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A many-boson model is formulated and expressions for its exact eigenstates and energies are obtained 
for both an arbitrary finite and an infinite number of bosons. The Hamiltonian of the model contains 
interactions between bosons whose momenta have equal magnitudes but opposite directions. The matrix 
elements of this interaction are taken to be a constant over a range of momenta surrounding k = O. The 
ground state of the 2N-particle system is shown to be a product of N pair-creation operators acting on the 
vacuum state. Each of these pair-creation operators depends upon one of N parameters which are called 
pair energies. The N pair energies are shown to satisfy a coupled system of nonlinear algebraic equations. 
The energy of the state is the sum of the pair energies and the occupation probabilities of the single­
particle levels are given as simple functions of the pair energies. Similar results are derived for the excited 
states of the system and for the states of an odd number of particles. These results are valid for both 
a repulsive and an attractive interaction, since they only depend upon the form of the interaction. The 
equatioH!> are solved algebraically for two model systems. The first of these is one whose single-particle 
kinetic energy takes on only one value. The equations for this system are solved for an arbitrary inter­
action strength and it is shown that the pair energies are proportional to the zeros of certain Laguerre 
polynomials. The second system is one in which the single-particle kinetic energy can take on two values. 
The equations for this system are solved in the strong repulsive-interaction limit and it is shown that the 
pair energies are proportional to the zeros of certain Jacobi polynomials. The excitation energies of this 
second system are shown to be proportional to lin and the occupations of the two single-particle levels 
in the ground state are shown to be proportional to n, where n is the total number of particles. For a 
repulsive interaction and an arbitrary single-particle spectrum, the algebraic equations for the pair 
energies are converted into an approximate integral equation for the density of roots which is accurate to 
order lin. This integral equation is solved for a strong interaction which, in the context of this model, 
means an interaction whose strength is greater than a constant times 11 Vi in the limit of a large volume. 
From this solution, the following results are obtained: (1) the lowest two single-particle levels have 
occupations of order n; (2) the excitation spectrum is that of a set of noninteracting quasiparticles; 
and (3) the quasiparticle spectrum has two zeros corresponding to the lowest two single-particle levels. 
Apart from the presence of two zeros, the quasiparticle spectrum does not differ significantly from that of 
the noninteracting particles. 

1. INTRODUCTION 

The Hamiltonian of an interacting many-boson 
system may be written as! 

where Ek = k2j2m is the energy of a boson with 
momentum k in units such that Ii = 1, V is the volume 
of the system, v(q) is the Fourier transform of the 
two-body interaction, and at and ak are boson 
creation and annihilation operators which satisfy 
the usual Bose commutation rules 

(1.2) 

One widely used approach to the eigenstates of (1.1) 
is to replace it by a model Hamiltonian which may be 
easily diagonalized and which, in some sense, is a 

• This research was supported in part by the National Science 
Foundation. 

1 E. H. Lieb, Lectures in Theoretical Physics (The University of 
Colorado Press, Boulder, Colo., 1965), Vol. VIIc, p. 175. 

good approximation to H. Two examples of this 
approach are the Bogoliubov approximation1.2 and 
the pair Hamiltonian.1.3 

In the Bogoliubov approximation, it is assumed 
that the occupation of the k = 0 level will be a finite 
fraction of the total number of particles in the thermo­
dynamic limit when the volume of the system and the 
total number of particles go to infinity in such a way 
that their ratio, the density, is kept constant. The 
interaction in (1.1) is then truncated by ignoring all 
terms which have fewer than two operators referring 
to this k = 0 state. The terms of the interaction that 
are retained in this approximation are those that 
involve the operators atataoao' atatakao' atatakao' 
ata~kaoao' and a;a;a_kak , for k ¥- O. In order to 

2 N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947); N. N. 
Bogoliubov and D. N. Zubarev, Sov. Phys.-JETP 1, 83 (1955); 
N. M. Hugenholtz, Rept. Progr. Phys. 28, 201 (1965). 

3 D. N. Zubarev and Iu. A. Tserkovnikov, Sov. Phys.-Dokl. 3, 
603 (1958); M. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 
(1959); M. Girardeau, Phys. Rev. 115, 1090 (1959); M. Girardeau, 
Phys. Rev. 127, 1809 (1962); M. Girardeau, J. Math. Phys. 3, 131 
(1962); G. Wentzel, Phys. Rev. 120, 1572 (1960); M. Luban, Phys. 
Rev. 120,965 (1962). 
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diagonalize the resulting Hamiltonian, the further 
approximation of replacing the operators af) and ~() 
(no)A, where no is the occupation of the k = 0 state, IS 
made. Thus, the commutator of af; and ao' which is 
one, is neglected relative to the expectation value of 
at a which by assumption, is of order n, the total o 0 , . 

number of particles. The Hamiltonian resultmg from 
these approximations is a bilinear form in the operato~s 
referring to the states with k ¥- 0 and may be dl­
agonalized by a canonical transformation ~f t~ese 
operators. The resulting excitation spectru~ IS glve~ 
by the energies of a system of nonmteractmg q uasl­
particles whose energies are given by 

ek = [Ek(Ek + 2pl"(k»]J, (1.3) 

where the density of the system is p = n/ V. 
The pair Hamiltonian is also the result of a trunca­

tion of the interaction in (1.1). In this approximation, 
only those terms in the interaction which involve the 
operators a~at,ak,ak' a~ at·akak" and ata:t:ka_k,a~, are 
kept. This includes the terms of the Bogohu~ov 
approximation plus many. more. Th~ resul.tm~ 
Hamiltonian has been the subject of extensive studies, 
where it is shown that, in the thermodynamic limit, 
its excitation spectrum is that of a system of n?n­
interacting q uasiparticles. However, the expressIOn 
for the energies of the quasi particles is much more 
complicated than (1.3). . 

It is important to note that, in both these appr.oxl­
mations, the terms of the interaction that are retamed 
are those that are quadratic in the number operators 
atak or are products of the pair operators .ata:t:k a~d 
a_kak. In this paper, we consider a special Hamil­
tonian whose interaction contains terms of this second 
kind and show how it can be exactly diagonalized, 

The Hamiltonian that we treat may be written as 

where 
O(k) = I, for O<k<K, 

= 0, for k> K. (1.5) 

This Hamiltonian is the boson analog of the reduced 
Hamiltonian of the Bardeen-Cooper-Schrieffer (BCS) 
theory of superconductivity.4 As such, it has been 
studied by Valatin and Butler," who transcrib~d the 
quasiparticle formulation of the BCS theory6 In.to a 
form appropriate for bosons. In (1.4) and (1.5), g IS an 
interaction strength and 1/ K is the "range" of the 

4 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 
1175(1957). . 

5 J. G. Valatin and D. Butler, Nuava Omenta 10, 37 (1958). 
6 J. G. Valatin. Nuovo Cimenta 7,843 (1958); N. N. Bogallubav, 

Sav. Phys.-JETP 7, 41 (1958). 

separable nonlocal interaction. If we transform this 
interaction into configuration space, we have 

(rlr~1 L' Ir{r~) = gO(lrl - r2I)O(lr~ - rm, (1.6) 
where 

0(1') = - L e,k.rO(k) ~ --., . - t. K3 [Sin Kr - Krcos Kr] 
V I'~", (277)- (Kr)3 

(1.7) 

The interaction strength of g may be taken to be 
proportional to 1/ V, as would be the case if (I :4) ~e~e 
the result of a truncation of (1.1). However, If this IS 

done, then the interaction (1.6) is proportional to 
1/ V rather than being independent of the volu~e. 
Therefore, in Secs. 2-4, we use g as a parameter which 
mayor may not be taken proportional to I/~. !n Sec. 
5 where we consider the infinite volume hmlt of a 
r~alistic system, we explicitly put g equal to G/V. 

While it may well be argued that the form of the 
interaction in (1.4) is nonphysical, our point of view 
is that the exact solvability of the model more than 
makes up for this deficiency. Exactly solvabl~ mo~els 
are very useful testing grounds for the approximatIOns 
of many-body theory and they provide a lot of insight 
into the properties of real many-body systems. Thus, 
the Hamiltonian (1.4) joins the small number of 
model Hamiltonians such as the model studied by 
Bassichis and Foldy7 and the BCS' reduced Hamil­
tonianS that may be analyzed exactly and in complete 
detail. 

In Sec. 2, equations for all the eigenstates of (1.4) 
are derived. These equations are a set of coupled, 
nonlinear algebraic equations for a set of parameters 
which we call pair energies, which characterize a 
given eigenstate. The energy of a state is given in terms 
of the sum of these pair energies. Tn Sec. 3, an ex­
pression for the occupation probabiliti~s of t.he single­
particle levels in one of these states IS deflve~. The 
evaluation of this expression is shown to require the 
solution of a system of algebraic equations whose 
coefficients depend upon the pair energies. Two 
model systems, for which the equations for the pair 
energies can be solved exactly, ~re tre~ted in S.ec. 4. 
The first of these is the system In which the sIngle­
particle kinetic energy takes on only one val ue ~nd 
in the second it takes on two values. The equations 
for the first system are solved for an arbitrary inter­
action strength and those of the second are solved in 
the strong repulsive interaction limi~. In Sec. ?, we 
solve our equations for a system with an arbitrary 
single-particle spectrum and a repulsive interaction 

7 w. H. Bassichis and L. L. Faldy, Phys. Rev. 133, A935 (1964). 
8 R. W. Richardson, Phys. Letters 3, 277 (1963); R. W. Richard­

son and N. Sherman, Nucl. Phys. 52, 221 (1964). 
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in the limit of an infinite number of particles. This is 
done by first converting the algebraic equations for the 
pair energies into an integral equation for the density 
of pair energies. This equation is then solved and 
expressions are given for the energies and occupation 
probabilities of the states. The excitation energies of 
the system are shown to be sums of independent 
quasiparticle energies. However, in contrast to (1.3), 
the quasiparticle energy is zero for the two lowest 
values ofk instead of just the k = 0 level. Correspond­
ing to these two zeros in the quasiparticle energy, 
the occupations of the lowest two single-particle levels 
are finite fractions of the total number of particles. 
Thus, the model exhibits a very special kind of 
generalized Bose condensation of the form discussed 
by Girardeau.9 

2. EIGENSTATES OF THE MODEL 

We consider the eigenstates of n bosons contained 
in a volume V with periodic boundary conditions 
imposed. The single-particle states of the system are 
labeled by their momentum k. In terms of these 
states, the model Hamiltonian may be written as 

(2.1) 

where Ek = k2j2m (we choose units such that Ii = 1), 
g is the interaction strength, and ali and ak are boson 
creation and annihilation operators satisfying the 
usual Bose commutation rules (1.2). In (2.1), all 
sums over k are restricted to the range 0 < k < K, 
where k = Ikl, and, in what follows, we will assume 
that all vectors k lie in this range. The neglected part 
of the Hamiltonian, 

only plays a role if we consider excitations with 
momenta greater than K and, since these states can be 
easily expressed in terms of the states of (2.1), we 
shall not discuss them in this paper. 

I n this section we will develop a set of equations for 
the eigenvalues and eigenstates of (2.1). I n order to 
have a specific system in mind, we have written (2.1) in 
terms of plane-wave single-particle states. However, 
it should be pointed out that this is in no way csscntial 
for the analysis that follows. All wc nccd is some 
set of single-particle statcs k for which -k is uniqucly 
rclatcd to k, e.g., by time revcrsal, and which satisfies 
Ek = E~k' Thus, the analysis is equally valid for one-, 
two-, or three-dimensional systems with any singlc­
particle spectrum that is invariant undcr time revcrsal. 

• M. Girardeau. (,hys. Fluids 5, 1468 (1962); J. Math. l'hys. 6, 
1083 (1965). 

The analysis is also independent of the value of g and 
is therefore valid for both repulsive and attractive 
interactions. Before turning to this analysis, we will 
consider two points. First, we will rewrite (2.1) so as 
to emphasize the arbitrary nature of the single­
particle states k and then we will consider in detail the 
problem of labeling the eigenstates of (2.1). 

It will turn out that the discrete nature of the single­
particle spectrum will play an important rofe in the 
equations that we are about to derive and this remains 
true even in the infinite volume limit. We therefore 
order the possible values that Ek can take on with the 
integers as EO, El"" ,Em with E! < E!+1' We also 
define the degeneracy of the lth level, O!, as being the 
number of different values of k for which €k = E!. It 
is then useful to perform the sums in (2.1) over the 
states in each degenerate level and write it as 

where 

and 

ft! = Lkatak, 
(Ek=EI) 

Ai = ~kata:::k' 
(Ek=Ez) 

A! = Lka_kak' 

(Ek=EI) 

(2.2) 

(2.3) 

(2.4) 

The sums in (2.3) and (2.4) may contain as few as one 
or two terms if the single-particle state only has time­
reversal degeneracy, or they may contain many terms 
if there are other degeneracies. In general, the number 
of terms is 0 1 , In the form (2.2), the single-particle 
spectrum €I and the associated degeneracies Q! are a 
set of arbitrary numbers and the Hamiltonian is 
manifestly independent of the particular single­
particle states. For future reference, it will be useful 
to complete this transcription of the Hamiltonian by 
listing the commutation rules of the operators defined 
in (2.3) and (2.4). These follow from the Bose com­
mutation rules (1.2) of the operators at and ak , and 
are given by 

and 
(2.5) 

[AI' An = 2hll'(QI + 2ft t). (2.6) 

I n labeling the II-particle states of this Hamiltonian, 
it is useful to introduce the concept of an unpaired 
particle. From (1.6) and (1.7), it is clear that the 
interaction is only elTcctive between two particles with 
zero total linear momentum and which are coupled to 
zero angular momentum. Therefore, a particle that is 
not coupled to zero linear momentum and zero angular 
momentum with any other particle will not interact. 
We will call such a particle an unpaired particle. To be 
more explicit, let us first define a 'V-particle state with 
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all the particles unpaired. This state is defined by the 
equations 

Ii lIP.) = v lIP.), 

Al lIP.) = 0, for alII, (2.7) 

where Ii is the total number of particles operator 

It = ~Inl' (2.8) 

These equations, of course, do not uniquely determine 
the state lIP.). However, since the unpaired particles in 
this model do not interact, we may further require that 
the state 197.) be an eigenstate of the operators nl' i.e., 

lt l lIP.) = '1'1 lIP'). (2.9) 

Here VI is the number of unpaired particles occupying 
level I. Equations (2.7) and (2.9) still do not determine 
197.) uniquely. However, as we shall see, the energies of 
the eigenstates of (2.2) will only depend upon the 
numbers VI and are therefore degenerate with respect 
to the quantum numbers of lIP.) that we have not 
defined. The possible values of the quantum numbers 
VI are 

VI = 0, 1, for .Dl = 1, 

= 0, 1, ... ,n, for .DI > 1, (2.10) 

where n is the total number of particles in the state. 
Here, the first case is appropriate for a k = 0 level and 
the second case for a k :F {) level of a system. Note 
that with (2.7) and (2.9) we have 

V = ~Vl 
and 

(2.11) 

Such states may be constructed.by putting particles in 
states k but not in states -k, e.g., for V = 2, 

IIP2) = (at? 10), 

where 10) is the vacuum state, or they may be made up 
of pairs of particles with nonzero total angular 
momentum, e.g., 

1(72) = ~k(X(k)ata~k 10), 
(~k=~z) 

where ~k(X(k) = O. An arbitrary state that has n = 
2N + v particles and v unpaired particles may now be 
constructed as a linear combination of the states 

At ... AiR 197.)· (2.12) 

We will refer to such states as having N pairs of par­
ticles and v unpaired particles. The quantum numbers 
VI are good quantum numbers of such states and are 
therefore good quantum numbers of the eigenstates of 
H. 

