —ix) = F(x),

Fix) =1+ f fu f’—fr% F),

* Paper presented at the 1967 International Conference on High
Energy Physics at Heidelberg.

1 Z. S. Agranovich and V. A. Marchenko, The Inverse Problem of
Scattering Theory (Gordon and Breach, Science Publishers, Inc.,
New York, 1963).

2 H. Cornille, J. Math. Phys. 8, 2268 (1967); IPNO TH76 Nov-
ember 1966 (to be published in J. Math. Phys.).

3 M. BlaZek, Commun. Math. Phys. 3, 282 (1966).

4 E. J. Squires, Strong Interactions and High Energy Physics
(Oliver and Boyd, London, 1961).

M

1501



1502

where we call —uA, the discontinuity of the S, matrix,

pd(x) = —QRim) S (1, ix + €) — Sy(u, ix — €],
x>mf2. (2)
For the Yukawa-type family (short-range type), the

threshold-behavior conditions for the S, matrix are
satisfied® for any /,
1S,() — 1] =~ O(k**). 3
k=0

This means that the F;(x) solutions of (1) corresponding
to the Yukawa-type family satisfy automatically

a(%y—l)
(a 2p—1 Fl( )) = 07 p = 1’ 2’ T, ly (43)
or equivalently
o= PO g g pot2,0-, 1 (4b)
mie  x2°

We empbhasize that (4b) must be considered as an
intrinsic condition for the discontinuity

Jm Fi(u DA(X) dx = 0)
( m/2 xZ”

and a boundary condition for (I). uA,, corresponding
to Yukawa-type family, is such that (4b) is satisfied;
then we can try to include these boundary conditions
in (1). If (4a) and (4b) are satisfied, then

Fy(x) = Fi(0)

+ [Fz(x) Fi0) =3 ==

2p—1 821) —1
=1 (2p — 1)‘(3 201 Filx ))t—o:(
and we get, for / > 1,

Fy(x) = FAO) + u f fzgl(x, DAGIEY) dy,

x? /xBL et
g(x,y) = (—————)
y

o ®)

B. Ansatz Subtracted Equations

Now we consider formally the following equation
considered as ansatz:

R0 = O+ 1] ele DMOE Ay (©

without any subsidiary condition and we put formally

& F(x = ik)
S, == — .
F,(—x = —ik)
We define
~Jl( ) /ZP (}’)ez()’) p= ]’2’.'.,1‘

® With the modifications for exceptional cases; R. G. Newton,

J. Math. Phys. 1, 319 (1960).
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1. First, if
G)(uy="0 for p=1,2,---,1, (40)

it is easy to see from (6) that F(x) = const x F,(x)
where F;(x) is a solution of (1) satisfying (4b). (A
normalization constant is not important for the ratio
FjJF, or FJF,, so we are free to multiply both the
numerator and the denominator by a constant.)
Furthermore, if

m/2 y

the constant is 1; F, = F,. So the conditions =0
(p=1,---,1) for the ansatz subtracted equation (6)
are the conditions such that the solution £ is also
solution of the unsubtracted equation (1) or equiv-
alently these are the conditions such that F, solutions
of (1) satisfy the threshold conditions (4b). This
means only that in this case the threshoid-behavior
requirements are intrinsic conditions for the discon-
tinuity and do not depend on whether the equation
considered is (1) or (6). In this case we note also that

F(x) —> const.
>0
2. Second, for any solution of (6) we have auto-

matically
a2p—1
(b
such that the right threshold behavior is always satis-
fied for §,.

3. Third, we consider (6) where (4c) is not satisfied
(at least one 7 3 0). But of course (4d) is verified. In
those cases where the solution of (1) is not a solution of
(6) and where the solution of (1) does not satisfy (4)
and (4b) the following question arises. Has the
corresponding ansatz (6) a meaning? Or equivalently,
can we give a real meaning to the interactions
“uA(x)" or to the §; matrix? We note that we know
a priori in this case that even if we are able to analyze
the interactions, we cannot find a member of the
Yukawa family, so that we know a priori that we must
find some kind of singularity. We emphasize that
a different ansatz is possible in order to force the
threshold behavior. We consider here one particular
ansatz and try to understand the corresponding
meaning. In fact we shall investigate here the P-wave
case, but we shall give also some general results. In
the following we consider “regular discontinuities”
ul,(x) of (1) such that the Fredholm-type solution
of (1) exists.

We recall? that for / = 0 the Marchenko! inversion
formalism gives the possibility to interpret the N/D
equations. We shall use the extension of Marchenko

F;(x)) =0, p=1,2,-,1 (4d)
=0
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formalism given by Blazek?® for / ¢ 0 and try to see if
for / = 1 the ansatz (6) has a meaning at all.

O INVERSION FORMALISM

We do not want to give a complete analysis but
only integral equations for the Jost solutions.

At the beginning we assume only that the potentials
V{(r) satisfy sufficient conditions such that the follow-
ing integral equation for the Jost solutions fi(k,r) =~
ile~r exists for r > 0:

Filks P) = wi(r) — f " dr gk, Wik, P, (D)

{+n!

= ~ip Y , a
wip) = i'e Z( )az,n L= n‘(?—-n)*

n=0

®
=Yk wkryw,(~kr')

— wl—knwykr)]. (9)

We note that we do not assume anything for ¥ when

r—0, but for r — o0 we assume that ¥ decreases

exponentially or weaker conditions. Similarly, as for
= 0, we put formally

fitk, 1) = wilk, r) + f “K(r, w (k) dt. (10)

gz(kr ry =

In Appendix A, using the properties of spherical
Hankel transform,® it is shown that if we substitute
(10) into (7) we get

(ddr)[K; (r, t = r)] = —1V(r). (1

The method used gives also the possibility of obtaining
an integral equation for K,(r, ) from ¥{r) and conse-
quently the possibility of finding sufficient conditions
for ¥(r) such that K,(r, t) exists (as has been done! for
I =0). For simplicity we shall not investigate this
integral equation in this paper.

Now we assume that the potentials are of the
Yukawa type. BlaZek® has given the extension of the
Marchenko equations for K,(r, t) in the case / # 0:

K(r, 1) =G 1) + f sz(r, u)BHu, ) du, (12)

8 H. Cornille, Compt. Rend. 251, 2135 (1960).

7 BlaZzek has considered only the case where no bound states
are present. But for the Yukawa family and #A(x)*sufficiently weak™
we are in this case [see, for instance, / = 0 (Ref. 2)]. If bound states
are present, we define the scattering data (similarly as for / = 0) as
coming from two parts: the first one gives the contribution of the
continuum as (13), the second supplementary part comes from
these bound states. Finally, our fundamental equations (12) and (15)
remain unchanged with this modified scattering data.
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where T, is the scattering data’

(=1
27

x f " k(1 = S(kh(—ikryh(~ike) (13)

Bfr,1) =

and® i'h,(iz) = w,(2).