In order to distinguish between those states of n 
bosons that have the same quantum numbers VI' we 

must introduce labels that distinguish the various 
states formed from those of (2.12). We do this by 
introducing the set of labels 110 '" 1.\'0 defined as 
follows: if 11p) is the eigenstate of H that is being 
labeled, then the set 110 ••• Iso is defined by 

lim 11p) = A~ • ... At .• lIT',.), (2.13) 
g-O 

i.e., 110 ,' '/."0 are the levels that are occupied by 
paired bosons in the limit of zero interaction strength. 
Note that many of the indices 'aO may be equal. Thus, 
the ground state of an even number of particles is 
labeled by the quantum numbers 

laO = 0, '1'1 = 0, IX = 1 ... n12, 

and that of an odd number of particles by 

laO = 0, '1'0 = 1, "'1 = 0, I > 0, 
IX = 1 ... (n - 1)/2. 

With these notational preliminaries over, we will 
now show that an n-boson eigenstate of H, with N 
pairs of bosons and v unpaired bosons, can be written 
as 

(2.14) 

where we have disregarded a normalization constant. 
The pair-creation operators B: in (2.14) are given by 

B~ = 2 ua(l)Ai, IX = 1 ... N, (2.15) 
I 

and in proving (2.14) we will determine the form of the 
amplitudes Ua as well as the energy of the state. In 
order to demonstrate that (2.14) is an eigenstate of H, 
we calculate 

H 11p) = HBt· .. Bt 197.) 

= (.~ VIEI) 11p) + [H, Bt· .. BtJ lIP.), (2.16) 

where we have used (2.11). We now do some com­
mutator algebra on the second term of (2.16) to write 
it as 

[H, Bt· .. BtJ 197.) 

= {f (II B~) [H, B~J 
a=l y*a 

+ 1 i, ( II B~) [[H, B~J, B~]} lIP.), (2.17) 
2 a,p=l y*a,p 

where the prime on the sum on IX and {3 indicates that 
it is over those values of IX and (3 satisfying IX :F p. 
The commutators in (2.17) may be evaluated using 
(2.5), (2.6), and (2.15) with the results 

[H, B~) = 22EIUa(l)A; + g 2 Aiua(l')(.D1' + 2111,) 
I H' 

(2.18) 
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and 

[fH, B~], B~] = 4g! Aiuo(l')up(I')A;. (2.19) 
/I' 

When these results are substituted into (2.16), we 
obtain a Schrodinger equation for the amplitude of 
the state lIP). However, before doing so, we will discuss 
the form of the double commutator (2.19), 

In order to proceed further, we assume that the 
product uoup in the double commutator (2.19) can be 
written as 

(2.20) 

for all 1 and all ex =;i: f3. This is to be regarded as a set 
of equations that must be satisfied by the Ua and it 
introduces the as yet undetermined matrix M. This 
assumption is made with the advantage of hindsight 
and we will show that it can be exactly satisfied. The 
skeptical reader may wish to treat (2.20) as an approx­
imation and place a remainder term on its right-hand 
side. The matrix M would then be chosen so as to 
minimize the magnitude of this remainder. He would 
then proceed as we do and derive equations for the Ua 

that are identical to ours. However, these equations 
would be valid in the approximation in which the 
remainder term introduced into (2.20) is neglected. 
The solutions to these equations will be the same as 
ours given below and, as we will show, these solutions 
satisfy (2.20) exactly. Therefore, the remainder term 
is zero and the approximation is exact. We will 
therefore proceed under the assumption that (2.20) is 
exactly satisfied and we shall demonstrate that this is 
so after we determine the form of the amplitudes Ua • 

Using (2.20), the double commutator (2.19) becomes 

[[H, Bn B;J = 4g (.t: Ai)(MapB~ + MpaB;). (2.21) 

If we write the energy of the state lIP) as 
.v 

E=!VIEI+!Ea, 
t a=1 

(2.22) 

where the pair energies Ea are yet to be determined, 
then, substituting (2.18) and (2.21) into (2.17) and the 
result into (2.16), we obtain 

y 

(H - E) lIP) = a~ (]I B~) .t: Ai[ (2EI - Ea)ua(l) 

+ g! (01, + 2nl ,)ua(l') + 4g!' MpaJ Iq). 
" p 

(2.23) 

Since the operators ill' in this expression operate on the 
state IIPv), they may be replaced by the quantum 
numbers VI' of that state using (2.9). The expression 
(2.23) will now vanish if the Ua satisfy the system of 

equations 

(2EI - Ea)u.(I) + g ! (01' + 2VI')UaC/') 
I' 

+ 4g!' Mpa = 0, ex = 1 ... N. (2.24) 
p 

Equations (2.20) and (2.24) provide a complete set of 
equations for the amplitudes u.(l), the matrix M, and 
the pair energies Ea' 

The solution of Eqs. (2.20) and (2.24) starts with 
the observation that only the first term of (2.24) 
depends upon I. We can therefore immediately solve 
for the 1 dependence of the amplitudes Ua which is 
given by 

-gCa uit) = , (2.2S) 
2EI - Ea 

where Co is given by 

Ca = ! (nl + 2VI)Ua(l) + 4 !' Mp.. (2.26) 
I p 

Furthermore, using (2.2S) in the product uau/l' we have 

g2C,CfJ 

u.(l)u fJ(/) = (2EI _ E.)(2EI - Ep) 

g2C,CfJ [1 1 ] (2.27) 
E. - EfJ 2EI - Ea - 2EI - EfJ ' 

where we have assumed Ea =;i: Ep in order to perform 
the partial-fraction expansion. The validity of this 
assumption will be discussed in the following para­
graph, where we will show that it is always satisfied. 
Comparing (2.20), (2.25), and (2.27), we have 

M - -gC. (228) 
p. - Ep - Ea . 

for the matrix M, and Eq. (2.20) is exactly satisfied. 
Substituting (2.2S) and (2.28) into (2.26), we then 
have 

C.= _g[!OI+2VI + 4 !, 1 Jc., 
, 2EI - E. p EfJ - E. 

(J. = 1··· N, 

which, for nonvanishing C" yields the set of equations 

1 + 4g !' 1 + g ! n, + 2'1'/ = 0, 
p EfJ - E. / 2E/ - E. 

(J. = 1 ••• N, (2.29) 

for the pair energies E,. Since the coefficients Ca are 
arbitrary and the over-all factor of rr,( -gCa) can be 
absorbed in the normalization coefficient of the state, 
we may write the u. as 

11.(1) = t (2.30) 
2E/ - E. 

Therefore, Eqs. (2.14), (2.1S), (2.30), (2.29), and (2.22) 
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are the equations for the eigenstates of H. There are 
two aspects of these equations that need further 
discussion. The first is the validity of the assumption 
E" ::;f: Ep used in the derivation of (2.29) and the 
second is the question of whether all the solutions of 
(2.29) are in one-to-one correspondence with all the 
states of H. We now turn to a discussion of these two 
points. 

The question of the validity of the assumption 
E" ::;f: Ep may be investigated using the same methods 
that were used in discussing the same point in the 
corresponding many-fermion problem. We will briefly 
outline the application of these methods to this 
many-boson problem. The question to be answered 
is under what conditions is the assumption E" ::;f: Ep 
for all oc ::;f: {3 incompatible with the E" being roots of 
(2.29). In the corresponding many-fermion problem, 
whose equations differ from (2.29) by presence of 
some minus signs instead of plus signs, we found that 
these two requirements on the E" are indeed incom­
patible for a finite set of isolated values of g. For the 
boson problem, we will show that the signs in (2.29) 
are such that the two requirements on the Ell. are 
always compatible. Clearly, in the limit g -+ 0, the 
conditions EIT. ::;f: Ep are not satisfied for any state that 
has more than one pair in a particular single-particle 
level in this limit. In particular, for the ground state, 
all the EIT. are 2Eo in the limit g -+ 0. However, one can 
show that 

lim! (EIT. - Ep) ::;f: 0, 
g-+O g 

(2.31) 

and this is sufficient for the validity of (2.27). We 
defer the proof of (2.31) until Sec. 4, where we treat a 
one-level kinetic-energy model as an example of our 
equations. There we show that if the sum on I in 
(2.29) is restricted to one term, then its roots are g 
times the zeros of certain Laguerre polynomials. 
Since the zeros are distinct, (2.31) is satisfied for this 
system. However, in the limit g -+ 0, the single­
particle level spacing becomes very large compared 
to the interaction strength and each degenerate set of 
single-particle states can be treated as an isolated 
one-level kinetic-energy system. The result (2.31) is 
therefore proven for an arbitrary system. Furthermore, 
from the known properties of the zeros of the Laguerre 
polynomials, we know that the pair energies are all 
real in this limit. We have thus shown that our 
assumption is satisfied for an arbitrary state and 
system in a neighborhood about g = 0. 

In order to study the validity of the assumption for 
g ::;f: 0, we first consider the conditions under which 
all N pair energies may become equal. For conven-

ience, we adjust the energy scale so that the value that 
the pair energies have when they are equal is zero. 
We therefore seek conditions that must be satisfied if 
Eqs. (2.29) are to have the solution EIT. = 0, oc = 
1 ... N, for g ::;f: 0. Since we have shown that Eqs. 
(2.30) have solutions that satisfy E" ::;f: Ep for small 
g, we can think of the violation of this condition 
occurring at some value of g which we call go. We 
therefore have the situation that is described by 

EIT. ::;f: Ep, for Igl < Igol, 

EIT. = 0, for g = go and oc = 1 . "N. (2.32) 

We now show that this is impossible by considering 
(2.29) in the limitg -+ go with Igl < Igol. Ifwe multiply 
Eqs. (2.29) by E" and then sum over oc, we have 

IE" - 2gN(N - 1) + g 2 i EiOz + 2"z) = 0, 
,,=1 1 11.=1 2Ez - EIT. 

(2.33) 

where El is now the energy of the single-particle level 
I after we have readjusted the zero of energy as 
described above. We now take the limit of (2.33) as 
g -+ go' This limit is given by 

goN(w + 2N - 2) = 0, (2.34) 

where w = ° if El ::;f: ° for alII and w = 0 10 + 21'10 if 
Elo = ° for some value 10 of I. However, since w ~ 0, 
(2.34) cannot be satisfied for go ::;f: 0. Thus, we have 
shown that Eqs. (2.29) do not have a solution with all 
the EIT. equal to each other. 

The above argument may be easily generalized to 
the cases in which fewer than N pair energies become 
equal. Thus, we have shown that the assumption 
E" ::;f: Ep is implied by Eqs. (2.29) and it is not an 
additional set of conditions that the roots must satisfy. 
Furthermore, since we have shown that the roots are 
real and distinct for small g and that no two become 
equal, we have shown that the pair energies are real 
and distinct for all values of g ::;f: 0. This is in contrast 
to the corresponding many-fermion problem,10 in 
which there are isolated values of g, where the condi­
tions EIT. ::;f: Ep are violated. The fact that the pair 
energies are real for all values of g in the boson 
problem makes the analysis of their properties much 
simpler than the analysis of the pair energies that 
describe the eigenstates of the fermion pairing 
Hamiltonian. 

In the light of the preceding discussion on the 
conditions Ell. ::;f: Ep , it is now easy to set up a one-to­
one correspondence between the states of the inter­
acting system, i.e., the roots of (2.29), and the states 

10 R. W. Richardson, J. Math. Phys. 6, 1034 (1965). 
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of the noninteracting system and therefore show that 
we have equations for all the states of the system. 
We have indicated that the states of the paired 
particles are labeled by the quantum numbers 110 .•• 
fNO ' which indicate the levels that are occupied by 
pairs in the limit g ->- O. Transcribing this label into a 
property of pair energies, we have 

lim E" = 2Elao ' 0( = 1··· N, 
g-O 

(2.35) 

and from our discussion of the one-level kinetic energy 
model we have indicated that such a limit exists for all 
possible choices of flo' •• INO ' We can therefore single 
out the roots ofEqs. (2.29) which correspond to a state 
with any set of quantum numbers 110 .•. 11'1'0' This 
concludes the proof of completeness. However, 
knowing that the pair energies E" are real and distinct 
for all values of g, we can rewrite (2.35) in the more 
practical form 

2Elao < E", < 2El«0+1, for g > 0 and 0( = 1 ... N, 

(2.36) 
and 

2E/,,0-1 < E" < 2E lao ' for g < 0 and 0( = l' .. N, 

(2.37) 

where in this last expression we have defined Cl = 
- (f). Thus, for a given value of g, a state is labeled 
by the way the roots E"are distributed between the 
values of 2E l . The equivalence of these last two 
expressions with (2.35) follows from two properties of 
the pair energies. First, from the one-level kinetic­
energy model mentioned above and treated in Sec. 4, 
we have (aE(Jag)g~O > O. And second, since the pair 
energies are real and distim;:t, the only time when 
E", = 2E l , for some value of I, is when g = O. There­
fore, for a repulsive (attractive) interaction, the pair 
energies are increasing (decreasing) functions of Igi 
at g = 0 and for larger values of Igl are bounded by 
the values of 2EI as given in (2.36) and (2.37). 

3. OCCUPATION PROBABILITIES 

The occupation probabilities for the single-particle 
levels 

(3.1) 

may be calculated using a general theorem of quantum 
mechanics that is applicable to Hamiltonians that 
depend linearly on a parameter. In this case, the 
parameter is the single-particle energy El and the 
theorem states that 

(3.2) 

This may be easily proven using the fact that the 

expectation value of H in one of its eigcllstates III') is 
stationary with respect to variations of that state. 
Using the expression (2.22) for the energy in (3.2). we 
have 

.\' aE 
III = VI + I-'" (3.3) 

",""laE, 

for the occupation probability. 
Equations for the derivatives of the pair energies 

that appear in (3.3) may be obtained by differentiating 
(2.29) with respect to E l • This yields the set of equations 

[ e", + 4 I' I 9JaE", _ 4 I' 1 2 aEp 
p (E. - Ep)" aEI p (Ea - Ep) a€, 

2(nl + 2'1'/) 
= , 0( = I ... N. (3.4) 

(2€1 - E",)2 
where 

e = I (n l + 2'1'1) (3.5) 
IX I (2€1 _ E",)2 . 

Solving (3.4) for aE"jaEI and substituting the result 
into (3.3), after rearranging the terms we get 

II n l + 2'1'/. 
n l = VI + 2I 2 D"" (3.6) 

",~l (2EI - E~) 

where the D" satisfy the system of equations 

[e + 4 ~, 1 J D - 4 ~I 1 D = I '" t (E" - Ep)2 IX t (E" _ Ep)2 p , 

0( = 1 ... N. (3.7) 

We may readily verify that the total number of 
particles in the state is n = V + 2N. For, summing 
(3.6) on f, we have 

N 

n = I nl = v + 2IC"D"" 
! ",=1 

and summing (3.7) on 0(, we have 

Ie",D" = N, 
",=1 

which proves our point. Equations (3.6) and (3.7) pro­
vide a starting point for the study of the dependence 
of n! on the interaction strength g and the single­
particle spectrum €l' 

4. TWO EXAMPLES 

In order to exhibit the structure of our equations, 
we will discuss two simple models in some detail. The 
first model is a one-level kinetic-energy model in 
which the index I takes on the single value I = 0 and 
we adjust the energy scale so that Eo = O. This model 
is used to prove (2.31) and thereby fill in the remaining 
hole in the proofs of Sec. 2. Physically, this model 
would approximate the strong-coupling limit of an 
attractive interaction in which the splitting of the 
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single-particle levels €I is ignored or it can be used to 
obtain the first-order perturbation theory expressions 
for the E~ as mentioned in Sec. 2. The second model 
has a two-level kinetic energy with I taking on the two 
values 1= ° or 1 and €o = 0 and €l = 1 in the 
appropriate units. The equations for this model are 
solved in the limit of a strong repulsive interaction 
and they show some interesting features which, as we 
will show in Sec. 5, are true of systems with more 
realistic single-particle spectra. 