For the Yukawa-type family, we can rotate the
integration path in the upper-k complex plane (as for
{ = 0, see Ref. 2) and we get

Br, 1) = (=Y f ACORGPm(xt) dx. (14)

If we substitute (12) in (10), taking into account (14),
then we get an integral equation for the Jost solutions

Fx,r) = f, (k = —ix, r)]il,
Fi(x, 1) = hy(xr)

+ f;(-)‘A;(y)F;(y, NG, y. ) dy,

Gix, 3,1 = [ “eni(yn) v 1s)
For / = 0, (15) reduces to the previously found inte-
gral equations.?

For regular potentials like the Yukawa family,
where the singularity of the solutions are given by the
centrifugal potential, the Jost function f,(k) is

fuk) = lim rkif(k, r)j21 — DI, (16)

So we define fi(k, r) = rkYf,(k, r){(2] — D!! and we
get from (15)

Fx,r) =fi(k = —ix,r),

hy(xr)
F(x,r) = (xr )( NY

14
+u f (“)lAz(.V)Fl(y,r)(’)E)Gz(X,,V: D (17
m/2 y

In conclusion, for the Yukawa family we know that
Fi(x, 0) = Fy(x), so that (17) must reduce to (1) when
r—0.

Now we do not assume. that ud,(x) corresponds
necessarily to a member of the ‘Yukawa family, but
we still consider a “regular discontinuity” for A(x)
such that the Fredholm-type solutions of (1) exist
[independently from the significance of this solution
of (1].

We get formally from (12), (14), and (15) a set of

& Note that in the integrand of {13) the right threshold behavior for
5,(k) is necessary in order to avoid a singularity when k — 0.
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results. First if we put
Fi(x, r) =f hi(xy)pu(r, y) dy
and B, = uG,, we get

By — ” |
40,0 = SIS [ S 040 i (8)

K,(r,y) = uG(r, y) + ‘uf Jﬁl(y, DK, (r,t)ydt. (18b)

We see that (18a) and (18b) have exactly the same
kernel. This is in fact the main property giving the
possibility of connecting the N/D formalism and
the inversion formalism. For instance, for r > 0 the
eigenvalues (u values such that nontrivial solutions of
the homogeneous equations exist) of (15) or (18) are
the same. Furthermore, we remark that the kernel of
(17) is (x/p)* times that of (15) such that the traces of
both kernels are the same and consequently the Fred-
holm determinants for » > 0 of (15), (17), and (18)
are also the same. Moreover, we shall show that, as
for / = 0, this Fredholm determinant has a key role
in the theory.

In Appendix B it is shown that the solution of
(18b) is such that

_ dldr)Dy(, )
D,(u, )

where D,(u, r) is the Fredholm determinant of (15),
(17), and (18). Then the potential corresponding to
the discontinuity® uA (x) is, from (11) and (19),

d ((d/dr)ﬁw, r))
ar\ D) )’
as for? ] = 0. We note also that as in the / = 0 case
from (20) we can see that ¥(u, r) are of short-range
type and decrease exponentially.

On the one hand (similarly as for /= 0), if for
some ry > 0, Dy{u, r,) = 0, then ¥ has second-order
poles when r —r,, leading to a repulsive singular
potential at rq. If the multiplicity of the roots of
D,(u, ry) = 0 is m, then

Vp,r) = 2m|(r — ro)".

vy

K r, 1) (19)

Vig, r)= -2 (20)

On the other hand, we note that when r — 0 we have

® Some care must be taken in order to understand these formulas.
If we start from a given regular potential ¥(r) and consider the
corresponding set of left-hand-cut discontinuities A, (which can be
calculated from the Born expansions), it does not follow that there
corresponds to the new set (#A,), via (19), (20), an l-independent
V(u, r). For instance, when ¢ is varying, for / = 0 the only second-
order poles which can appear for F(u, r) correspond to repulsive
singular potentials, whereas for /7 0 also singular attractive
potentials can appear at the origin. In other words if we linearize the
N/D equations with the same parameter (#A)), then the corre-
sponding potentials are, in general, /-dependent.
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a great difference with the / = 0 case. The conditions
about 4,(x), such that (1) is of Fredholm type, are not
sufficient for /5 0 to assume that D,(u, 0) exists.
This is due to the singular character of the kernel
of (15), (17), and (18) becoming from

(2 — DI

Gfx, vy, r)~
xiylpdi-l

[t +0(nl

For instance, if we investigate / = 1, we find in general

Diosle 1) = O 11+ 0]
forl = 2,

const

Dy_olpts 1) %’O [l +0()]

3
r
(these constants being functions of w can vanish
for special p values). More generally, if

D, r)y == (const/r")[1 + O(r)],

70

we see that V' =~ (—2n/r?) leading tc singular attractive
0
potentials at the origin.

Of course, for a Yukawa-type family reguiar at the
origin, the corresponding 9,(u, r) cannot be singular
at the origin.

First we note that (20) can be written

- % f dxf V(u, t) dt = log Du, ¥).

1f we write V as a Laplace transform

o

V{w, r) =f ’e“"’C(a, ) do,

m

then

1> )

- f e Clo%@da = —log D,(x, r).

2 m 0.

As for [ == 0, this last relation can be used in order to

reconstruct the potential from the discontinuity.
Inversely, if we consider a Yukawa-type potential

V(@) = zﬁ

fe2

(o) do

R

and the corresponding discontinuities

2 AAT),

n
where AP are the contributions coming from the
nth Born approximation, then 9,(x,r) becomes a
function of 1:

Dy, ry—d (4, 1)
and

}.J\ e (Lg) do = -—lOg dl(za l‘)-
m "
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For the Yukawa-type family the Fredholm deter-
minant of (15), (17), and (18) is well defined when
r=0.

In the following we consider only / = 1.

IV. CONNECTION BETWEEN INVERSION
FORMALISM AND N/D EQUATIONS FOR
P WAVE

In this section!® we consider (17) for / =1

F(x,r) = e (1 + xr) —fiZMA(y)

x Fr.n3(2-+ ) am)
y\xyr x4y
where
k, _
Jho 1y = FEZIED o i
r r- o0

is the Jost solution corresponding to

dldr)D(u,
Viu,r) = —2 i(M)
dr D(p, )
D(u, r) being the Fredholm determinant of (17°). We
want to investigate in which cases we get from (17')
either the unsubtracted equation

= A(y)F ,
Flx) = 1 +/‘f WED) 4, "
m/2 X 4+ y
or the ansatz subtracted equation
= ~ “ X*A(y)F(y ,
P = PO+ 2D, (g

iz Yi(x + y)
We still assume that A is such that the Fredholm-type
solution of (1) exists:

f A(x)
m/2 X

e x 2
f f (é(—y)—) dx dy < oo. 2D
m/2 Jmi2\X + y

The Fredholm-type solutions of (17), (1), and (6')
can be written

x < ©

N(x, u, r)

Flx.r) = ¢ (1 + xr) + W (22)
N(x, )
= F(0
Flx) = F( ),:1 + D) :'
F(x)=1+ M (23)

D(u)
D(u) being both the Fredholm determinant of (1%)
and (6").

A simple example: the discontinuity replaced by one
pole uA(x) = ud(x — b). First, from (1) we get

10 We omit the index / = | in the following.
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FIG. 1. pA = ud(x — b).