A. One-Level Kinetic Energy Model 

If the sum over I in (2.29) contains just the single 
term with I = 0, then we have the equations 

1 (IJ 

1 + 4~'-- = -, (J. = 1··· N, (4.1) 
p £p - £1]. £1]. 

where we have set €o = 0 and chosen the units of 
energy so that g = 1. In this expression, we have set 
()) = 0 + 2v, where we have dropped the subscript 
1= 0, and N = Hn - v). We will obtain an explicit 
expression for the energies of the states of this system 
and we will show that the pair energies are propor­
tional to the zeros of certain Laguerre polynomials. 
The interest in this model is not in the energies and 
eigenstates of the Hamiltonian since they can be 
calculated by much simpler means. Rather, the interest 
lies in the structure of Eqs. (4.1) and, in particular, in 
the proof of (2.31), i.e., the proof that the pair 
energies are distinct in the limit g -+ O. Nevertheless, 
as an introduction to (4.1), we will first derive the 
energies of the states of the model before we consider 
the structure of the equations. 

The energy of a state of this model is the sum of the 
pair energies and we may obtain an expression for it 
by multiplying Eqs. (4.1) by £1]. and then summing on 
(1... Using the result 

i' £1]. = - ~N(N - I), (4.2) 
l].,fJ~l £p - £1]. 

we then have 
£ = N«(I) + 2N - 2) 

or, labeling the states with II and v, 

£(nv) = Hn - v)(n + 12 + v - 2). (4.3) 

Note that the ground-state energy is proportional to 
n2 in units of g. This indicates a condensation for an 
attractive interaction that is independent of the 
volume of the system [see (l.6)]. If we assume that 
g < 0, then the state with v = 0(1) is the ground 
state of an even (odd) number of particles and the 
excitation energies are given by 

£(n, v) - £(n, 0) = -:HU + v - 2)v, 

for n and v even, and 

£(11, v) - Ben, 1) = -teO + v - 1)(v - 1), 

for n and v odd. Recall that these excitation energies 
are positive, since they are in units of g which is 
negative. For g > 0, the state with v = n is the ground 
state. However, this is unrealistic, since Eq. (4.1) will 
only represent the strong coupling limit of a system 
with a normal single-particle spectrum if the pair 
energies are proportional to g as Igl -+ 00, and this is 
not possible due to the bounding of the pair energies 
given in Eq. (2.35). 

In order to study the structure of Eqs. (4.1), we 
construct a polynomial whose roots are the N pair 
energies £1].' This is done by first considering the 
symmetric functions of the reciprocals of the pair 
energies defined by 

Sm = If 1 ,m = 1 ... N, (4.4) 
1].1' . ·.m £1].1 ••• E.

rn 

where the primed sum is over all values of (1..1 ••• (J.m' 

each one ranging from 1 to N, such that no two oc's 
are equal. In terms of these functions, the pair 
energies are the N roots of the single equation 

N 1 (l)N-m ( 1) ,v N 1 L -. Sm - - = - - I -, Sm( _x)m = 0, 
m~O m . x X m~O m . 

(4.5) 

where So=- L Using Eq. (4.1), we can obtain a 
recursion relation between Sm and Sm-l, which, when 
solved, shows that the left-hand side of (4.5) is 
proportional to the Laguerre polynomial L~)(x/2), 

with a =~(I) - l. The study of Eqs. (4.1) is thus 
reduced to the study of the zeros of the Laguerre 
polynomials, the properties of which are well known 
to mathematicians.u We now turn to the construction 
of the symmetric functions Sill from Eqs. (4.1). 

We simplify our notation for Slit by letting the 
index i stand for (J.i in sums such as (4.4). With this 
shorthand, (4.4) becomes 

(4.6) 

The first symmetric function Sl may be easily evaluated 
by summing (4.1) on (1.., with the result that 

N 
Sj =-. 

(t) 

(4.7) 

11 G. Szcgo, Orthogonal Polynomials (American Mathematical 
Society, New York. \939); Bateman Manuscript Project, Higher 
Transcendental Fllnctivns (McGraw-Hill Book Co., New York, 
1953). 
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In order to evaluate Sm, for m > 1, we write (4.6) as 

s = (~I 1 ) (~_I ) 
Tn I ... tn-I E 1 ••• E",,_1 mE", 

- (m - I) L' 1 -2 
1"'m-l EI '" E"._2£"._1 

(4.8) 

The second term in (4.8) may be evaluated by using 
(4.1) for one of the factors I/E",_1 in the summand, 
i.e., 

I' 1 2 
1'" m-I El ... Em- 2Em- 1 

= l L' I. (I + 4 L 1 ) 
(I) \ ••• m-l EI ... E",_1 III*/It-I Em - E",_1 

(4.9) 

The second term in this expression may be evaluated 
by separating it into two parts. The first part includes 
those terms in the double sum for which the index m, 
i.e., oc"., does not equal anyone of the indices 
1 ... m - 1 and the second part is made up of the 
remaining terms in which m equals one of the indices 
1 ... m - 2. With this separation, we have 

= L' 1 
1··· In EI ... Em_I(Em - Em-I) 

+ (m - 2) I' 1 
1··· m-l EI ... Em- 2£m-I(Em- 2 - Em-I) 

(4.10) 

The second term in (4.10) vanishes because the sum­
mand is antisymmetric in the indices m - 2 and 
m - 1. The summand in the first term of (4.10) can 
be symmetrized in the summation indices m - 1 and 
m, yielding 

I' 1 
1· .. m EI ... Em_ICEm - Em-I) 

= 1. L' 1 (_1 __ 1 ) 
21' .. m EI ... Em_2(Em - Em_I) Em- I Em 

= ISm' (4.11) 

Substituting (4.9), (4.10), and (4.11) into (4.8), we 

have 

S = (,)SI - m + 1 S 
'" 2 2 ",-1 w+ m-

N- m + 1 
~-~-'-- S tn-I, 
(I) + 2m - 2 

(4.12) 

where we have used (4.7) for SI' Iterating (4.12), we 
then obtain 

s. ~ H)'((~~" (4.13) 

where (a)", is defined in terms of r functions as 

(a) = rea + m) = a(a + 1) ... (a + m - 1). 
'" rea) 

(4.14) 

We therefore have obtained an explicit expression for 
the symmetric functions of the reciprocals of the pair 
energies for this model. 

Substituting (4.13) into (4.5), we obtain the poly­
nomial equation for the pair energies, 

± (-N)m(~)m =IFI(-N;9.!.;~) =0, (4.15) 
"'~O m!(~)m 2 2 2 

where we have written the sum as a confluent hyper­
geometric function. However, the confluent hyper­
geometric function in (4.15) is proportional to the 
Laguerre polynomial D;P(x/2), with a = (wI2) - l. 
Thus, the pair energies are proportional to the zeros 
of LY,!) and as such they satisfy two conditionsll that 
are of interest in the present context. The first is that 
the pair energies are real, positive, and distinct. This 
proves Eq. (2.31) and fills in the gap in our proof that 
the pair energies are real and distinct for an arbitrary 
single-particle spectrum and for all values of g. The 
second condition establishes upper and lower bounds 
on the values of the pair energies. For if the pair 
energies are ordered so that Ea < Ea.fl , for oc = 
1 ... N - 1, then they are bounded by 

__ 2J~';~ E 40c + W < a < 
4N + w 4N + w 

X {4oc + w + [(4oc + (1)2 + 1 - «(I) _ 2)2]t}, 

(4.16) 

where jl ... h· are the first N positive zeros of the 
Bessel function J!W_I(X). For large 0(, we have j« c:::: 
(7TOC)2, and (4.16) becomes 

27T2
OC

2 < E 320(2 a< , oc»l. 
4N + (I) 4N + (I) 

( 4.17) 
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In the particular cases w = 1 or 3, the zeros of the 
Bessel function J!W-1 are those of the trigonometric 
functions and (4.16) becomes 

21T2(C( - t)2 2(4C( + 1)2 < E < --'--'---'-
4N + 1 " 4N + 1 ' 

(4.18) 

for w = 1, and 

(4.19) 

for w = 3. These two special cases are important 
since they correspond to an even or an odd number of 
particles in a nondegenerate level such as the k = 0 
level. Equations (4.19) and (4.20) thus give bounds on 
the first-order perturbation theory expressions for the 
pair energies, in units of g, for the ground state of an 
even or odd number of bosons. They also indicate 
that this perturbation theory result is accurate as long 
as 2N !gl, the upper bound on the largest pair energy 
JEmJ, IS small compared to twice the single-particle 
level spacing, 2( E1 - EO)' 

B. Two-Level Kinetic Energy Model 

Another special case of Eqs. (2.29) that can be 
redu~ed. to the study of the zeros of a classical poly­
nomlalls the strong repulsive-interaction limit of the 
idealized system, in which the single-particle kinetic 
energy takes on only two values. The polynomials in 
this case will be shown to be the Jacobi polynomials 
and the methods that we will use to show this are 
similar to those used in the preceding subsection on 
the one-level kinetic-energy model. That is, from the 
equation for the pair energies, we will derive a 
recursion relation for the symmetric functions S 
defined in (4.4). When the solution of this recursio~ 
relation is substituted into (4.5), we will show that 
this equation becomes an equation for the zeros of a 
Jacobi polynomial. However, before turning to the 
construction of the functions Sill' we will first derive 
explicit expressions for the energies of the states of 
this system and the occupation probabilities of the 
two single-particle levels in one of these states. We 
will show that the excitation energies of the low-lying 
states have the interesting property that they are 
proportional to lin for large n, where n is the total 
number of particles. The occupation probabilities, 
which are obtained from the energies by using (3.2), 
show that, for large 11, the particles are evenly distrib­
uted over the two levels. In the next section, we will 
show that these features are present in a system with 
an arbitrary single-particle spectrum. 

F or a system with a two-level kinetic energy, Eqs. 

(2.29) may be written as 

.! + 4 2' + OJo + Oh = 0, 
g p Ep - E" 2Eo - E" 2E1 - E" 

C( = 1 ... N, (4.20) 

where Wo = 0 0 + 2yo, OJ 1 = 0 1 + 2y1 , and N = 
-Hn - v). In order to keep the model as physically 
reasonable as possible, we will assume that no = 1 
a.nd t~at 0 1 = 0 is arbitrary, although this specializa­
tlOn IS not at all necessary for the analysis of the 
~odel. "V! e. are going to consider the solutions of (4.20) 
ill the limIt g --+ + 00. These solutions fall into two 
classes. In the first class the states are labeled with the 
quantum numbers /,,0 = 0, 1'.1. = 1 ... N. According to 
(2.36), the pair energies for these states lie in a 
bounded interval and satisfy 2Eo < E" < 2E1 , ex = 
1 ... N, for all positive values of g. For the states in 
the second class, we have /,,0 = 1 for some values of rx. 
The corresponding pair energies lie in the unbounded 
interval 2E1 < E" < 00 and it is easily seen that they 
are p.roportional to g in the limitg --+ 00. We shall only 
conSIder the states of the first class here since they are 
the only states with a finite excitation energy in this 
limit. The states of the second class could be treated 
by a combination of the methods used in this and the 
preceding subsection. However, we shall not do that 
here. Since the pair energies all approach finite limits 
as g --+ 00 for the states that we are considering, we 
may neglect the term 1/g in (4.20). In order further to 
simplify the equations, we introduce the dimensionless 
quantities x" defined by 

E" = 2Eo + (E1 - EO)X", rx = 1 .. , N. (4.21) 

In terms of these new quantities, we have the equations 

42' 1 +~+~=O 
p xp - x" -XIX 2 - x" ' 

rx = 1 ... N, 

(4.22) 

and we seek roots of these equations on the interval 
o < x" < 2. We will first calculate the energies and 
occupation probabilities for the states described by 
(4.22) as functions of n, Yo, and Y1 , after which we will 
show that the x" are given in terms of the zeros of 
certain Jacobi polynomials. 

The energies of the states may be obtained from 
(4.22) using techniques similar to those used in the 
preceding subsection. As a first step, we sum Eqs. 
(4.22) over the index rx. The first term, being antisym­
metric in rx and (3, does not contribute to the sum and 
we therefore have the relation 

s 1 s 1 
(0)02 - + OJ1 2 -- = o. (4.23) 

,,~1 -x" ,,~1 2 - x" 
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For a second relation, we first multiply (4.22) by Xo 

and then sum over the index 'Y.. The contribution of the 
first term of (4.22) was evaluated in (4.2). The contri­
bution of the second term is - NUJo and the contri­
bution of the third term is 

Combining these results and using (4.23), we have 

.Y 1 .Y 1 (lJoI - = (l)II --- = }N(2N + (1)0 + (1)1 - 2). 
,=1 Xo a=12 - x, 

(4.25) 

We obtain a third and final relation by multiplying 
(4.22) by x; and then summing on 'Y.. The contribution 
of the first term of (4.22) to this sum is 

X2 2 2 
4 I' 0 = 2 I' XO - Xp = 4(N - l)x, (4.26) 

a,p xp - Xo o,p xp - Xo 

where we have introduced 
s 

x = Ixo , 
a=1 

(4,27) 

which is the energy of the paired bosons in the units of 
(4.21). The contribution of the second term of (4.22) 
to this sum is - (l)oX and the third term yields 

S x2 
w

1
.L __ 0_ 

0=12 - Xo 

= (l)1~ (-Xo - 2 + _2_) 
0=1 2 - Xo 

= -(I)IX - 2Nwl + N(2N + (1)0 + WI - 2), (4.28) 

where we have used (4.25). Combining these results 
and solving for x, we have 

2N(2N + Wo - 2) 
x= 

4N + (1)0 + WI - 4 
(4.29) 

for the energy of the paired bosons or, returning to 
the original units of energy, we have 

N 2N(2N + Wo - 2) .L£o = 2NEo + (El - EO)' (4,30) 
0=1 4N + Wo + WI - 4 

Adding to this the energy of the unpaired bosons, 
VOEo + V1El' and expressing the result in terms of n, 
Vo, and VI' we then have 

£(n, Vo' VI) = nEo 

+ [ + (n - Vo - Vl)(n + Vo - VI - 1)J( ) 
~ ~-~ 

2n + Q - 3 
( 4.31) 

for the energies of the states of the system, where we 
have used Q o = 1 and Dl = Q. However, since 
Do = 1, Vo can only take on the values ° or 1 [see 
(2.10)] and this expression is independent of Vo ' 

Therefore, we may write the energies of these states as 

£(n, VI) == £(n, Vo, VI) = nEo 

+ [ + 
(n - vl)(n - VI - 1)J( _ ) 

VI El EO , 
2n + Q - 3 

(4.32) 

for VI = 0, 1, ... ,n. If we denote the excitation 
energy of the state IlVI by e(n, VI)' 

then we have 

( ) 
(Q + VI - 2)Vl 

en,~ = , 
2n + Q - 3 

VI = 1', .. n, (4.33) 

in units of E1 - EO' Thus, for fixed n and large n, the 
excitation energies are proportional to l/n and there 
are roughly (2n)t states with excitation energies less 
than that of the first excited state of the noninteracting 
system. In the next section we will see that these 
properties are characteristic of the interaction and are 
independent of the single-particle spectrum. 