F'(0)D(u) = —pu/b? such that 4 = 0 is the only value
assuring the threshold behavior for (1°). This is a well-
known result. It follows that (1') and (6’) have no
common solution. Second, from (17°) and (6") we get

fe) o ( )[1 + ug(x. b) — ug(b, b)),
r 1'—'0 /,t
2
g(x, b) = ﬁ;),

= F(O,

o) = S0+ s, b) = (b, b))
Then from inversion we get the solution of the ansatz
equation (6') with F(0) = —1/F'(0). We get also
D, r) =1 4 plr) + (2b)"']e*7, s0

V>~ =2/rt (u#0).
70

But whereas in the case # > 0, V has no second-
order pole for r > 0, on the contrary for 4 < 0, ¥ has
a second-order pole at ry > 0 such that D(u, ry) =0
and near this ry, V' =~ 2/(r — ry)? (we shall see that
this type of repulsive potential leads to the presence
of a ghost as in the / = 0 case).? In Fig. 1 we have
represented the roots Re x > 0 of F(x) = 0 and the
sign of the normalization N corresponding to x > 0
root (states in the physical sheet). For u < 0 we find
always a ghost while for 4 > 0 when a state is present
on the physical sheet (x# > 2b) we have a true bound

state.

From S,(k) = F(ik)/F(—ik) we get
w(b® + 3k2))

t6:= k3b2b2 k2 1 — ,
g0,y = uk’[b*(b* + )( 2b(k2+b2)
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and for u > 0 it is easy to verify that the usual Levin-
son theorem must be modified. We find d(o0) —
0(0) = —m(nys) + m/2 where ngg = 0, 1 depending
on whether a bound state is present or not. (We find
also similar modification in the case u < 0 where a
ghost appears.) This violation of the Levinson
theorem with a supplementary term =/2 comes from
the fact that F(x) =X and not a constant as for the

Yukawa family (note that Sz=1(k);_m’ —1). We

emphasize that for ¢ > 0 the interaction is physically
available’'1> because the threshold behavior is
verified by construction of the ansatz and because
when a state is present on the physical sheet it is a
true bound state.

If we use this left-hand-cut discontinuity of the
S,_, matrix —ud(x — b)in order to write a dispersion
relation directly for the partial wave amplitude
[S.(k) — 1]/2ik, it is easy to verify for g > O that the
solution S,(k) = F,(ik)/F;(—ik) deduced from the
ansatz (6') satisfies this dispersion relation. In con-
clusion, the subtracted equation in this pole case is
the only equation having a meaning in potential
scattering but as a consequence the asymptotic be-
havior of the Jost function (or D in N/D) is modified:
it is not 1 but x and further the corresponding V is
—2/r? near the origin and a ghost is present when

V(r) ~ rO > 0, P’ < 0-

ron (1 = 10)"
TWO POIes" luA(x) = ﬂ12b16(x - bl) + ﬂ22b2(5(x -—
by); by > 0, b, > 0. We get

D)F'(0) — My | g Fafis(by — by)* .
2 by by biby(by + by)

It is easy to verify that if D(u)F’'(0) = O, then the
singular part of D(u,r) vanishes so that we get a
Yukawa-type family in general (in fact, a slight
generalization as for / = 0, Ref. 2) and from (17’) it
can be shown that F(x, 0) reduces to the solution of
(1’). We see that in the f,, g, plane only a curve
corresponds to (1’) and this is the curve for the
common solutions of both (1’) and (6"). If F'(0)D(u) #
0 then lim F(x, r)/r is reduced to a solution of (6')

7—0
with F(0) = —[F'(0)]"* and ¥ =~ —2/r% In all cases

+

r—0
the possibility of ghosts is still associated with second-
order poles for r > 0 leading to marginally singular
repulsive ¥(u, r). In this case where the discontinuity
is replaced by two poles, (1) and (6') have a meaning

11 We can verify in this case also that Martin’s condition!? about
the sign of the contribution coming from the left-hand-cut dis-

continuity is satisfied.
1z A, Martin, Nuovo Cimento 38, 1326 (1965).

H. CORNILLE AND G. RUBINSTEIN

but they correspond to different domains in the
M1, fis plane. This example shall be treated in great
details in a separate paper where we shall extend self-
damping properties of the interactions from the S-
wave case'® to the P-wave one. ™

General case: In Appendix C it is shown that

D, r) = i‘ﬁ(u, ) + D, r)

= =~ D3, 0) + (1) + 00,

r—20
N(x, p, 1) = — e—r— D, 1) + N(x, 4, 1),

where, due to the condition (21), the limits r — 0 of
D, D, and N exist. Then lim [N(x, g, r) + D(u, r)]

0
exists also. Further, it is shown in Appendix C, from
the Fredholm-type solution of (1),

D(u, 0) = =DWF'(0) [F'(0) = (d[dx)F(x)),o],
24

showing explicitly the connection between the thresh-

old-behavior condition for (1') and the singularity

of D(u, r) when r — 0 [leading to V(r) = —2/r2].
r—0

In Appendix D it is shown that
lim (N°(x, , ) + D, 1)) = N(x, ) + D). (D1)
r—0

If we apply these results to (22) we get
Feor) | OG0+ N
r o —F(0)D(w) + rd(p)
From (6') it is easy to get
- » A(y) Fi
Fx) —s "J (y)z(y) dy.

] m/2

(25)

In Appendix D it is shown that for the same uA(x)
there exists a general relation between the correspond-

ing solutions of (1) and (6"):

f“’ LADED)
m/2 y

= —F(0)

-1 HA(y)f(y) dy.
F(O) m/2 y
This shows explicitly that there exists a straight-
forward connection between threshold condition for
the unsubtracted equation and asymptotic behavior
for the subtracted one.

(D2)

13 H, Cornille, Nucl. Phys. B3, 655 (1967).
14 H, Cornille and G. Rubinstein, Nuovo Cimento (to be pub-

lished).
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Coming back to (25) we see that we have two cases.

First case: F'(0)D(u) = N’(0, p) 0.

This is the case where the solution of the ansatz
(6") is not a solution of (1’) and conversely. This is
also the case where the solution of (1’) does not give
the right threshold behavior for the S matrix (we have
an S-wave threshold behavior). In this case we see
that D(u, r) ~ const/r and V(u,r)~ —2/r? such

r—* 70
that the wholeopotential (V' + centrifugal potential)
simulates- a regular potential like in the S-wave case
when r — 0. (But note that V" decreases exponentially
when r — co such that this whole potential goes like
2/r? when r — o0.) From (25) we get

Fix,r) _ _ 1 [1 + N(x, ,u)J. (26)
F'(0) D(w)
We see that in this case the equation obtained from
inversion formalism is the ansatz subtracted equation
(6) with F(0) = —1/F’(0) whereas (1") hasno meaning
(at least in potential scattering). But the interactions
analyzed as potentials are not of the Yukawa-type
family, regular at the origin, although they decrease
exponentially. These potentials are marginally singular
and attractive at the origin but can have poles of the
second order for r > 0. We consider now u values
where no second-order poles for ¥ appear at r > 0
[D(u, r)y # 0 for r > 0], such that we have only the
singularity ¥ ~ —2/r2. If F(x) = 0 for some x > 0,

r—0

then the corresponding state can be considered really
as a bound state because the corresponding wave-
function F(x, r)is normalizable: Further, the threshold
behavior is satisfied for the ratio F(ik)/F(—ik)such that
S(k) = F(ik)[F(—ik) with its discontinuity —uA,(x)
really has a meaning. Nevertheless, such types of
interactions lead to special features different from the
usual Yukawa-type family.
From (D2) for F(0) = —1/F'(0) we get

f(x)?x and  S(k) —> —1.