The occupation probabilities of the two levels may 
be calculated using (3.2). Differentiating (4.32) with 
respect to EO and E1, we then have 

no = 
(n - vl)(n + Q + VI - 2) 

2n + Q - 3 
(4.34) 

and 

( 4.35) 

for the occupations of the two levels. Note that, for 
the low-lying levels of a large number of particles, 
both these occupations are of the order n/2. In the 
next section, we will show that this feature of the 
states is also independent of the single-particle 
spectrum. 

A polynomial equation for the pair energies may be 
derived using the same methods that were used for the 
one-level kinetic-energy model. We first derive and 
solve a recursion relation for the symmetric functions 
Sm of (4.6) and then substitute the results into (4.5). 
The resulting equation indicates that the pair energies 
can be given in terms of the zeros of certain Jacobi 
polynomials which, for large N, can be given explicitly 
from the asymptotic forms of these polynomials. 

We can initiate a recursion relation for Sl with Sl 
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which, using (4.25), is given by 

Sl = N(2N + Wo + W l - 2) , 
2wo 

(4.36) 

where we are using the dimensionless pair energies 
xa rather than the Ea. This recursion relation is 
obtained by using (4.22) to evaluate the second term 
in (4.8). For if we solve (4.22) for t/X",_l [recall that 
we use the notation of (4.6), where m - 1 stands for 
()(m-I] and substitute the result for one of the two 
factors in the second term of (4.8), we have 

I' 
Wo 1· .. m-I Xl .•• X m - I 

x [2 _w~m_I + 4m*~_1 X", _1 xm-IJ (4.37) 

The first term of this expression can be evaluated 
by performing a partial-fraction expansion of the 
factor 1/xm_ I (2 - xm- I ) with the result 

= ~ I' 1 (_1 + 1 ) 
2wo l' .. m-I Xl ... X m- 2 X m- 1 2 - X m - I 

=~S +~ " 1 m-I £., 
2wo 2wO 1· .. m-l Xl •.• xm_2(2 - X m _ I ) 

(4.38) 

Next, Eqs. (4.22) are solved for w i /(2 - x m- I ) and the 
result substituted into the second term of (4.38), giving 

~ I' 1 
2wo 1· .. m-I Xl ... x m_ 2(2 - X m_ I ) 

(4.39) 

We next evaluate the second term in this expression. 
This may be done by first splitting the sum into two 
parts-the first part coming from those terms in the 
sum in which the index m equals one of the indices 
1 ... m - 2 and the second part coming from the 
remaining terms in the sum in which the indices 
1 ... m are all distinct. That is, we may write the 

second term of (4.39) as 

2 I' I 1 
(Uo 1··· ill-I m*m-l Xl ••• Xm_:!(X m - .\"m-1) 

2(111 - 2) I' t 
(00 1··· m-I Xl' .• X m_ 2(X m _ 2 - -"'m-I) 

+ 2 I' t (4.40) 
(°0 1", In Xl •.• Xm_:!(X m - X m- 1) 

The second sum of (4.40) vanishes due to the anti­
symmetrx.ofthe summand in the indices 11/ and III - t. 
The first sum may be evaluated in the same manner as 
(4.11) with the result 

-em - 2) 
= 5 m- 1 • (4.41) 

Wo 

Substitution of this result into (4.39) and that into 
(4.38) yields 

WI I' 1 
Wo 1· .. m-I Xl ••• xm _ I (2 - X m- 1) 

Wo + WI + 2m - 4 

2 
Sm-l, (4.42) 

Wo 

which completes the evaluation of the first term of 
(4.37). The second term of (4.37) has been given in 
(4.11). Combining these two terms, we then have for 
(4.37) 

I' 2 
1 ... m-l Xl •.• X m - 2X m_l 

Wo + WI + 2m - 4 S 2 
m-I + -Sm' 

2wo Wo 
(4.43) 

and, substituting this into (4.8), we have 

_ 2WOSI - (m - 1)(wo + WI + 2m - 4) S 
Sm - m-I 

2wo(Wo + 2m - 2) 

_ (N - m + 1)(2N + Wo + WI + 2m - 4) S 
- 2(wo + 2m - 2) m-I, 

(4.44) 

where we have used (4.36) for SI' The solution of 
(4.44) is 

(4.45) 

in the notation of (4.14). Substituting this result into 
(4.5), we then have the pair energies given as the roots 
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of the equation 

( Wn + W 1 I) 
.\' (-N)",\N + 2 - m(X'''' 

1:, m t~'). 2) 

= 2F 1 - N, N + - I; - ; - = 0, 4.4 
( 

Wo + WI Wo X) (6) 
2 2 2 

where we have written it in terms of a hypergeometric 
function. Equation (4.54) can be rewritten in terms 
of a Jacobi Polynomial asH 

where 
a = !wo - 1 = 1'0 - t = ±~-

and 

b = iWl - 1 = !O + 1'1 - I 

(4.47) 

( 4.48) 

= in - 1, ... , lo' + n - 1. (4.49) 

Equation (4.47) is the polynomial equation for the 
pair energies that we set out to derive. 

Equation (4.47) takes on a particularly simple form ll 

if we artificially set b = ± ~ and, since the roots are 
monotonic functions of b, this sets bounds on the 
roots for b = 0, i.e., !! = 2 and 1'1 = O. If we write 
the roots of (4.47) as xAa, b) and order them so that 
x .. < x~ iI' then these bounds are given by 

2et. - 1 21X - 1 (1 0) < 1 - cos 17 < X. -~, 
2N + I 

- cos --- 17 

2N 
and 

_ cos _IX_. - 1T < x.(.\, 0) < 
N + I -

21X 
- cos--- 17, 

2N + 1 
(4.50) 

for IX = 1 •.. N. In the limit of large N, we then have 
the pair energies given by 

lt1. - I .\. = I - cos --- 17. 
2N 

(4.5 r) 

The spacing between the pair energies is then given by 

17 • 27. - I 
x.' 1 - x. = - sin --- rr, 

. N 2N 
(4.52) 

which is equal to the reciprocal of the density of the 
roots. If we approximate this distribution by a con­
tinuous one with the same dcnsity, wc obtain 

N 
~\(x) = '" 0 < x < 2, (4.53) 

. rr[\ - (I - .'()~r 

for the density of roots. In the next section, we will 
show that similar results may be obtained for an 
arbitrary single-particle spectrum. 

For other values of b, we may use an asymptotic 
expansion of the Jacobi polynomial to obtain the 
pair energies in the limit of large N. From such an 
expansion,u we obtain the result 

( b) I ( 
40: + 2a + t ) + 0 ( 1 ) x a = - cos 17 - , 

~ , 4N + 2a + 2b + 2 N 

(4.54) 

which is valid for those EIZ that lie in the fixed interval 
1£ < E" < 2 - E. Comparing this with (4.51), we see 
that the qualitative features of the example with 
b = 0 are independent of b. 

5. INFINITE SYSTEM WITH A REPULSIVE 
INTERACTION 

We will now solve Eqs. (2.29) in the limit N ->- 00 

for a repulsive interaction in a system with an arbi­
trary single-particle spectrum. This is done for an 
arbitrary value of the volume so that the solution can 
be evaluated in the thermodynamic limit in which N, 
V ~ 00 in such a way that the density Nj V is fixed. 
The energies of the states are obtained to order liN 
and it is shown that, to this order, the excitations 
behave like a gas of non interacting quasiparticles. 
However, as is suggested by the results of the pre­
ceding section, the quasiparticle energy associated with 
the first excited single-particle level is zero to this 
order and the ground state is barely stable. Corre­
sponding to this zero in the quasiparticle spectrum, 
the occupations of the lowest two single-particle levels 
are of order N. Thus, the model exhibits a very 
special type of generalized Bose condensation 9 in 
which the particles condense into two single-particle 
levels. We will first consider the states of the system 
with the quantum numbers i.o = 0, i.e., those states 
which correspond to the states of the noninteracting 
system in which all the paired bosons occupy the 
1= 0 level. These states can be characterized as having 
roots Ea of Eqs. (2.29) satisfying 21£0 < Ea < 21£1' We 
will then consider states with a finite number of pairs 
excited out of the / = 0 slate. 

Since the roofs of (2.29) will be located between 
values of 21£1 for a repulsive interaction [see (2.35)], 
it will never be possible to replace sums over the 
single-particle states by integrals. Therefore, the 
analysis of the equations is facilitated by choosing a 
volume-dependent unit of energy that keeps El fixed 
as the volume varies. We therefore choose the energy 
Et - Eo as our unit of energy. For plane-wave states, 
this unit is J(2rr/L)2, where V = 1.3 and we have set 
the mass of the bosons equal to one. We also readjust 
the zero of energy so that it lies midway between 
Eo and E1 • We therefore introduce the dimensionless 
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q uantities X~ and Y" defined by 

E~ = (1:"1 + 1:"0) + (1:"1 - I:"o)x" 
and 

21:", = (1:"1 + 1:"0) + (1:"1 - I:"O)Yl, 

where, in particular, we have 

Yo = - 1, Yl = 1. 

(n terms of these quantities, Eqs. (2.29) become 

(5.1) 

(5.2) 

(5.3) 

y+4I' +I~=O, (J. = 1·· 'N, 
P x(J - Xa C Yc - Xa 

where 
(5.4) 

(5.5) 

and the sum on fi is from 1 to N while the sum on I 
is from ° to M, where M + 1 is the total number of 
single-particle levels included in the Hamiltonian, and 

(5.6) 

For the ground state and those states with laO = 0, 
for (J. = 1 ... N, we seek roots of (5.4) which satisfy 
-1 < x" < 1 for a repulsive interaction, y > 0. 
Equations (5.4) are solved for these states by con­
verting it into an integral equation for the density of 
roots on this interval. This integral equation is accurate 
to order lIN and can be solved explicitly. For the 
states which have a finite number of the lao different 
from zero, Eqs. (5.4) can be written as an integral 
equation for the density of roots with lao = ° in the 
sense of (2.34), which is coupled to a set of algebraic 
equations for the pair energies corresponding to 
lao -=fi 0. These equations can also be solved explicitly. 

Before turning to the solution of (5.4), we will 
discuss the range of values of the interaction strength 
for which our solution will be valid. The discussion 
will be given in the specific framework of plane-wave 
single-particle states and the thermodynamic limit 
will always be taken. Our solution is predicated upon 
the assumption of a smooth distribution of roots of 
(5.4) in the interval (-1,1). However, for g = 0, we 
know that the distribution is ND(x + 1), i.e., all the 
pair energies satisfy Ea = 2Eo. Therefore, we expect 
our solution to be a strong coupling solution with a 
distribution similar to (4.53). We therefore need to 
determine a lower bound on the interaction strength 
for the validity of our solution. In order to do this, 
let us consider the volume dependence of (5.4). The 
volume of the system appears in y, which, setting 
g = GfV since we are interested in a lower bound, 
becomes y = (El - Eo)VfG with El - EO = !(21T{L)2. 
It also appears in the limits on the sum on I, since the 
sum is over all states with Ikl < K. We approximate 

the sum and its volume dependence by its first two 
terms, which restrict the roots to the interval (-1, I), 
plus a constant contribution from the remaining 
terms, i.e., 

Oll (I) W I -- ~ 0 + _1_ + 2KL. (5.7) 
I Yc - xa -1 - x", 1 - x", 

This approximation is valid because it is only the first 
two terms of the sum on I that depend strongly upon 
x"'. With this approximation, (5.4) becomes 

( E E )V N 
1 - 0 + 2KL + 4 I' ---

G P~l Xp - x", 

Wo WI + + -- = 0, (J. = 1··· N, (5.8) 
-1 - x'" 1 - Xa 

which is (4.20) with a redefinition of g and the zero of 
energy. If we can neglect the first two terms in (5.8), 
then we have (4.22), whose solution we have discussed 
in detail in the preceding section. From this solution, 
we know that the roots of (5.8), still neglecting the 
first two terms, are spread over the interval (-1, 1) 
with spacings of the order of liN. Thus, the dominant 
terms in the sum on f3 will be of order N. This leads to 
the criterion 

(El - EO)V + 2KL« 4N = 2n 
G 

for the validity of the assumption of a continuous 
distribution of roots. For fixed p = n/ V and K, this 
becomes 

(5.9) 

in the limit n, V ~ 00. Since El - EO = H21Tj £)2, this 
is a very weak condition. However, it should be 
emphasized that our results are not valid for G -+ 0. 

Returning to the solution of (5.4) for the states with 
1"'0 = 0, (J. = 1 ... N, we introduce the density of 
roots ~x(x) defined by 

N 

~,'V(x) = I D(X - Xi)' (5.10) 
i=l 

which in the limit N ~ 00 we replace by the smooth 
function 6.(x), defined by 

f "~(x) dx = l,im f"6. s (X) dx, 
a 1'-(1) a 

(5. t 1) 

for any a, b in the interval (-1, 1). The second term 
in (5.4) can then be written as 

I' =p .\ ~p , N 1 i1 Ll ·(x) dx il 6.(x) dx 

P~1 Xp - x", -1 X - Xa w-·"" -1 X - x", 

(5.12) 
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where P indicates that the principal value of the 
integral is to be taken. Equation (5.12) is just the 
finite Hilbert transform of the density ~, and Eq. (5.4) 
becomes an equation for this Hilbert transform,12 i.e., 

" w! 41TD(x) = -y -,L.. --, -1<x<l, (5.13) 
yz- x 

where D(x) is defined by 

D(x) = 1 pI l 
~(~') dx' 

1T -1 X - X 
(5.14) 

In going from the discrete variable Xa to the con­
tinuous variable x, we have made an error of order 
liN, since this is the order of the spacing between the 
xa's. This will be verified by comparing the solution 
of (5.13) with the exact results of Sec. 4. Thus, the 
problem is reduced to one of inverting this integral 
equation for ~. Note that from its definition ~ must 
satisfy 

f1~(X) dx = N, 

in addition to (5.13). 

( 5.15) 

The general form of (5.13) is known as the airfoil 
equation, and the inversion of such transforms has 
been studied by Tricomi,13 who gives the solution 

Mx) = 1 2 ~[c _ pI I 

(I - <)~ D(x') dX'], 
1T(l - x ) -1 X - x 

(5.16) 

where C is an arbitrary constant. The solution (5.16) 
is valid when the function D(x) belongs to the class 
LP( -1, 1) with P > t. However, this last requirement 
is not satisfied by the terms in (5.13) with! = 0 and 
1, which have poles at -1 and + 1, respectively. In 
order to remove these poles from the interval (-1, 1), 
we introduce small shifts in the corresponding single­
particle energies that move the pole'> out of this 
interval. That is, instead of (5.3), we let 

Yo = -1 - 6, Y1 = 1 + 6, (5.17) 

and, in all calculated quantities, we will take the limit 
6 -+ O. The strong coupling assumption (5.9) is 
necessary for justifying the introduction of this shift. 
For it is certainly not possible to introduce such a 
shift at zero interaction strength when all the particles 
occupy the I = 0 level. However, when the roots are 
spread out over the interval (-1, 1) and no root has 
the value Yo or Yl> then the solution of (5.14) using 
(5.17) will be a good approximation to the equation 

12 The author is indebted to Professor Jerome K. Percus for this 
observation. 

13 F. G. Tricomi, Quart. J. Math. (Oxford) (2) 2, 199 (1951). 

using (5.3). Furthermore, when we calculate the 
energies of the states and their occupation proba­
bilities, we may take the limit 6 -+ O. These results, 
when specialized to the two-level model of Sec. 4B, 
will be shown to agree with the exact results to order 
lin. We therefore proceed under the assumption that 
the interaction is strong enough to justify the use of 
(5.17) rather than (5.3). With this method of removing 
the singularities, (5.13) may be substituted into (5.16) 
and all the integrations performed. The result of this 
calculation is 

~(x) = 1 
41T(1 - X2)~ 

[ ( 
(2 l)~)ll 

X 4N - yx + f W! 1 - ~! -=- X ~' (5.18) 

where we have used (5.15) to fix the value of the 
constant C = N. 