lim
70 r

We see that the Jost functions (or D in N/D) do not go
to constants when x — o (like regular Yukawa-type
family) but on the contrary go to x. If we define
fio1(k) = F(ik) we can, as usual,’ evaluate

1 (d
i fd—k log Fy(k) dk

in Im k < 0 leading to a modified Levinson theorem
(because f(k) - ik, we have a supplementary con-

tribution from the large semicircle in the lower half-
plane). We get

0,1(0) — 0;,-4(00) = mnps — /2.
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This type of Levinson modification in connection with
asymptotic behavior of D not going to a constant is well
known in the relativistic case, but we note that here
we have 7/2 and not a multiple of 7. We want to show
that the value m/2 is a nonrelativistic effect and can
be well explained by Martin’s theorem.'? We consider
relativistic partial wave amplitudes a,(k*) for equal-
mass particles (leading in the nonrelativistic limit to
ke sin §,). We write a dispersion relation and if
Im al(k2);:;> 0 such that the left-hand-cut contri-

bution k2—>0 (the assumed properties of A, in this

paper leads also to this case), then'? an unsubtracted
relation holds and Im al(kz)k—z:;» 0. (Here we have

found Im a,_, I k1) However, in the relativistic
case the relativistic phase factor = 1, then neces-

sarily 0(o0) = O(w); whereas in the nonrelativistic
case because of the present k™! factor,

0,_1(0) — 7/2 = O(mr)
is allowed.

At the end we want to emphasize that these different
possibilities for the asymptotic D behavior, D —
const, as for a Yukawa family, or D — x as for the
case considered in this section, do not come from the
fact that we represent S, by a quotient. If we require
D(x) (in N/D) or F(x) going to constant when x — 0,
then these different asymptotic behaviors come en-
tirely from different u values of the discontinuity
#A(x) or from different interactions.

Second case'®: F'(0)D(u) = N'(0, u) = 0.

The corresponding solution is a solution of both
(1) and (6'). The solution of (1') gives directly the
right threshold behavior for the S matrix. From (25)
we get

lim Fx, r) = (D() + Nx, i)

In Appendix E it is shown that

F(0) = D(w)/d(w),
such that

li_r}; F(x,r) = F(0)|:1 + J_V;:_l;)ﬂ)}

We see that lim F(x,r) is a solution of (6') with

r—>0
F(0) = F(0) because F'(0)=0. It follows that
lim F(x,r) is also a solution of the unsubtracted
70
equation (1'). In this case D(u,r) is not singular
when r =0 and (17) as well as (18b) are of the

Fredholm type for r > 0 and r = 0.
15 In fact, we do not consider D(u) = 0. If the Fredholm-type

solution of (1) breaks down [D(«) = 0] and also F/0)YD() = 0,
then a more detailed analysis is necessary.1¢
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Asin the / = Ocase, if O(u, 0) = d(u) # 0, then the
potential is regular at the origin. This case includes
the Yukawa family and, as for / = 0, not only these
potentials. For instance, if D(u, r) — 0 (r,>0

with a root of multiplicity m, then V becomes re-
pulsive as 2m/(r — ry)®.. We note also that in this case

f AKY){:()’) dy =0,
m/2 y
such that F or F goes to 1 when x — co.

In conclusion to this section, concerning the two
different cases considered above, we see that for
A, (x) satisfying (21) the following are required:
(a) right threshold behavior for the unsubtracted
equation; (b) Fredholm character of the inversion
equation for r = 0; (c) asymptotic behavior D — 1
(in N/D); (d) no presence of marginally singular
attractive potential like —2/r? at the origin; and (e)
since the solution of the subtracted equation also is
a solution of the unsubtracted one, they can be
obtained by using the same intrinsic condition on the
discontinuity.

V. GHOSTS AND BOUND STATES

For I = 0, we recall® the results [1),_o(u) being the
Fredholm determinant of Ref.1]:

(i) When u crosses some roots of 9),_q(#) = 0, then
in general a real ghost appears at infinity in the
physical sheet.

(i) When g crosses some roots of 9, _o(—pu) = 0,
then, in general, a bound state appears at the origin.

(iii) For a u value such that both ®_o(+u) = 0,
a more detailed analysis is necessary.

We want to show that for the P wave and the sub-
tracted equation (6'), the threshold-behavior conditions
N’(0, p) = 0 and 9,_;(u) = 0 play the same role as
Dy_o(p) = 0 and N,_o(—u) = 0 in the S-wave case.

A. Bound States

When N’(0, u) # 0 from Sec. IV [Eq. (26)], then
lim F(x, r)/r is a solution of (6") and

Fx) = =[N, 7 [D() + N(x, ).

Because N’(0, u) = 0, we see that if D(u) = 0 then
F(0) = 0 and a bound state appears at the origin [for
instance, see Fig. 1 for the one-pole case 9(u) =
1 — u/2b and a bound state appears for u = 2b].

In conclusion, for the subtracted equation (6')
bound states appear at x = 0 when $)(u) = 0.

B. Ghosts

We consider states appearing at infinity in the
physical sheet [roots of F(x) =0 and x — o). We
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recall that if N’(0, u) # 0 then F(x) ——> x such that

no real ghost can appear at infinity (this does not
mean that no ghost can be present at x finite, as can
be seen with the one-pole case and ¢ < 0; see Fig. 1).
This result can be seen also if we subtract in (6") the
equation for x, > 0. We get

Fx) = Flxg) + f Ko DFO) dy,
where !

K, (x, 7) = A(y)[

2

x x2 :‘

Vx4 ) yixo+ y)

We see that if for particular u values F(x,) = 0, then
u and F(x) are eigenvalues and eigenfunctions of
K., (x, y). This means that x is a root of D, (u), the
Fredholm determinant corresponding to K, (x, v). In
general, the u roots 9, (1) = Oare functions of x,, so
we write them u(x,). In Appendix F we show that
D, (1) = —X[N'(0, u) + O(1/x,)] and we see that

roots F(x) = 0 can appear at infinity only if
F'0)D(u) = N'(0, p) = 0.

For instance, in the one-pole case we see that for

© = 0, which is the only value N'(0, u) = 0, a real

ghost appears at infinity.

This proof works only if u(x,) is really a function of
Xo. Assume now that there exist special u values, roots
of 9, (u) = 0, but independent of x,. Then these u
values are also roots of D, _o(u) = 0 corresponding
to the kernel K, _o(x,y) = (x¥[y*)(x + y). Therefore
these p values are roots of D(u) = 0 and for these
values a more detailed analysis is necessary. For
instance, there exist such values in the two-poles
case.'t

VI. CONCLUSION

In the first part of this paper, with the help of
Blazek’s extension of Marchenko’s inversion for-
malism, we have established a dispersive integral
equation for the Jost solutions for / 7 0, where the
kernel is proportional to the left-hand-cut discon-
tinuity of the S, matrix (the discontinuity being such
that the N/D equations are of the Fredholm type).
We have also obtained the integral equation giving
the possibility of reconstructing the potential from
this left-hand-cut discontinuity. From this last
equation we get, for instance, that the potentials are
short range (decrease exponentially), so we know that
if we reconstruct the S, (k) matrix from the first
equation (Jost-solutions integral equation), then the
correct threshold behavior for S,(k) will be satisfied.
So these two equations are sufficient tools in order to
solve the problem of the threshold behavior for
nonrelativistic N/ D equations. Indeed, when we know
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the two Jost solutions (asymptotically ingoing or
outgoing wave), we can reconstruct the S, (k) matrix
by taking the ratio of these two functions and investi-
gating the limit of the radial coordinate going to zero.
Further, knowing the behavior of the potential near
the origin, we get the corresponding singularity of the
Jost solution near the origin. Consequently, from the
Jost solution, we can obtain the Jost function (or
D in N/D) and see if the integral equation for the
Jost function exists. The great difference with the
! = 0 case is that, in general, the potentials (although
having a Yukawa-type asymptotic behavior) are
marginally singular attractive at the origin, so the
behavior of the solutions is not given by the centrifugal
potential alone (as for / = 0, we find also the possi-
bility of second-order singularity leading to repulsive
potentials). So if integral equations exist for the Jost
functions, then the kernels in general will be modified
at Jeast in order to get the right threshold behavior
for the S, matrix. This is why we have a priori (without
any justification and independently of inversion
formalism) considered an ansatz subtracted equation
by moditying the kernel of the unsubtracted one in
such a way that the new Jost functions (or D in N/D)
lead directly to a correct behavior for the S, matrix.
In the second part of this paper we have restricted
our study to the P-wave case and investigated whether
or not such an ansatz subtracted equation has a
meaning: more explicitly, if the ansatz can be deduced
from integral equation for the Jost solution and what
the features of the corresponding interactions are (we
note that the same study can be made for / > 1 in
order to see if our ansatz or another one has a meaning
at all). For / = 1 we have found two cases following
different values of the discontinuity. In the first case
the unsubtracted equation satisfies the right threshold
behavior. We find that the corresponding potentials
include the Yukawa family and are in general not
singular at the origin. The asymptotic value of D is {.
In the second case the unsubtracted equation does
not satisfy the correct threshold behavior: the ansatz
subtracted equation is the equation having a meaning,
the potentials =~ —2/r? near the origin, D does not
go to a constant at infinity, and the Levinson theorem
must be modified. This case never corresponds to
the Yukawa-type family which has been considered in
order to prove the Mandelstam representation in
potential scattering. Since these two cases correspond
to different discontinuities of the .S matrix, the corre-
spondingly different asymptotic behavior of D cannot
be attributed to any ambiguity coming from the use of
the ratio N/D. (We fix the behavior of D as constant
at the origin.) In this paper these two cases are
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distinguished by different behavior of the potentials
near the origin. For / = 0 we recall that we obtained
not only the Yukawa family but also marginally
singular repulsive potentials. But for these badly
behaved potentials we recall that there appear ghosts;
so, requiring only available physical states in the physi-
cal sheet, we can reject these badly behaved potentials.
For / = 1 and the above second case, the situation is
different. For instance in this paper, for the discon-
tinuity replaced by one pole, we have seen that always
the potential is marginally singular attractive at the
origin (except the trivial case where the residue of the
pole vanishes); nevertheless values of this residue
exist such that the present state on the physical sheet
is a true bound state and consequently from spectrum
requirements we cannot reject the corresponding
interaction. In fact, in a further paper!* we shall
seek the possibility of a self-damping connected
domain of physically available interactions for the
subtracted equation considered here, where the dis-
continuity is replaced by a finite number of poles.
Finally, we recall that in potential scattering for
the N/D equations the discontinuity is taken as input
and the only thing we can do is to try to analyze the
consequences corresponding to different input. It is
why we think it can be interesting to investigate in the
relativistic case, by taking into account crossing,
whether or not such different features (D — const or
not) connected with different discontinuities can be
explained from the consideration of the other channels.
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APPENDIX A

We want to show that

K(r,r) = é j V(') dr'.

”r

(A1)

We consider Im k& < 0. Substitution of (10) in (7)
yields

f K(r,)w,(kt)dt = I, + I,,

1k, r) = —f dr’ gk, ro v YV (" yw(kr')

_ f “ KO0, Hyw (k) dt, (A2)
Ik, ) = — f Cdr gk, v WO
% findr”Kl(r', ryw(k, ")
- f “ KO, tyw,(kt) dt, (A3)
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where K, = KM + K{®. We want to find K/ from
(A2) and (A3). For / =0, w, = ie"™! and we have
to consider! a Fourier or Laplace transform. But for
/ 5 0 we recall that if we define the operator D, such
that

Dy(f(K)) = (E =

)(k’f(k»
then

D,(w,(kr)) = rle~ "
and we get

DIk, r)) = f i

r

K9O(r, e~ ™ dt.  (A4)

Using D, the problem is thus reduced to find a Fourier
or Laplace transform. Using (8) for w, we get

— gk, r, r)wi(k, r")

—_ —-zic(r—r +7 )z 0(,,(7‘, I‘ r’
0 kﬂH—l
rl, r/r)

H

. -1k(r ~r7r" )z O‘p( r,
kiH-l

where the o, can be determined from (8) and are not
singular for r, r', r” 0,

r U rl/
= giwtrra 3 2ol 7 1)
D,(—gw) %:

7
k.’l>+1

-7, ru)
k.’P+1

_ —zk(r —r+r" )Z 71)(

>

where y, are still not singular for r, r', r" #0,
volr, r',r") = —ir'j2. Now we use

k—zze—ikr — i:nJ‘ e—ikt(t — r)p—l((P _ 1)!)—1

and we get
© 41 ®©

DI, = J Vi Y U dtg(r, v, " = 1)t = 1Y’
T 0 r

—f dtg(—r, —r', r" =r)(t—2r + r)”} dr,
,
(A5)
where 7, = y,i?/p!
We change the order of integration in (A5) and
comparing with (A4) we get
47 ©
RV, ) =3 {(t - r)”f ar'g(r, v, r" = r)V({r')
0 r
(t+r/2)
+f ar'(t — 2r' +ry?

X F(—r, =1, 1 = r’)V(r’)}. (A6)
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With similar algebra from D,J, we get

kol «© t—r+r’
th;”(r, t) = % { ( dr’V(r')f, (t —r+ r - rv)zi

kY

X P, v, K, ) dr”
{t+7/2) t+r—r'
—f dr’ V(r’)f (t—r+r—ry

X §(= 1, =1y FYKA(Fs 1) dr”}. (A7)
From (A6) and (A7) and $o(r, r', r" = r’) = 4r' we see
that (A1) follows.