The energies of the states are given by (2.22), which 
may be written as 

JY 

E = L VIEI + N(EO + E1) + (El - EO) LX, 
I ~=1 

= L VIE l + N(EO + El) + (E1 - Eo)J
l 
x~(x) dx, 

I -1 

(5.19) 

where we have used (5.1) for the pair energies Ea. The 
integral over x may be evaluated using (5.18), with the 
result 

JI Y 1 2 l 
X~(x) dx = - - + - L WJ(YI - lY - yJ (5.20) 

-1 8 4 I 

Y 1 2 1 = - - + - L (121 + 2v1)[(Yl - I? - y,], 
8 4 I 

(5.21) 

where we have used (5.6) for (0),. Substituting this into 
(5.19), we have 

E = L vz~(y~ - l)~(El - Eo) + in(El + EO) 
I 

+ ! [- ~ + L n,[(Y7 - I)! - y,]}(EI - EO) 
4 \ 2 I 

(5.22) 

for the energy of the states, where we have used (5.2) 
for y, and n = 2N + v. Note that this expression is a 
well behaved function of 6 and we have therefore set 
6 equal to zero. 

The ground state of an even (odd) number of 
particles has v = 0 (v = 1 with Vo = I). Therefore, 
the term 

(5.23) 
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in (5.22) is the excitation energy of the state. This has 
the character of the states of a set of noninteracting 
quasiparticles whose energy is given by :Hy~ - 1) x 
(EI - EO)' If we set EO = 0, this expression may be 
written as 

(5.24) 

Therefore, the quasiparticle spectrum has two zeros 
corresponding to the lowest two single-particle levels. 
This result, which is valid up to terms of order l/n, is 
in agreement with the exact results of the two level 
mod~1 treated in Sec. 4B. For the other single­
particle levels, the quasiparticle energies are not 
qualitatively different from those of the noninteracting 
particles. 

The accuracy of (5.22) may be checked by com­
paring it with the exact results for the two-level model 
given in Sec. 4B. From (4.32), we have the exact 
ground state energy of this model given by 

l1(n - 1) 
E = tn(EI + EO) - {\ (EI - Eo) 

2(211 + ~.1 - 3) 

n - 1 
= !11(EI + Eo) - -- (101 - EO) + 0(1/11). (5.25) 

4 

If we set y = 0, no = 1, and 0 1 = n in (5.22), we 
have 

E = tnh + EO) + HI - n}(E1 - Eo), (5.26) 

which agrees with (5.25) to order l/n. This result is in 
accord with our estimate of the errors in (5.22) to 
be of order l/n. The excitation energies cannot be 
checked in this way since they are all of order l/n in 
the two-level model. 

The occupation probabilities for the single-particle 
levels may be calculated using (3.2). In order to use 
(3.2), we need to write the energy as an explicit 
function of the single-particle energies 101' This ex­
pression is obtained by substituting the definitions of 
the various quantities into (5.22) with the result 

E = '2 (E + E ) _ (EI - Eo)2 _ (n1 - no) (E1 - EO) 
2 1 0 8g 4 

+ ! 2 {2(n l + 2v1)[(EI - EI)(EI - EO)]! 
41>1 

- 0z<2E1 - Eo - E1)}' (5.27) 

where we have set EO = O. For plane-wave states in the 
limit 11, V -->- 00, these expressions may be simplified to 

11k = ~[11 + e ;2 + K) L 1 k = 0, (5.31) 

= 112 [ 11 - e~2 + K)L], k2 = e:r (5.32) 

k
2 

= C:rm2
, 

m2 > 1, (5.33) 

where the interaction strength is G, the range of the 
interaction in momentum space is K, V = V, and we 
have assumed that v = O. These expressions are the 
occupations of the individual single-particle states 
since we have divided the previous expressions by the 
degeneracies nt • Thus, the system exhibits a Bose 
condensation into the lowest two single-particle levels. 
Note that the strong coupling requirement (5.9) 
requires that G be large enough so that the terms 
± [(27T2/G) + K]L in (5.31) and (5.32) be small 
corrections to the occupations of the lowest two levels. 
This condition is satisfied for any nonvanishing G. 

To show that the quasiparticle interpretation of the 
excitation energies holds even for states that have 
pairs excited out of the I = 0 level, we calculate the 
energies of the states with one pair excited out of this 
level, i.e., those states with 11•0 = ... = Is - 1 •0 = 0 
and Is.o ~ O. The method can be generalized to treat 
any state with a finite number of pairs excited out 
of the I = 0 state. Equations (5.4) for a state with one 
pair excited out of the I = ° level, may be written as 

X-I 4 
Y + 4 2' + + 2 _W_I - = 0, 

P=l Xp - Xa Xx - Xa 1 Yl - Xa 

IX = 1··· N - 1, (5.34) 

Differentiating this expression with respect to the and 
various single-particle energies according to (3.2), we 
obtain 

S-l WI 

Y + 4 I + I = 0, (5.35) 
P=l Xp - X.v ! Yl - Xx 

where - 1 < Xi < 1 , for i = 1 ... N - 1, and X.v > 
1. Introducing the density of roots II which is defined 
on the interval -1 < X < 1, we may write these 
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equations as 
4 

-1 < x < I, (5.36) 
and 

II b.(x) dx , W t y + 4 + 1 = 0, XN> 1, (5.37) 
-1 x - xN ! Yl - XN 

where D(x) is again the finite Hilbert transform of 
b.(x) given by (5.14). We may now use (5.16) to solve 
(5.36) for b.(x) subject to the normalization condition 

flb.(X) dx = N - 1. (5.38) 

The result of this calculation is 

b.(x) = 1 {4N _ yx _ 4(x~ - 1)1 
41T(1 - x2)i XN - x 

+ ! WI[1 - (y; - 1)!J}. (5.39) 
I YI- x 

This result may now be used in (5.37) to obtain an 
equation for xiV' Using (5.39), the second term of 
(5.37) becomes 

4J~I~(~:': 
4xv 1 
2" + 2 ! 

XN - 1 (XiV - t) 

X {-4N + YXN + ! (Ul[(Y; - I)i - tJ} 
I Yt- XN 

_ Y _ ! Wt (5.40) 
1 Yl- XN 

which, when substituted into (5.37), yields the equation 

4XN 4N i + yXv-
(x7v - J) . 

+ ! Wt[(Y~ - 1}! - IJ = 0 (5.41) 
1 Yl- XiV 

for XN' The solutions of this equation, to order lIn, 
are just the values 

XiV = Yto ' 10> 1. (5.42) 

The energies of these states are given by 

E = ! 'VIEt + N(El + EO) + (El - EO) 
! 

X [XN + L11xb.(X) dxJ 

= [(x~ - l)k + ~ 'VIHy; - OfJ 
X (El - EO) + in(E1 + EO) 

+ ! {- ~ + ! nl[(Y~ - I)! - Ytl1
J
(El - EO)' 

4 2 I 

(5.43) 

where we have used (5.39) to perform the integration 
over x. In view of (5.42), the contribution of the 
paired particles to the energy of the state is just that 
of two quasiparticles in the level/o . Thus, the quasi­
particle interpretation of the excited states holds true 
even for those states with pairs excited out of the 1= 0 
level. 

It is interesting to compare the above results with 
those of the Bogoliubov approximation.1 ,2 In this 
approximation, we neglect all terms in the interaction 
that contain fewer than two operators associated with 
the I = 0 level. Furthermore, 0 0 and 0l~ are replaced 
by nk, where 

(5.44) 

in the notation of (2, 1). Then, keeping only the leading 
terms in powers of 11 and setting g = G / V, (2.1) 
becomes 

Hu =~11pG 

+ ! [(Ek - pG}a~ak + ~pG(ato~k + a-kodJ 
k¢O ' 

(5.45) 

where we have set Eo = 0 and p = 11/V. 
This is a bilinear form in the operators Ok and o~­

and can be diagonalized by a Bogoliubov uv trans­
formation, with the result that the ground-state energy 
is given by 

and the excitation energies are those of a system of 
independent quasiparticles whose energies are given 
by 

(5.47) 

These expressions become complex for 2pG > E
l

, 

indicating a failure of the approximation. We can 
therefore say that the Bogoliubov approximation 
fails unless 

(5.48) 

a limit that vanishes as the volume increases. It is 
interesting to note that this upper bound on the 
strength of the interaction for the validity of the 
Bogoliubov approximation is precisely the same as 
the lower bound on G (5.9) for the validity of our 
calculation. The two calculations are therefore com­
plementary, with one appropriate for weak coupling 
and the other for strong coupling. The dividing line 
between these two domains of interaction strengths is 
essentially at zero interaction, i.e., G s=: El/2p ,...." V-t, 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9 NUMBE , R 9 SEPTEMBER 1968 

Isotropic Solutions of the Einstein-Liouville Equations 

J. EHLERS,· P. GEREN, AND R. K. SACHS. 

The University of Texas, Austin, Texas 

(Received 11 July 1966) 

Th~ gra.vitation~1 field generated by a .gas whose o.ne-particle distribution function obeys the Liouville 
equatIOn IS examm~d under the followmg assumptIOns: First, the distribution is locally isotropic in 
momen~uI? space with r~spect to some world-vel?clty field; second, if the particles have rest-mass zero, 
the ga~ IS IrrotatlOnal. It IS shown t.hat ~he model IS then either stationary or a Robertson-Walker model. 
The t.m~e depen.de~ce ?f the ra.dlLls m the Robertson-Walker models is given in terms of integrals 
contammg the distrIbutIOn functIOn. 

1. INTRODUCTION 

In galactic dynamics it is useful to relate the velocity 
dependence of the stellar distribution function to the 
spatial configuration of the galaxy and to the galaxy's 
gravitational field. In this paper we give some analo­
gous general-relativistic results for the very simple case 
of a locally isotropic distribution function. We have 
in mind applications to cosmology. 

Einstein's gravitational field equation 

(1.1) 

relates the metric of space-time to the stress-energy­
momentum distribution of matter. It is necessary to 
supplement (1.1) by assumptions about the structure 
of matter. We must specify the dependence of Tab on 
the basic matter (or field) variables, and state the 
nongravitational equations of motion, constitutive 
equations, etc., which these additional variables are 
supposed to obey. 

The model of matter used in this paper is that of 
kinetic theory. We imagine space-time contains a 
system of particles all having the samel proper mass 
m (~ 0). We think of the metric gab in (1.1) as the 
macroscopic gravitational potential generated col­
lectively by all the particles, and we assume that each 
particle moves as a test particle in this average field 
except during point collisions. Moreover, we restrict 
ourselves to two cases: either collisions are completely 
neglected-Case A; or there is collisional equilibrium 
(detailed balancing)-Case B. 

Let/(x, p) be the one-particle distribution function, 
defined on the seven-dimensional manifold of pairs 
(x, p), where x is a space-time point and p a tangent 
vector at x with p2 = -m2• [We use the signature 
(+ + + -) for gab'] The function / determines the 

• Research supported by Aerospace Research Labs., OAR, 
AF-33 (615) 1029. 

1 The assumption of equal masses could easily be relaxed; it is 
made here for simplicity and because of the special role played by a 
rest-mass-zero gas. 

energy-momentum tensor via the equation 

'T"b(X) = r Papd(x, p) dP m; (1.2) 
JPm(x) 

here P m(x) denotes the mass hyperboloid p2 = -m2 

in the tangent space of space-time at x, and dP m is the 
Lorentz-invariant measure on P m(x). 

Either Case A or B above implies that / satisfies the 
Liouville condition2 

/[X(s), pes)] = const along each timelike (if m > 0) 

or lightIike (if m = 0) 

geodesic {x(s),p(s)}. (1.3) 

The system of equations (1.1)-(1.3) is the general­
relativistic analog of the basic equations of stellar 
dynamics; (1.1) corresponds to Poisson's equation 
and (1.3) corresponds to the collisionless Boltzmann 
equation with gravitational forces. 

Equations (1.1)-(1.3) are not independent; either 
(1.1) or the pair (1.2) and (1.3) imply2 

(1.4) 

Real systems for which Case A above seems to be a 
reasonable model are the system of galaxies now3 

and the galaxies themselves, considered as systems 
ofstars.4 Case B, with m = 0, may be applicable to the 
early state of the universe in a big-bang model. In the 
latter case, pertaining to epochs earlier than 103 years, 
we may think of a mixture of photons, perhaps 
neutrinos and even gravitons, and some electrons and 
nucleons, with most of the energy due to rest-mass 
zero or to ultrarelativistic particles. For photons the 

2 G. E. Tauber and J. W. Weinberg. Phys. Rev. 122, 1342 (1961). 
3 It is difficult to estimate reliably the relaxation time, but if one 

uses the usual Newtonian formulas (cf., e.g., Ref. 4) with a cutoff 
distance ~IOlo light years, one obtains relaxation times which are 
at least not short compared to the Hubble time. 

4 S. Chandrasekhar, Principles of Stellar Dynamics (Dover Pub!. 
Inc., New York, 1960), especially Chap. II; see also the article by 
L. WoJtjer in Lectures in Applied Mathematics, J. Ehlers, Ed. (Ameri­
can Mathematical Society, Providence, R./., 1967), Vol. 9, especially 
Appendix I. 
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collisional equilibrium could be catalyzed by the 
electrons via scattering and free-free transitions; the 
average time a photon takes to Thomson-scatter at 
t = 10;1 years, assuming a temperature T R::! 10'; oK 
and a mass density p R::! IO-lfi g/cm!l (see Ref. 5), is of 
order 10-2 years, and this average collision time 
decreases rapidly if we consider still earlier epochs. 

In this paper we consider those solutions of Eqs. 
(1.1), (1.2), and (1.3) in which the distribution is 
everywhere isotropic: There exists a timelike unit­
vector field u"(x) such thatf(x,p) is, at any event x, 
invariant with respect to all those restricted homo­
geneous Lorentz transformations in the tangent space 
which leave u" unchanged. In physical terms, this 
property means that there exists a preferred state of 
motion at each event x in the universe, with respect to 
which the peculiar motions of the particles near x are 
isotropically distributed. Analytically this means that 
f has the form f(x,p) = h(x, -u(x)· pl. In Case B 
this isotropy follows from the assumed collisional 
equilibrium6 ; in Case A it is, of course, an independent 
assumption. 

We show that this assumption (and, in the case 
m = 0, the additional assumption that either the 
acceleration or the rotation of the mean flow vanishes) 
leads, without any a priori assumptions about the 
symmetry of space-time, to a Robertson-Walker 
metric or to stationary space-times. In general­
relativistic cosmology (we now have in mind Case 
A, m > 0) the cosmological principle and the Weyl 
postulate (see, e.g., Ref. 7) can, therefore, both be 
considered as consequences of the apparently weaker 
postulate of an isotropic distribution of peculiar 
velocities. The dependence of the scale factor aCt) of 
the universe on the distribution function is given [Eq. 
(4.7)]; this corresponds to the dependence of aCt) on 
the "equation of state" in hydrodynamical models. 

Our result and the method of proof are extensions 
of the work of Tauber and Weinberg on general 
relativistic gases (Ref. 2). These authors have deter­
mined the restrictions imposed on the metric and the 
mean flow by the Liouville eq uation and the condition 
of isotropy; they did not consider the further restric­
tions imposed by the Einstein field equation. Because 
we want to point out the special role of rest-mass zero 
gases, and also because we need a more detailed 
description of the case of irrotational flows with 
expansion than that given in the paper mentioned, 
we shall rederive some of the relevant results. 

5 R. H. Dicke, P. J. E. Peebles, P. G. Roll, and D. T. Wilkinson, 
Astrophys. J. 142,414 (1965). 

6 K. Bichteler, Z. Physik 182, 521 (1965). 
, H. Bondi, Cosmology (Cambridge University Press, Cambridge, 

England, 1961). 

2. GEOMETRICAL AND KINEMATICAL 
PRELIMINARIES 

In this section we describe a few properties of 
congruences of timelike curves in normal hyperbolic 
Riemannian spaces. We use these properties in the 
proof of our main theorem. 

Let u" be the normalized tangent vector to a con­
gruence of timelike curves u"u" = -1. The vector 
u" may be interpreted physically as the local average 
particle world velocity. 

The quantities W"b' allb , Ua , and 0, defined by 

lIa;b = Wab + aab - Uall b + ~()(gab + uau b), (2.1) 

(O(ab) = a[alJj = aaa = 0, (!)abUb = aabl/
b = 0, (2.2) 

are known, respectively, as the angular velocity (or 
vorticity tensor), the shear velocity, the acceleration, 
and the expansion velocity of the congruence (see, 
e.g., Refs. 8 and 9). 

We use the brackets ( ) and [ ] for symmetrization 
and antisymmetrization, respectively, and use through­
out the dot to indicate covariant differentiation in the 
ua direction, e.g., ua = Ua:bU

b
• 

The definitions imply the following lemmas: 

Lemma 1: A flow is irrotational, Wall = 0, if and 
only if the streamlines are hypersurface-orthogonal, 
i.e., if and only if there exists a scalar t such that 

(2.3) 

Lemma 2: The property 

(2.4) 

is necessary and sufficient for the existence of a 
metric gab conformally related to gab such that the 
congruence is geodesic and expansion-free with respect 
to gab; if (2.4) holds, we may put 

The properties discussed in these two lemmas are 
conformally invariant, that is, they are preserved 
under transformations 

where W is an arbitrary positive scalar field. The 
vanishing of shear, aab = 0, is likewise conformally 
invariant. 

8 J. L. Synge, Relativity: The Gelleral Theory (North-Holland 
Publ. Co., Amsterdam, 1960). 

9 J. Ehlers, Akad. Wiss. Lit. (Mainz) Abhandl. Math.-Nat. Kl. 
11,793 (1961). 
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By combining the preceding lemmas we obtain 
further: 

Lemma 3: The curves of a congruence are the orbits 
of a one-dimensional (local) group of conformal 
mappings of space-time into itself if and only if the 
congruence is shearfree and satisfies (2.4); if these 
conditions are satisfied and U is defined by (2.5), 
~a = eUua generates the group. If, in addition, 0 = 0, 
the mappings are isometries. 

We shaIl now prove: 

Lemma 4: If a congruence satisfies Wab = (fab = ° 
and (2.4), then the metric is conformally decom­
posable; that is, there exist coordinates (xa) = (XV, t), 
v = 1,2,3, such that 

DEF a b 2 U { 2 d 2} G = gab dx dx = e d(f - t , 

d(f2 = Y AiXV) dxA dxll, Ua = e-U r5~. (2.7) 

In fact, if Wab = (fab = ° and (2.4) holds, we find from 
Lemma 2 that, with respect to gab' Wab = aab = Ua = 
if = 0, ita is then covariant-constant with respect to 
gab by Eq. (2.1), and consequently gab is locally the 
direct product of a 3-space and a line (see Ref. 10, 
p. 286), so that gab can be written as in Eq. (2.7). 

Finally, we shall establish two properties of Ricci 
proper congruences defined by 

UaRa(bUC] = 0. (2.8) 

From the contracted Ricci identity ua;[ab] = iRbCUc 
and Eq. (2.1), we compute 

UaRn[bUC] = jO,[bUc] + terms containing Wab or (fab' 

Hence: 

Lemma 5: If a Ricci proper congruence satisfies 
Wab = (fab = 0, then its expansion velocity 0 is constant 
on each hypersurface orthogonal to the streamlines, so 
that 

o = 0(1) 
with t as in Eq. (2.3.). 

(2.9) 

If we specialize further by combining Lemmas 4 
and 5 taking into account that, for the case (2.7), 
o = 3e-U (oU/ot), we get: 

Lemma 6: If an irrotational, shearfree Ricci proper 
congruence satisfies Eq. (2.4), then coordinates exist 
such that (2.7) holds with 

e- U = X(t) + Y(XV). (2.10) 

10 J. A. Schouten, Ricci Calculus (Springer-Verlag, Berlin, 1954). 

3. ISOTROPIC SOLUTIONS OF LIOUVILLE'S 
EQUATIONll 

We now proceed to analyze Liouville's equation 
(1.3), ignoring the field equation (1.1) for the moment. 
We have to find gab(X), ua(X) , and hex, £) such that, 
for a given mass m ~ 0, the distribution function 

f(x,p) = h[x, -u(x)· p] 

is constant on each geodesic {XU(s), pa(s)} with pa = 
dxalds, p2 = gaopapo = -m2. Here £ is an auxiliary 
real variable (£ ~ m) to be interpreted as the energy 
of a particle with respect to that local frame (with time 
axis ua) with respect to which/is isotropic in momen­
tum space. 

Since hex, £) > ° and hex, £) - ° as £ --+ 00 on 
physical grounds, we know that h' = oh/o£ -:F- ° for 
some open £ interval. For £ in this interval let us put 
hex, £) = F and, for the solution with respect to £, 
write £ = g(x, F). Then Liouville's equation is 
equivalent to the statement that 

dE d ""d; = - ds (uapa) = -ua;bpapb = pag,a (3.1) 

on each geodesic, where we define g,a = og/oxa with 
F fixed. If we split the 4-momentum in the form 

pa = £ua + (£2 _ m2)!ea, 

(3.2) 

and insert Eqs. (3.2) and (2.1) into Eq. (3.1), we obtain 

gg + ~ (g2 _ m2) + (g2 _ m2)l"(gua + g,a)ea 

+ (g2 _ m2)(fabeaeb = 0. 

This equation has to hold identically in the seven 
independent variables x a, F, ea ; ea may be considered 
as a point on a Euclidean, two-dimensional unit 
sphere. Hence, since spherical harmonics of different 
degrees are linearly independent, 

() -gg 
(fab = 0, ua + (log g),a = IXU a, 2 2 • 

3 g - m 

(3.3) 

The last two of these equations can be replaced by 
the single relation 

m20 
ua - lOua = -(log g),a - 3g2 ua· (3.4) 

Differentiating this equation with respect to F and 
inserting the resulting expression for Ua into Eq. (3.4), 
we obtain 

(3.5) 

11 For this whole section, compare Ref. 2, Sec. III. 
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where g' = ogjoE and Vex) is defined by Eq. (3.5) up 
to an additive constant. 

According to Lemma 3 of Sec. 2, the congruence 
associated lrith an isotropic distribution is conformal 
(Tauber and Weinberg, 1962). 

The function g(x, E) is related to Vex) by dV = 
- }d(log gg'), d referring to the variables x a only with 
E treated as a parameter. Integrating gives 

eH' (g2 - m2) = I(E) - k(x) (3.6) 

with some functions I and k. But from (3.3) and (3.5) 

. () _( g2 _ 1Il2)' 
V-- . 

- 3 2(g2 - /11 2) , 

consequently, differentiation of Eq. (3.6) in the ua 

direction gives 
k = 0; (3.7) 

thus k is constant on each streamline. 
Combining Eqs. (3.4) and (3.5), we get a further 

condition: 

m 2
(} • 

- Lla = m2VLla = _g2(U + log g)a' (3.8) 
3 ' 

To summarize: Characterizing properties of an 
isotropic solution of Liouville's equation are Eqs. 
(3.6), (3.7), (3.8), and the conformal character of the 
congruence generated by ua. 

According to Eq. (3.8), two possibilities exist: 
A. m(} = 0: In this case (3.8) requires that g2e2U is 

a function of E only; then the distribution function 
has the form 

(3.9) 

w here ~a = eU ua generates a conformal group and j 
is some function. If () = 0, which is necessarily so if 
m ¥- 0, the group is an isometry group. 

It is well known that Eq. (3.9) gives first integrals 
for the equations of geodesics; the remarkable fact is 
that these are the only ones of the form h(xa , -Ub(X)Xb

). 

The case () = 0 is not of interest in cosmology, and 
we shall not consider it in detail. 

B. m() ¥- 0: In this case, Eq. (3.8) and Lemma 1 of 
Sec. 2 show that the congruence must be irrotational; 
consequently, Lemma 4 applies. Moreover, Eqs. (2.3) 
and (3.8) show that the preferred time variable t must 
be related to g and U by 

ig2d(U + log g) = m2(j dt. 

Hence, e2U g2 must depend functionally on t and E; 
this fact, together with Eqs. (3.6) and (3.7), restricts the 
functional relation to the form 

(3.10) 

with some functions i, q. The distribution function is 
therefore 

(3.11) 

Using the preferred coordinates ofEq. (2.7), we have, 
then, the result 

G = k(xV) - q(t) [da2 _ dt2], (3.12) 
m2 

I(x, p) =j(k(XV)m-: q(t) £2 + q(t») , (3.13) 

E being the energy of pa with respect to ua. 
When m() ¥- 0, the irrotationality of the flow 

follows, as we have seen, from the Liouville equation 
and the isotropy condition. Wab might be different 
from zero if m(} = 0, at least so long as no field 
equations are imposed. It is, however, of interest to 
note that, if the flow is geodesic and has expansion, 
ua = 0 ¥= (), Eq. (3.5) and Lemma 1 show that 
Wab = O. For m = 0 and () ¥- 0, we therefore have the 
subcases AI: Ua = Wab = 0 and A 2 : Ua ¥- O. In the 
former, Lemma 4 applies again, and the metric can be 
written in the form (2.7). 

4. SOLUTIONS OF THE FIELD EQUATION 
FOR ISOTROPIC DISTRIBUTIONS 

We now ask which restrictions are imposed on the 
solutions {gab,f} of Liouville's equation by the field 
equation (1.1) with the source (1.2). The isotropy of 
f with respect to ua implies that 

pb = (fl + p)uaub + pgab, (4.1) 

where the mean energy density fl and pressure p can be 
expressed in terms of f (see below). From (4.1) and 
(1.1) it is obvious that ua is an eigenvector of the Ricci 
tensor, i.e., Eq. (2.8) holds. In Case B of the preceding 
section and also in Case A, if either ua = 0 or Wab = 0 
is assumed, we can apply Lemma 6 of Sec. 1; we then 
obtain the metric 

[X(t) + Y(xV)r2[da2 
- dt 2

]. (4.2) 

In Case B, comparison of this expression with Eq. 
(3.12) shows that the conformal factor can depend 
only on t or on xv, but not on both variables. Since 
() ¥- 0, we conclude that k = const, Y = const; hence, 
without loss of generality, Y = 0 in (4.2). The resulting 
metric satisfies the field equation with (4.1) only ifit is 
a Robertson-Walker metric (see Ref. 12, p. 107) 

a2(t) da2 - dt 2 (4.3) 

(t is a new time coordinate), where da2 has constant 
curvature € = ± 1, O. From (3.13) the distribution 

12 P. Jordan, Schll'erkraft lind We/tall (Vieweg and Sohn, Braun­
schweig, Germany, 1955). 
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function is then of the form Now we use the "4,4 component" of the field equation 
(Ll): 

(4.4) GabuaU
b = -f1, 

where 

is the squared 3-momentum of a particle relative to 
the preferred local frame defined by ua, and g is some 
positive function of a real variable. 

From (1.2) and (4.4), introducing x = a Ipl, we get 

f1 = a-4 L" x 2g(x2)(a2m 2 + X2)t dx, 

p = ta-4L"'x4g(x2)(a2m2 + x 2r! dx. (4.5) 

These relations imply, as is well known,2 energy 
conservation, (f1a3). + p(a3). = 0, and therefore the 
only remaining field equation is 

3a2(a2 + E) = l'"'x2g(x2)(m2a2 + X2)t dx. (4.6) 

Since all these lIniverses have, according to Ray­
chaudhuri's theorem, a singular state a = 0 which we 
may take as the t origin, the time development of a 
generalized Friedmann model is determined by the 
function g, the distribution, through 

t = ~3 So
al-3Eu + L\2g(x2)(m2

l1 + x2)!dx J-~dU, 
(4.7) 

Equations (4.3), (4.4), (4.5), and (4.7) determine 
completely the model universe in Case B. 

We now return to Case A and restrict attention to 
the subcase 0 '¥' 0 so that m = O. Since, in this case, 
P" = 0 from (1.2), in Eq. (4.1) we have 

p = ~fl. (4.8) 

Independently of kinetic theory, it follows that, for an 
energy-momentum tensor (4.1) together with (4.8), the 
conservation law PI';b = 0 is eq uivalent to the relation 

ua - ~OUlt = - Wog f1),a, (4.9) 

which implies the conservation law Ii +~f10 = O. 
Its geometrical meaning is described in Lemma 2 of 
Sec. 2. (The quantity whose density is f11 is conserved 
during the motion. For thermal radiation, this 
conserved quantity is the entropy.) 

Combining (4.9) with the arguments which led to 
the metric (4.2) [cf. Eqs. (2.5) and (2.10)], we see that 
in the case m = 0 the source quantity f1 is related to 
the conformal factor by 

f1 = [X(t) + Y(x,')t. (4.10) 

where the left-hand side can easily be computed from 
(4.2) by means of the equations for conformal 
transformations,13 and the right-hand side is given by 
Eq. (4.10). We obtain 

6 (~;r - 2(X + y)4 - R(X + y)2 

- 4LlY(X + Y) + 6DY = O. (4.11) 

Here R is the Ricci scalar of da2 , Ll is the Laplace 
operator of da2, and D Y = yAIl Y,A Y,Il' Since () '¥' 0 
implies dX/dt :;f:. 0, we can introduce t' = X(t) as a 
new time variable and write (dX/dt)2 = F(t'). Then 
(4.11) becomes 

6F(t') = 2(t' + y)4 + R(t' + y)2 

+ 4LlY(t' + Y) + 6DY. 

This equation holds identically in t' and xv; the left­
hand side is independent of xv; therefore, the right­
hand side (in particular, the coefficient 8 Y of t'3) 
is independent of xv; then Y = const. We absorb Y 
into X(t) so that Y = O. The further analysis is identi­
cal with the one in Case A, following Eq. (4.3), with 
the specialization m = 0 in Eqs. (4.5) to (4.7). Then 
the models are precisely the Tolman models. 

We have proven the following: 

Theorem 1: The most general solution of the Ein­
stein-Liouville equations (1.1), (1.2), and (1.3) with an 
isotropic distribution function for particles with 
nonvanishing mass is either stationary or a generalized 
Friedmann model {(4.3), (4.4), (4.7)}; for particles 
with vanishing mass, the solution is either stationary, 
or a Tolman model, or nonstationary with ua '¥' 
o yf ('lab .14 

If one looks at the proof, one recognizes that a 
result can also be formulated which is independent 
of kinetic-theory assumptions. 