APPENDIX B
We want to show that

Kyr,r)=— (sz(M, M/ Di(p, 1), (B1)

where D,(u, r) is both the Fredholm denominator of
the integral equations (15), (17), and (18). The
Fredholm type of solution of K,(r,y), which is a
solution of (18b), can be written, for y = r, as

ﬁ)z(,u, r)Kz(", r)
= W 1) + 1 f N 1 0Bt P dy, (B2)

where!6

Dy, r) =1 + g(’;"‘)" D),

N, 7, 1) = E(—’,{;‘l NP 1), (BY)

In order to prove (BI), due to (B2) and (B3), we have
only to show that

1 d
g)(n+2)
n+2dr r)
= —B(r, D" (r)

+ f (n + DN™(r, t,)6(t,, r) dt,. (B4)
From Fredholm’s theory we get

D) = f dy f ALE (s 1y, 1),
N(")(T, tl) =f

r

s}
dty- - f dt, H(rsty, by, 5 ),
T

where
En(tl’ tZa Y tn)
B(tl ’ tl) B(tl H tz) E(’la tn)
- Btz 1) Tt 1) G(tz, )
B(tn ’ tl) B(tn ’ tz) E(tn ’ tn)

16 Because our proof is /-independent, we omit the index / in the
following.
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Hn(rla ti,tp,0 00, t'rH—l)
B(rity) BG(ryrs) G(ritnyy)
Gty 1)) Ty, G(ta, thy1)

.................................

Gt 1. 1) Btyers t2) B(tpr1s Lyrr)

We obtain
1 __‘i ﬁ)(n+2)( )
n+2dr
_1 nt+2 ood ood cod ood
— t .. ti foiqe o tn
" +2]_§1 . 1 J; j 1f i+1 J; +2
P T VRN FITS ( TTPRLLIS APy

= _f dtl j dtn+1 n+2(r1 S PN tn+1),
where we have used the symmetry
E’n(”',ti"“ )—E( 'ati"")'

Now we develop E, ., following the elements of the
first column:

9,7” .’3’-.

En+2("1 B SR H) = B(r, ")En+1(t1, T, tn+1)
n+1
+ E .G(t:n r)( )7M71+1(r1, ty, ", bis e, tn+l)!
where
71:-}(7‘1: tla Y tn+1) = Hn(rl ’ tl’ T, tn+1)
and
T(ry, 1) B(ry, t1)
‘B(tl ’ tl) e (G(tl ’ tn+1)
M:;+1(’”1, ty, e, tn+l) = ﬁ(’j_l, t) *- ‘E(tj—la ta)
Bty 1) Bltys ty)

.....................

T;(tn-n s tl) Tt E(tn+1 s tn+1)

Similarly, as was done for the / = 0 case,? it is easy to
get the identity

R 0
f dt, - f dtn-t—lt(t;iﬂ ")Mfwrl(ru fi, 0, tn+1)
T r

=J; dtl"'f dtn+1(—)j_173(t1 , r)M::+1("1, s Easn)-

Finally we get
! d (n e
n + 2d {) +2)(r) = —E(r r)f dtl * "I; dtn+1
X E, oty -0, t) +(n+ 1)

n+1)y

X f dt, - f dt, Bty , H (ry, t, 0 t
T r
which is the relation (B4).
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APPENDIX C

We want to show that the singular part of the
numerator and the denominator in the Fredholm type
of solution of (17) for / = 1 are linked to the threshold
condition (4).

1. From the Fredholm type of solution of (1), the
condition (4) can be written!’

D()F'(0) = 2 = f du1-~-[ du,,
( - 1)! m/2 Jm/2
X L(uy,ug, " ,uy,) HA(ui)a (Cl)
1
where D(u) is the Fredholm determinant of (1):
00 o
Dip) =1+ z(—y)”/n!J du, - du,
m/2 m/2
X IT AP, (uy, - - - 5 1),
1 | I
2u, Uy + Uy u; + u,
1 B S |
Uy + U 2u uy 4 u,
P, = 2 1 2 : + ’
1 S
u, +uy u, + uy 2u,
1 1 i
uj u; u?
1 1 1
U, +u 2u uy + u,
L,=|"' " : ’ . (C2)
! S
U, + u, u, + Uy 2un l

P, and L, have the same elements except for the
first row.

2. The Fredholm determinant of (15), (17), and
(18b) is

D(u,r) =1+ Z du1 N du,,
n=1 0! Jmse m/2
e——z!u;rH A(u,.)M”(r, Ug, " °, un) (C3)
Q‘I‘(ul bl ul) Qr(ul > n)
M (ryuy, " u) =i,
Qr(un > ul) ‘Q (un U )

17 We investigate only / = 1 so that we drop the index /.
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with Q,(u;, u)) = (wur)™ + (u; + u)™. M, is sin-
gular when r —0 and it is easy to see that we get

Mn(r,...,ui’...)

= rklﬂn("ﬁ’ T, un) + M=n(u1’ T, u‘n)-

When we substitute this expression of M, in (C3) we
define correspondently D(u,r)= r*lij)(,u, r)+ ﬂ)(u, r),
where g ‘)(p, r) and ‘,D(,u, r) go to a constant when » — 0
because we recall that we have always assumed that
A(y) is such that the Fredholm type of solution of (1)
exists. It is easy to see that M, = P, and

7, =3~ i,

i=1u

T un),

where M? is the same determinant as P, except that
the elements of the jth column are u; %, wz, -+, u .
We get

f duy - f du e“zz“HA(ul)
mi2 m/2

X (— . lM"*l) =
u] n ul n
and finally
- ¢} n [oo] o0
Dur) =3 [ duy-[ " du, TTAG
T (n— 1) Jmse m/2 i
X e Y (uy, -0, u,), (C4)
where
Yn(ul’ Y un)
o 1 B
ul u2 uﬂ
1 0 0 0
Uy
1 1 1 1
= [Ugy U2 + u1 2“2 142 + u
11 I
u, u,+u; u, -+ u, 2u,

3. The Fredholm-type solution of (17) correspond-
ing to the kernel —A(y)e @ H, (x, y) with

x 1

H —
(X, p) = +yx+y

yr
is
N(x, p, 1)

F(x,r) = e (1 + xr) + D(a, 1)

H. CORNILLE AND G. RUBINSTEIN

where

N(x, u, r faodu fw du,
# ) z(1 - l)' mj2 ! m/2 '
e u ) TTAW)Z (r x, 1y, -

1),
Z,(rox,uy, 00, u,,)

H(x, u;)  HJ(x, up)

= | H(uy, u;) H,(uy, u,)

HJ(u,,u) H(u

H.(x,u,)
Hr(”:!’ u, (CS)

n» uZ) e Hr(u'n’ un

It is easy to see that Z, = (1/r)Z,(x, uy, " -

Z,(%, uy, Uy, -+, u,), where

»u) +

., un)

X X . S
ux + u))  ux(x + uy) u,(x + u,)
Y DR S 1 R T
uy(uy + uy) 2u, u,(uy +u,) ’
u, u, o 1

uy(uy, + uy)  us(u, + uy)

n(xa ul s "

u?

Zn(x: ula e > un) = (C6)

1 =
1 Z,
1

We put z, = (1 + ur)Z,. We define N(x, s ) ry=
N (x, u, 1) + N(x, u, r) such that N and N are
obtained from (C5) when z, is replaced respectively
by Z, and u,Z, + Z + uer From the assump-
tions made about A(y) we know that N and N’ go to
a constant when r — 0.
Using
u; 1 1

U; (u + ua) ui

we get with some algebra

(_l)nzn(x’ U,y un)
1 1 1
0 —_ _— —
h uj uz
1 1 1 1
X4 u X+ ug X+ u,
1 1 1 1
= ug + u;  2uy Uy + u, (€7
L 1 1 Bl
Uy + U, U, + Uy 2un
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In the following we shall show that e N (x, u, r) is x-
independent. Taking into account this result in (C7)
for x = oo,we get Z, = (—)"'L,. Similarly, from
this result we can put x = 0 in (C6) and perform the
following algebra: we factorize u;* from the (i + 1)th
column (i = 1,2, -+, n) and u, from the (k + 1)th
row (k=1,2,3,---,n). WegetZ, = —Y,. Finally
we have the relations

N(x, u, 0) =

TN (x, iy 1) =

D(W)F'(0) = —D(k, 0),

—Du, r). ()
4. We want to show that e N’(x, u, r) is x-inde-

pendent. The x dependent part of e N'(x, u, r) is

W) = _nz1(n/i 1!

Xf duy -+ f du e~ ’HA(u YN CRTREEE
m/2 mf2
where {, is the same determinant as Z, (C7) except
that the first element of the second row is 0.

We develop {,,, following the elements of the first

n

2 “n)’

"o

column,
y = Z( 13+n J(Y Uy, ", “n)’
where
Galx, uy, = uy)
1 1 iy 1
uj us u’ u?
1 1 1 1
X4,y XUy X+u; xX4u
1 1 . 1 e 1
=|u;_q4uy u; tu; i tu,
] ' BRI l o e l
Uy tuy Ut Ui tit; 1tu,
! T L
u,+u, u,4u, u,+u; 2u,,

u, is only in the first column, u; only in the jth, so ¢,
is antisymmetric by 1 == jand W(x, u,r) = 0.
5. From (C8) it is easy to see that

Hm (N(x, 1, 1) + D, 1) = xD(p, 0)

o + D, 0) + N(x, 1, 0),
‘T)(/,t, 0) = Z y a'u1 f’ du,,HA(u)
X M,l(ll,, Ugy 'ty U,),
JT(Y 1, 0) = p l(n 1y ,u,'zdul s
xf /)a’u,,HA(u)
X (uiZ”(x, Uy, ,u,) + Zz,l(x1 ceu)). (C9)
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Taking into account H,(u,, u;) = (u;fu;)Q,(u;, u;), we
have also

‘.T)(,u, 0) = Z’u du1 . [ du HA(u )
n n m/2 Jmi2
X Z,l(ul, gy, -, u,) (ClO)
and
e ) =S [t [ du, TTAW)
w nl Jme m/2 i

X e ENZ (4 uy, o, u,), (C11)

Z,and Z, being defined in (C6).
6. We called d(u) the nonsingular part of D(y, r).
When r — 0

c@hﬁﬁﬂmﬂﬂ+5mm.(an

We want to show that d{u) is also the Fredholm-
denominator determinant of

R(x,y) = (x + y)y ' 4+ x/)~

With some algebra, (Cl1) can be written as

d)‘u’ﬂ oo o0
P, r) = — > J duy - f du, T Aw,)
m/2 mi2 i
' X R (r uy,,u,),
with
e—u‘r e—unr
0 .
u, u,
e—ulr
iy
R,,(I', Uy, " ',lf,,) = ' 4
P:L(ulau2’”'sun
e—un?‘
u,
e—(ur('uj)r
(Prluy, -+, un))[,i = s
u; + u;
0
Po(uy, -+ u,)=P,(u, " -,u,),
P, being defined in (C2).

To get (d/dr)D(u, r) we consider (d/dr)R,(ry, uy, " -,

u,):
u ,L))
=0

= _Sn(ula e

d
- Rn(rs Uy, " "y
dr

n-tl

> ll")—' z er(“l’ e
=2

> u'ﬂ)a

where S,(uy, - ,u,) has the same elements as
R,(0,uy,+++,u,) except the first row which is

replaced by (0, I, 1 , 1), and RZ(uy, - -+, u,) has
the same elements as R, (0, u,, - - -, u,) except for the
jth row which is replaced by (1,1,---,1). Then
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(C12) is equivalent to

SE f du, - quzdunIiIA(u,-)

n h!

(5

d(u) =

un)+Pn(u1,“'

n+1

+ z er(“ls N
j=2

, Uy)

,un)). (C13)

We remark that the sum

Sn(ulﬁ'“’un)"f' ’ Pn

1

Uy,

can be written RI=Y(uy, -« -
same elements as R, (¢, "+
first row which are (1,1, -

» U,) because it has the
, u,) except those of the
, 1). Then,

=30 [ du [ du, T Aw)
nn /2 i

X zRi(ula Ugy®* 7y un)' (C14)
=1
With some algebra one can show that
ZR;(MD T, Uy) = (_)nA(n+1)(u1’ Tt Uy),
i=1
-y 1 ... 4
ul u>
Uy
__A(n-H) =
Po(uy, -+, uy)
u'n

We develop A" (uy, - -+
of the first row; then

, u,,) following the elements

A(n+1)(u1 > Pn(ul P un)

+ 3P,

T U,) =

,u,), (C15)
where Pi(uy,-**,u,) has the same elements as P,
except the jth column which is (u,/u}, upfus, -+,
u,/u?). Now if we consider the Fredholm determinant
of R(x,y), we find also a term P, coming from
(x + y)~* alone and n other terms P¢.

H. CORNILLE AND G. RUBINSTEIN

APPENDIX D

We want to show that
lim [N(x, g, r) + D(u, r)]

r—0
xD(u, 0) + D(u, 0) + N(x, u, 0)
= N, u) + D(w), (D1)
where D(u, r), N(x, u, r), N(x, ), and D(u) corre-
sponding to the Egs. (17') and (5') are defined in (22)
and (23); and D(u, 0), D(u,0), and N(u, 0) are
defined in (C4), (C9), and (C10).

1. Using x*/[y*(x + »)] = (x/y?) — x/[y(x + ),
we can write

i

R TN G/ ) Y B
a %(n—l)' m/zdu1

X (Zn(x, Uy, "y ily,) — ZZf(x,ul,“',un)),
7

: f ? du, TT Aw(=)"
m/2 i

where Z,(x,u;," -
Z;(X, ul’ e

,u,) is defined in (C6), and
, 4,) has the same elements as

Z’n(xs U, un)’

except those of the jth column which are (x/)?,
Ugfu, - -+, U, [UD). _

We remark that Z, (u,, uy, * -, 4,) appear both in
D(u) and D(u, 0) giving the same contribution in the
rhs and the lhs of (D1). Similarly, ?n(x, Uy, oo, Uy)
appears both in N(x, u) and N'(x, u, 0) giving also
the same contribution in the rhs and in the lhs of
(D1). To prove (D1) it is now sufficient to show that

n

£ du1~~-f du,, TT M(uy)
m/2 Z

n! Jme

X (nzz'r];(x,uly'“: zz ul’ula"’yun))
7 J

__Iu" w© ©
= du'“f du, i Z (X, uy, 5 Uy,)
(n — 1)!J:n/2 ! m/2 1Zal% U "
x TT Aw;) + xD(u, 0). (D1")
2. We get with some algebra
1 1
O —_— —
ut u?
X
—EZ Xy, =y,
_Z’n(x, Uy, "5 Uy,)
un
=" (x, uy, 00, uy).
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This identity is also valid for x = u;. We develop
o m N (x, 4y, + * -, u,) following the elements of the
first column, and remark that the minor corresponding
to (a1, is Z,(0,u, - ,u,) (C6); we call
p (X, uy, ¢+ v, u,) the remaining term. o"t1(x,
Uy, ,u,) and B(x, uy, -, u,) have the same
clements except that
(B )y, =0,

so that
a(n+l)(x’ uls T, un)