Theorem 2: The only solution of the Einstein field 
equation (1.1) with a "perfect-radiation" source 

Tau = I:!.. (4uauU + gab) 
3 

13 L. P. Eisenhart, Riemannian Geometry (Princeton University 
Press, Princeton, N.J., 1956); P. Jordan, J. Ehlers, and w. Kundt, 
Akad. Wiss. Lit. (Mainz) Abhandl. Math.-Nat. KI. No.2, 23 (1960). 

... Whether the last case actually admits solutions is not known 
at present. Some perturbation. calculations suggest this. case .is 
empty. Of course stationary solutIOns are known: see O. Klem, Ark.v 
Mat. Astr. Fys. 34A, Paper 19 (1947). 
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in shearfree, irrotational motion is the Tolman 
universe. 

We also note the following: 

Corollary: The gravitational field generated by a 
spherically symmetric "perfect-radiation" source in 
shearfree motion is either static or the Tolman uni­
verse. 

In fact, a timelike vector field ua
, invariant under the 

group 0 3 (acting on spacelike spheres), is automatically 
hypersurface-orthogonal; the gas is then irrotational, 
and the corollary follows from Theorem 2. 

We end this section with a few additional remarks: 
(1) Equation (4.5) can be considered as a parameter 

representation of an "equation of state" /l = cP(P) 
determined by the distribution g. If m = 0, p, = 3p 
for all g's. 

(2) The original Friedmann universes, i.e., the 
dust models (p = 0), are contained in {(4.3), (4.4), 
(4.7)} as the limiting case in which 

2 4M t5(x2
) 3 

g(x) = - --, p,a = M = const; 
m x 

they are the only models without any random particle 
motions. 

(3) For t -+ 0, and hence a -+ 0, all the models 
(except the dust model) behave, according to Eqs. 
(4.5) and (4.7), asymptotically like a Tolman 
radiation universe; if a model expands indefinitely, it 
behaves for t -+ 00 and a -+ 00 asymptotically like a 
dust model; more precisely, one has p, I"'-' a-3 and 
pIp,"" a-2

• 

(4) A Planck distribution 

f(x, p) = ~[exp (-;:) - 1 rl 

is rigorously compatible with (4.4) if m = ° and 
T I"'-' a-I; an equilibrium distribution for m > 0, 
however, is incompatible with an isotropically ex­
panding universe. 9 

According to Eq. (3.13), the general solution of 
Liouville's equation in a Robertson-Walker universe 
has the form/(x,p) = j(a2(t)p2); hence ifat t = to we 
have, say, a (relativistic) Boltzmann distribution 

c exp (-E) = c exp (_(1112 + p2)!) , 
kTo kTo 

then we obtain later 

f(x, p) = c exp (-1 {m2 + [a(t) ] 2p2}!), 
kTo a(to) 

which is not an exact equilibrium distribution. For 
(a(t)Ja(to»2p2 « m2 we have, however, approximately 

f(x, p) R:! c' exp (p2/2mkT), 

with 
T = To(a(to)/a(t»2, 

which is a (nonrelativistic) Boltzmann distribution 
with a temperature T I"'-' a-2 (compare Ref. 5). 

5. DISCUSSION 

Unfortunately, the result presented cannot be 
taken to mean that the universe in its earliest stages 
was necessarily a Friedmann model with detailed 
balance established by rapid collisions of a gas whose 
particles have zero or negligible rest mass. There are 
various difficulties. First, nothing is known as yet 
about the case where a rest-mass zero gas rotates, not 
even if time-dependent detailed-balance rotational 
solutions exist. Second, it is known that in a Friedmann 
m.odel there are particle horizons. I5 For example, 
wlth the parameters mentioned in the Introduction a 
given particle has had time at t = 103 years to com­
municate with only about 1014 solar masses of matter. 
There must be particle horizons in more general 
models as well; we can hardly suppose that portions of 
the gas which have not had time to communicate have 
been able to establish detailed balance. More generally, 
our equilibrium considerations do not indicate how 
quickly detailed balance is established, if at all. 

15 w. Rindler, Monthly Notices Roy. Astron. Soc. 116,662,1956. 
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Asymptotic Behavior of Stieltjes Transforms. II 

W. S. WOOLCOCK· 
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The results of a previous paper con.cerning the. asymptotic beh.avio~ of ~tieltjes transforms for large 
JzJ a.r~ extended to prove th~orems which hold ~mformly for all directions 10 the complex plane. Special 
additional assumptIOns, which hold for all sufficiently large values of the argument of the function whose 
transform is taken, are required to obtain these extended results. 

I. INTRODUCTION 

In an earlier paperl we proved several theorems 
concerning the asymptotic behavior of Stieltjes 
transforms for large Izl, which were shown to hold 
uniformly in a sector of the complex z plane which 
does not include the cut in the transform. It was 
pointed out that such asymptotic properties are 
important in considering the exact form of dispersion 
relations for particle-scattering processes. For such 
considerations it is in fact necessary to have results 
which hold uniformly for all directions in the complex 
plane and apply, in particular, to principal-value 
integrals. The purpose of this paper is to extend the 
results of Ref. 1 in just this way. 

The first task is to define the Stieltjes transform on 
the upper and lower sides of the cut. This leads 
naturally to the imposition of a Lipschitz condition 
on the original function at each point. The boundary 
value of the transform can then be defined in terms 
of a Cauchy principal-value integral, and the trans­
form thus defined in the cut plane has a continuity 
property as the cut is approached from above and 
from below. These ideas will be made precise in Sec. II. 

Section III will prove, under two inequivalent sets of 
conditions, that the transform F(z) approaches zero 
as Izi approaches infinity in any direction; indeed 
uniform convergence for all di.rections will be demon­
strated. As one would expect, the conditions on the 
original function are more restrictive than in Ref. 1. 
Sectio'n IV establishes that, under stricter conditions 
on the original function, zI1.F(z) -+ 0 as IZI-+ 00, 

where 0 < IX < 1. Finally, in Sec. V a bound on 
\F(z) I is obtained from a bound on the original. 

A number of results about the asymptotic behavior 
of principal-value integrals were given by Hamilton 
and Woolcock. 2 The results in Secs. III and IV of this 
paper considerably extend many of the results given 

• Present address: Department of Theoretical Physics, Institute of 
Advanced Studies, Australian National University, GPO Box 4, 
Canberra, ACT 2600, Australia. 

1 w. S. Woolcock, J. Math. Phys. 8, 1270 (1967). 
2 J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737 

(1963). 

in that paper. The original inspiration for these 
results derives from the late E. C. Titchmarsh. The 
result of Sec. V is similar to one of Lanz and Prosperi ,3 

who derive a bound on I F(z) I by putting conditions 
on the derivative of the original function. 

II. PRELIMINARIES 

We take g(x) to be a real-valued function, defined 
for all x > 0, which belongs to L([a, b]) for any 
choice of a, b with 0 < a < b and for which the limit 
f _0 g(x) dx exists.4 These conditions will be assumed 
to hold for every theorem and corollary in the paper 
and will not be explicitly stated. 

If the limit f~oo g(x) dx/x exists,4 the function F(z) 
may be defined by 

F(z) =f .... 00 get) dt , 
.... 0 t - z 

for z not belonging to [0, (0). The Stieltjes transform 
as usually defined is then F( -z). The function F(z) 
is an analytic function, regular in the whole z-plane 
cut along the nonnegative real axis. 

We first remove the complication at the lower end 
by noting that, if 

cp(z) =fa get) dt 
.... ot - z 

for z not belonging to [0, a], then 

zcp(z) -+ -fa get) dt, 
.... 0 

as Izl -+ 00 uniformly for all directions. For, writing 

'I/'(x) =fx g(t) dt (0 < x ::;; a), '1/'(0) = 0, 
.... 0 

we have 

zcp(z) +fa get) dt = a'l/'(a) + z ra 
'I/'(t) dt

2 
• 

.... 0 a - z Jo (I - z) 

3 L. Lanz and G. M. Prosperi, Nuovo Cimento 33, 201 (1964). 
• The use of an arrow to denote that a limit is taken is due to 

E. C. Titchmarsh, Introduction to the Theory of Fourier Illfegrals 
(Oxford University Press, New York, 1948), 2nd ed., p. 9. 
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For any z, with Izl = r > a, 

I 
z r

a 
?p(t) dt21 ~ r 2 ral?p(t)1 dt, 

Jo (t - z) (r - a) Jo 
and the result follows. 

This simple result will mean that results stated for 
F(z) later in the paper need be proved only for the 
function 

i -+
oo get) dt 

fez) = --, 
a t - z 

which is defined when z does not belong to [a, 00). 
We put the natural extension of the definition of 
fez) to the upper and lower sides of the cut [a, 00) 
in the form of a theorem. 

Theorem A: Suppose that there exist constants 
K > 0, fl (1 ~ fl > 0), h (Xo - a ~ h > 0) such that 

Ig(x) - g(Xo) I ~ K Ix - xol" 

for all x for which Ix - xol ~ h. Then 

(i) i-+ OO (t)dt 
p -g-- exists; 

a t - Xo 

(ii) r-+ oo g(t)dt. ~pr->oo g(t)dt 
Ja t - Xo - Iy Ja t - Xo 

+ i7Tg(XO) as y! O. 

The proof uses straightforward analysis but lies 
outside the purpose of this paper.s Since g(x) is 
real-valued, 

r->oo g(t)dt. ~pr->oo g(t)dt 

Ja t - Xo - ly Ja t - Xo 

- i7Tg(XO) as y i O. 

If the Lipschitz condition of Theorem A holds uni­
formly, the conclusions of the theorem can be strength­
ened. This leads to: 

Theorem B: Suppose that for Xo > a there is an 
interval 1= [xo - Jr, Xo + h], where 0 < h ~ (xo -
a), such that, for any points Xl, X2 belonging to I, 

Ig(xl) - g(x2) I ~ K IXI - x21" (0 < fl ::;; 1). 

Then 

(i) cp(X) = p r-+ oo 
g(t) dt 

Ja t - x 

[which exists for (xo - h) < x < (xo + h) by Theo-

5 The techniques of the proof will be found, for example, in N. I. 
Muskheliskvili, Singular Integral Equations (P. Noordhoff Ltd., 
Groningen, The Netherlands, 1953), Chap. 2. 

rem A] satisfies 

Icp(x1) - CP(X2) I ::;; K' IXI - x21'" (0 < fl' < fl), 
for any two points Xl' x2 belonging to the interval 
[xo - h', Xo + h'], where 0 < h' < h6

; 

(ii) given € > 0 there exists tJ > 0 such that 

If(x + iy) - cp(xo) - i7Tg(XO)I < € 

for all x, y satisfying 0 < Ix .:.. xol < tJ, 0 < y < tJ. 

In the theorems of Secs. III-V it will be possible to 
find a > 0 such that the condition ong(x) in Theorem 
B holds for each x > a; the correct definition of fez) 
for the upper and lower sides of the cut is therefore 
clear. Write z = r exp (ifi) and distinguish 8 = 0 and 
8 = 27T as two separate possibilities. Thus from now 
on f is taken as a function of two real variables r, 
8 which is defined as follows: 

fer, 8) = r -+ 00 get) d~8 ' 
Ja t - re 

for z = reiO not belonging to [a, 00); 

1-+ 00 get) dt 
fer, 0) = p -- + i7Tg(r) for 

a t - r 
r> a; 

fer, 27T) = P g-- - i7Tg(r) for r > a. 1-+ 00 (t) dt 

a t - r 

The complete transform F(r, 8) = cp(r, 8) + fer, 8) is 
defined provided z = rei8 does not belong to [0, a] 
and satisfies F(r, 8) = F*(r, 27T - 8). 

We shall prove results concerning the behavior of 
F(r,8) as r ~ 00 which hold uniformly for 0 ~ 8 ~ 
27T. In view of the reflection property above, only the 
interval 0 ~ 8 ~ 7T need be considered. The corre­
sponding theorems of Ref. 1 will show in each case 
that the desired asymptotic property holds uniformly 
for {J::;; 8 ::;; 7T, where 0 < {J < 7T. Thus we need 
consider only the interval 0 ~ () ::;; {J, which we denote 
by Sp. For reasons which will appear later, {J is taken 
to be a fixed angle satisfying 0 < (J ~ tan-l !. 

Ill. CONDITIONS UNDER WIDCH THE 
TRANSFORM TENDS TO ZERO 

Theorem 1: Suppose that S_OO g(x) dx/x exists and 
that g(x) satisfies one of the two following conditions: 

(a) There exist constants K > 0, h > 0, b > 0, 
fl (1 ~ fl > 0) such that 

Ig(x2) - g(XI) I ::;; K IX2 - XII" 

for all Xl' x2 satisfying Xl, x2 ~ b, IX2 - xII::;; h. 
Further, g(x) In X ~ 0 as x ~ 00. 

• Any positive p' < p will do; K' will depend on the values of 
P'. h' chosen. 
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(b) Given € > 0, there exists X> 0 (depending 
on €) such that 

Ig(x2) - g(x1) I < ~ 
X2 - Xl Xl 

for all Xl, X2 satisfying X2 > Xl ~ X. 
Then F(r, () - 0 as r - 00, uniformly for 0 S 

() S 217. 

Proof' Choose a > 0 as in Sec. II and consider 
fCr, () for () E SfJ. From now on we take x> a, 
where X = r cos 0, y = r sin O. Let 

f(r,8) = (f1 + f2 + fa + f4 + fs + f6)(r, 8), 

where the range of integration has been divided into 
the intervals [a, ~], [~, ix]' ax, x - 1]], [x - 1], 

x + 1]], [x + 1], 2x], [2x, (0), respectively. 

(a) Considerfirstf2andf6' We have 

Re f2(r, 0) = -1"'/2 

dt get) t(x - t) , 
A t (x - t)2 + y2 

1"'/2 get) t 
1m f2(r, 8) = y dt - 2 2 ' 

A t (x - t) + y 

Re f6(r, () = [--+00 dt get) t(t - X) , 
J2'" t (t - X)2 + y2 

i --+OO get) t 
Imf6(r, () = y dt- 2 2' 

2", t (t - x) + y 

Now the functions I(x - t)/[(x - t)2 + y2] and 
tl[(x - 1)2 + y2] are monotonically increasing in 
[~, x/2], while the functions t(t - x)/[(t - X)2 + j2] 
and tl[(t - X)2 + y2] are monotonically decreasing 

in [2x, (0), provided tan 8 = y/x S 1/-/i Applying 
the second mean-value theorem for integrals,7 

Re f2(r, () = -(xI2)2 ["'12 
dt get) , 

(x/2? + l J~l t 

Imf2(r, () = (x/2)y ["'/2 dt get) , 
(x/2? + y2 J~2 t 

2X2 is> get) Re f6(r, () = -2--2 dt - , 
X +y 2", t 

2xy is' get) Imf6(r, () = 2 2 dt - , 
X +y 2", t 

where ~ < ~1' ~2 < x/2, 2x < ~a, ~4' Now, since 
S-;oo get) dt/t exists, given € > 0, we can choose ~ so 
that 

If2(r, ()I + If6(r, 8)1 < €/4 

for all r, () satisfying r cos () > 2Ll, () E SfJ' Henceforth 

7 See, for example, E. W. Hobson, The Theory 0/ Functions 0/ a 
Real Variable and the Theory 0/ Fourier's Series (Cambridge Univer­
sity Press, New York, 1927), Vol. I, 3rd ed., Sec. 422. 

Ll is fixed; it is taken to be always> 1. Next, 

INr, ()I S {A Ig(t)1 dt s 1 {Alg(t)1 dt 
Ja It - zl (x - M Ja 

s ~ fAlg(t)1 dt, 
x a 

since X ;;:: 2~. 