= ‘—'XZ,n(O, Uy, un) + /’)’(VL-H)(x, U,y un)
On the left-hand side of (DI’), if we consider the con-
tribution of the first term coming from

Zn(()’ Uy, " ) un)’

we get xD(u,0). Then the equality (D1’) is now
reduced to

£ duy - - f du, TT A(u,)
m/2 Z

n! Jmse
(n-+1) (n+1) .
X (_nﬂ (x9u15 9un)+°( (“11“1’

= —# f du1 e du1u1

(n — DVJmre m/2
,u,) TT Aw,). (D)

’un) = —Yn(uls' '

* H un))

X Zn(x’ Uy,
3. We define d,; such that
6Ikﬂ(n+l)(x’ Uy, T, un)
= fth(x, u, - -

s Up s

':uls'.'!un);
then we have

nf duy f du, TT ACup)B (%, uy, -+ 4 1)

m/2 m/2 i

= zf duy J du,, HA(”i)alkﬂn+l(x’ Up, "y Uy),
k m/2 7

m/2

where we have taken symmetry properties into account
in the integration. We define

z 61kﬁ(n+1)(xa Uy, oy un) - a(n+1)(ul’ Uy, " ”n)
k
= 7(n+2)(~‘<, ”1, “23 e ) un),
where
)/(n+2)(.\', THRRRI un)
1 1
0 0 = - —
uy u;,
X X
_{r 0 — _—
= u(x + uy) u,(x +uy)|
1 u =
Z (uy, g,y uy,)
1 u,

In order to verify this identity, it is sufficient to
develop y+?» following the elements of the first
column. We remark that the minor corresponding to
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(YD), 1 is (=)F10; o I(x,  + -, u,) and that the
minor corresponding to (p™+2), ;is " (uy, uy, -+ -,
u,). Now (D1”) is reduced to

f dun H A(“i))’(n+2)(x, ula e
/2 [

m

n

o0
1 duy -
n! Jmse

=—_”—fwdu1--~
(n—-l)' m/2

4. We develop "t (x, uy, « -
elements of the second column

n
Py ) = Zl(_)’u,-y‘,ﬁz)(x, Up, -
=

where p{*$? is the minor corresponding to (y™*2);,.
Taking into account symmetry properties, each term
of the sum in the left-hand side of (D1") gives the
same contribution, and because

s un)

[2¢]
du i Z, (X, Uy, "0 0y Uy
m/2

(leﬂ)
, u,) following the

» Un),

PO, Uy, Uy, U) = =2 (X, Uy, *

the identity (D1") is satisfied.

B. We want to show the following relation between
the solutions of (1) and (5'):

A(x)F(x)dx _ ~_1 A(x)F(x) dx.
miz X FO) Jmz  x*

" Uy,

—F(0) =

(D2)
The Fredholm-type solution of (1) can be written
F(x) = 1 4+ N(x, u)/D(u); then by comparison with
(23) we have only to show

I (N’ ) R Dacodx =0 (02)

2

n/2 X
or
z_(__’u)_.lpn = 0,
r(n—1)!
where
e © . .
‘Fn = dx dul . f du,, HA(ui)
m/2 m/2 m/2 i
X (ﬁn’(x’ ul’ u25 T, un)[—]-; - %J’
u? x
¢n(x9 Uy, Ugy ", lln)
1 1 ... 1
Xtu x+u X+ u,
1
Uy + Uy
Pn—l(uz, Ug,***, un)
1
u, + u,
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But because
Pn—l(' v un

we get ¢n(x> Uy, " -
Then (D2) follows.

u,,-+)y=>~P

ANCRPE
.) = ¢n(u19 Xyt ') and an = (,

sui"“),

APPENDIX E

We want to show that

d(p) =

d(u), D(u), F(x) being defined by (C12), (Cl), and
(1'). We remark that if F'(0) = 0 then F(x), which is
a solution of (1'), is also solution of

D(u)/FO0) when F'(0)=0, (EI)

Foo =1+ f }A(y)F(y)R(x, Wdy, (E2)

with R(x, ) = (x + )™ + x/y?, %(x, w) and d(u)

being . respectively, the Fredholm numerator and

denominator of the Fredholm-type solution of (E2).
Then, to prove (El), it is sufficient to prove

7(0, w) + d(u) = D(w). (E3)
From (E2) we have
d(w) + (0, w)
=S [ du, TT Aw)
1 n! Jmpe m/2 i
X [un(ul’ Tt un) - nVn(ul’ Ty un)]a (E4)
with
un(ul’ T, un)
R(ul 3 ul) R(ul ’ u2) R(ul b un)
R(uy, u;) R(uyp, uy) R(u,, u,) ,
R(u,,u)) R(u,,u,) R(u, , u,)
and V,(u,, - ,u,) is the same determinant as

U,(uy,"* - u,) except the first row which is (77,
uz', - -+, u7"). Using the same method as in Appendix
D, we get

d(u) + n(0, p)
? (— ,u)n . ,J-w dun

X [Un(ul’ v

’ un) + I7n(ul T un)]’ (ES)

H. CORNILLE AND G. RUBINSTEIN

where
o L 1 ... 1
U, Up Uy,
V,=U,+

tou |

. L1 il

= Uy Up Unpi.

L ' U, i

In 7, for the elements of the jth row (j=2,---,
n + 1) we subtract the corresponding elements of the
first one. With some algebra we get

1 1
1 — P _—
Vn + u]_ un = Pn'
1 P,
Then (E1) follows.
APPENDIX F

We want to investigate the singular part (when
Xo—> o) of the Fredholm determinant of D, (u)
corresponding to the kernel

x? x5
K= (o - )A(y)
yx 4y Y%+ )
defined on [m/2, o]. It is easy to see that

Do (1) = —xo[A() + O(xgM)],

xg—> 0

where A(u) is the Fredholm determinant correspond-

ing to the kernel
1
=540,
We get

A(p) = %( A d“1 'szdunHA(“i)

(.v2(xx: ¥)

X (glA,z‘(ul,--uuﬁ)),

where A7 is the determinant P, defined in (C2) except
that the elements of the jth column are (u72 ---
u;?, -« -, u,?). Taking into account symmetry properties
in the integration with respect to the variables
Uy, ,u, we can see that each A’ gives the same
contribution and because AL = L, [see (C12)] we
get
> (=" f
A
(w) = Z( Y
= D(w)F'(0).

J’ du, H A(u)L,
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