Hence If1(r, e)1 < €/4, provided 

81A 

r cos e > - Ig(t) I dt. 
€ a 

Consider now 

Re I" (r e) = pfq du u(g(x + u) - g(x» . 
J4 , 2 + 2 ' 

-q U Y 

the principal value need be taken only when y = O. 
If 1] S h, we have 

f
q u1+Jl 2K1]Jl 

IRefk, e)l s 2K du 2 2 S --. 
.... 0 u + y (.t 

Therefore by choosing 1] sufficiently small we can 
make IRe };.,(r, e)1 < €/4, independently of r and e. 
Henceforth 1] is fixed; it is taken to be always < 1. 

Finally, choose X so that 

€In~ 
Ig(t) I In t < 4(2 In ~ + 21n 1]-.1 + 17) (= €', say) 

for all t ~ X, and suppose that x > 2X. Then 

Ifa(r, 0)1 < €' [",-q dt < €' [",-q dt 
Jiz lntlt-zl- J!", (x-t)Int 

< €'(In x/2)-l(ln x/2 + In 1]-1), 

and similarly 

Ifs(r, 0)1 < €'(In x)-l(ln x + In 1]-1). 

Since, for y ~ 0, 

l",+q get) dt 
Imfir, 0) = y 2 2 ' 

"'-q (t - x) + y 

we have 

y€' i"'H dt I Imfir, 6)1 < 1-/2 ( )2 + 2 nx "'-q t-x y 

2 ' , 
= -€-tan-1 '!J. < ~. 

In x/2 y In x/2 

But Im/lr, 0) = 17g(r), so this inequality extends to 
o = O. Thus, provided r cos 0 > 2X, we have 

Ifa(r, ()I + IIm};.,(r, ()I + l.h(r, ())I < €/4, 

since x > 2L1. 
Combining the above estimates, we conclude that 

If(r, 0)1 < € for all (r, () such that e E SfJ' r ~ 
sec fJ max {2Ll, 2X, 8/€ S~ Ig(t)1 dt}. 
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(b) We prove first that g(x) ---->- 0 as x ---->- 00. 

Given E > 0, we have, for x 2 X(E), 

\ f
2:1) get) - g(x) dt I < Ef2X (t - x) dt 

'" t '" tx 
= E (1 - In 2), 

and so 

f2'" get) - g(x) dt ---->- 0 as x ---->- 00. 

'" t 
But 

12," get) dt ---->- 0, as x ---->- 00, 

'" t 
and 

J
2X get) dt = g(x) In 2 +J2," get) - g(x) dt, 

x txt 

which establishes the required result. 

The estimates of f2, f6' and fl given in (A) may be 
taken over to this case, thus fixing ~. It remains to 
consider 

(fa + f4 + f5)(r, e) 

12", dt 12
'" get) - g(x) 

= g(x) --. + . dt 
",/2 t - re18 

",/2 t - re18 

= <Pl(r, 0) + <P2(r, 0). 

The definition of <PI' <P2 for 0 = 0 is clear from Sec. II. 
Now 

<PI(r, 0) = g(x) [1 In ( x
2 

-:- y2 2) 
(X(2) + y 

+ . ( t -1 y t -1 2Y)l 
I 71" - an ~ - an -; 'j' 

and so I<pI(r, 0)1 ~ Ig(x)1 (In 2 + 71"). Since g(x) ---->- 0 
as x ---->- 00, there exists Xl such that I<pl(r, 0)1 < E(4 for 
all (r, 0) satisfying x 2 Xl' Y 2 O. 

Finally, choose X z so that 

g(x2) - g(x l ) < ~ f' > > X 
lor X 2 Xl _ 2' 

x 2 - Xl 8x1 

Then, for x 2 2X2 , Y 2 0, we have 

I <P2(r, 0) I 
~ lim ( r"'-; Ig(x) - g(t)1 dt +]2'" Ig(t) - g(x) I dt) 

,->0 j",/2 x - t xH t - X 

< ~(r'" dt + 1. ]2"'dt) = ~ (I + In 2) < ~. 
8 j"'/2 t x '" 8 4 

Hence If(r, 0)1 < E for all (r, 0) satisfying 0 E Sp, 

r 2 sec fJ max {2~, Xl' 2X2 , ~ L"'lg(t) I dt}. 

The theorem is therefore established under both the 
conditions (a) and (b). 

The conditions (a) (with fl = 1, of course) are not 
equivalent to that of (b). Two simple examples show 
this. Note first that, if g(x) is differentiable for all 
sufficiently large x, condition (b) becomes xg'(x) ---->- 0 
as x ---->- 00. Now consider g(x) = sin x(ln X)-2. Then 
J~oo g(x) dx(x exists and g(x) In x ---->- 0 as x ---->- 00. 

Further, g'(x) ---->- 0 as x ---->- 00 and so, if 

M = sup {g'(x): x 22}, 

then for y > x 2 2 we have Ig(y) - g(x)I(y - x) ~ M. 
This means that all the conditions in (a) are satisfied, 
with fl = I. However, since xg' (x) does not approach 
o as x ---->- 00, condition (b} is not satisfied. On the other 
hand, if 

g(x) = sin (In x)(ln X)-l, 

J~oo g(x) dxJx exists and xg'(x) ---->- 0 as x ---->- 00 so that 
(b) is satisfied. But g(x) In x does not approach 0 as 
x ---->- 00 and so one of the conditions in I(a) fails. 

We turn now to two corollaries. 

Corollary 1: Suppose that xg(x) satisfies the condi­
tions on g(x) in Theorem 1. Then 

rei8F(r, 0) ---->- - r~oo get) dt as r ---->- 00 
j~o 

uniformly for 0 ~ 0 ~ 271". 
This is an immediate consequence of Theorem 1. 

Corollary 2: Let xg(x) = A + hex), where hex) 
satisfies the conditions on g(x) in Theorem 1. Then 

rei6F(r, 0) = - A(ln r + i(O - 71"» + <I>(r, 0), 

where 

<I>(r, 0) -+ - get) dt _ _t _t Jl J~O:' h() d 

->0 1 t 

as r ---->- 00, uniformly for 0 ~ 0 :::;; 271". 

Proof: When z = r exp (i(}) does not belong to 
[a, 00), 

rei8f(r,0) 

I
- oo 

1 1 . I~oo h( d = A dt ( . __ ) + re18 t) t . 
a t - re,8 t a t(t - rei6) 

The extension to r > a, 0 = 0, 271" is clear. By Corol­
lary I, the second integral on the right side 

---->- -i~'" h(t) dt 
a t 

as r ->- 00, uniformly for 0:::;; 0 :::;; 271". The first 
integral on the right side is 

-A [In (a2 + r2 - 2ar cos O)! + i(O' - 71") - In aJ. 
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where tan ()' = r sin ()/(r cos () - a). For r > a, ()' 
increases monotonically from 0 to 27T as () increases 
from 0 to 27T. Now 

lIn (a
2 + r2 -,2a, cos ()! I 

S -In (1-~)-0 
as' - 00, uniformly for 0 S () S 27T, while 

Itan (0' - 0)1 = a Isin ()I/(r - a cos 0) 

S a/(r - a)-O 

as r -- 00, uniformly for 0 S () S 27T. 
From Sec. II, 

rei8~(r, () _ -fa get) dt 
-+0 

as r -- 00, uniformly for 0 S () S 27T. Thus 

reiBF(r, () = -A(1n , + j«() - 7T» + <1>(r, (), 

where 

<1>(r, () -- A In a - get) dt - --fa 1-+00 h(t) dt 

-+0 a t 

II 1-+ 00 h(t) dt = - g(t)dt - --
-+0 1 t 

as r -- 00, uniformly for 0 S () S 27T. 

IV. ANOTHER THEOREM 

In this section we show that strengthening the 
conditions on g(x) leads to the behavior ,aFe"~ () -- 0 
as r -- 00, with 0 < 0( < 1. 

Theorem 2: Suppose that g(x) = h(x)/xa, where 
o < 0( < 1 and hex) satisfies one of the following three 
conditions. 

(a), (b). These are identical with the conditions 
(a) and (b) on g(x) given in Theorem 1, together with 
the condition that f~oo hex) dx/x exists. 

(c) hex) = IIp(x), where: 
(i) p(x) > 0 for all x ~ a (> 0), 
(ii) p(x) is concave8 in [a, (0), 

(iii) p(x) -- 00 as x -- 00. 

Then ra F(r, () -- 0 as r - 00, uniformly for 0 S 
() S 27T. 

Proof: Choose a > 0 as in Sec. II. Since 0( < 1 we 
need prove only that r'1(r, (j) -- 0 as r - 00, uni­
formly for () E Sp. Again we always take x > a. 

8 This means that for any x" x. such that a ~ X, < x. and any A 
for which 0 ~ A ~ 1 we have 

P(Ax, + (1 - A)X.) ~ Ap(X,) + (1 - A)p(X.). 

See, for example, G. Choquet, Topology (Academic Press Inc., 
New York, 1966), Sec. 16. 

(a) The proof is an adaption of that of Theorem 
1 (a). To deal with hand h, note that if 0 < 0( < 1 
and 0 S () S tan-l t, the functions 

t1
- a(x - t) t1- a 

and 
(x - t)2 + y2 (x _ tl + y2 

are monotonically increasing in [~, x/2], while 

t1- a(t - x) t1- a 

and 
(t - X)2 + y2 (t _ X)2 + y2 

are monotonically decreasing in [2x, 00). Using the 
second mean-value theorem as before, it follows from 
the existence of f;;oo h(t) dt/t that, given E> 0, we can 
choose ~ such that 

ra If2(r, () I + ra If6(r, () I < €/4 

for all (r, () satisfying r cos () > 2~, () ESp (0 < 
(3 S tan-1 t)· Henceforth ~ is fixed (and is chosen 
> 1). Next, 

If1(r, ()I S 2/xi'\lg(t) I dt 

and so 

r"lfl(r, ()I S 2x-1+"(sec (3)aL
l1

lg(t) I dt. 

Thus ra Ih(r, ()I < €/4 provided () ESp and r cos () > 
(8/€ (sec (3)" f~ Ig(t)1 dt)(l-a)_l. 

Special care is needed in estimating Reh(r, (). For 
x ~ b + h, lui s h, 

Ix"(g(x + u) - g(x» I 
s I«x + u)" - x")g(x + u)1 

+ I(x + u)"g(x + u) - x"'g(x)1 

< 19(x + u)IO(lul(x - luj)"-l + Klul". 

But g(x) is bounded for x ~ b and so a constant K' 
can be found so that 

Ix"(g(x + u) - g(x» I s K'lul P 

for x ~ b + h, lui s h. Then estimating as before, 

r"IRefi" 0)1 S 2(sec fJ)"K'rJ" 
ft 

for 1] S h, () ESp. Thus by choosing 1] sufficiently 
small we can make r a I Reh(r, ()I < €/4 for () ESp. 
Henceforth 1] is fixed (and is chosen < 1). 

Finally, choose X so that 

Ih()1 1< dn~ 
tnt 4(2 In d + 21n 1]-1 + 7T)(sec fJ)'" 

for all t ~ X. Then for r cos () > 2X, () E Sp, we find 
that 

ra(lfa(r, ()I + IImflr, ()I + I!s(r, ()/) < €/4. 
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The proof is completed on combining the above 
estimates. 

(b) The estimates of h, /6' and It in (a) may be 
used, thus fixing 6.. As in Theorem 1 (b), hex) ---+ 0 as 
x ---+ 00. Now consider 

r"'(f3 + f4 + f5)(r, 0) 

= r"h(x) (2'll dt. + r" (2Z h(t) - h~x) dt 
J'll/2 t"( t - re'lI) J "'IZ t"'( t - re'lI) 

= epl(r, 0) + epk, 0). 

The definition of epl, ep2 for 0 = 0 is clear. Now 

1
b (t - x) dt 

Re epl(r, 0) = r"'h(x) z z 
",/2 t"[(t - x) + y ] 

= (!Y h(x)i
l 

u du . 
xl -I (u + 1)"'(u2 + tan2 0) 

For fixed (j, the integral on the right side decreases 
monotonically as IX increases from 0 to 1. For IX = 0, 
this integral ~ In 2 and, for IX = 1, ;;:: - In 2. Thus, 
for 0 < IX < 1 and 0 E Sp, 

IRe epl(r, 0)1 < (sec {J)"(ln 2) Ih(x)l. 
Also, 

\ 1m epl(r, 0) \ 

= (!:Y \h(x)\ tan oil du 
xl -t (1 + uY(u 2 + tan2 0) 

37T < (sec {JY "2 \h(x)\ 

for 0 < IX < 1 and 0 E Sp. Since hex) ---+ 0 as x ---+ 00, 

there exists Xl such that lepl(r, 0)1 < €/4 for all (r, 0) 
satisfying r cos 0 ;;:: Xl' 0 E S{J . 

Finally, 

lep2(r, 0)1 ~ (2r)'" lim (('ll-~ Ih(x) - h(t)1 dt 
x g .... o J "'/2 X - t 

+ (2'lllh(t) - h(x)1 dt). 
JzH t - x 

Now choose X 2 such that 

Ig(xz) - g(xl) I < € 

X2 - Xl 8xr(2 sec flY" ' 

for all Xl' x2 satisfying X2 > Xl ;;:: X 2 • Then we have 
lep2(r, 0)1 < e/4 for x ;;:: X2, 0 E S{J' Combining the 
above estimates completes the proof. 

(c) Since p(x) > 0 for all x;;:: a, it follows that 
p(x) is a monotonic increasing function of x for 
x ;;:: a. For, if there exist Xl' x 2 (X2 > Xl) such that 
p(xz) < p(xl), it follows from the concavity of p(x) 
that, for X > x 2 , 

p(x) ~ p(xz) + [p(xJ - p(xl)](x - XZ)/(X2 - Xl)' 

But the right side of this inequality becomes negative 
for X > [XZp(xI) - XIP(Xz)]/[P(XI) - p(xz)]. 

Since l/p(t) is monotonically decreasing for t ;;:: a, 
the second mean-value theorem gives 

Refz(r, 0) = _ ("'IZ dt(x - t) 
J,~ t"'p(t)[(x - t)2 + l] 

1 (gIl'll du(1 - u) 

= - p(6.)x'" JM'll u"'[(l - u)Z + tanZ 0] , 

where 6. < ~l < x/2. Hence for 0 E Sp 

r'" IRefz(r, 0)1 < (sec {JY rl du . 
p(6.) Jo uae(1 - u) 

Similarly we find that for 0 E Sp 

rae IImf2(r, 0)1 < (sec {JY" tan {J (t du , 
p(6.) Jo u"'(1 - u)Z 

r"'IRef6(r, 0)1 < (sec {JY"(<Xl du , 
p(2x) J2 u"(u - 1) 

r"'IImfir, 0)1 < (sec fl)" tan {J (<Xl du . 
p(2x) Jz uae(u - 1)2 

Since l/p(x) ---+ 0 as x ---+ 00, we may choose 6. so that 

r"'lflr, 0)1 + r" If6(r, 0)1 < e/4 

for all r, 0 satisfying r cos 0 ;;:: 26., () E Sp. Hence­
forth L\ is fixed. 

Exactly as in (a), r'" I/l(r, 0)1 < e/4 provided 
o ESp and 

r cos 0 > (~(sec {J)" (A ~)(I_")-I. 
€ Ja t"'p(t) 

Finally, consider 

r"(f3 + f4 + f5)( r, 0) 

= rae rzz dt. = "P(r, 0). 
J"'/2 t"'p(t)(t - re·8

) 

As in (b), for 0 < CI. < 1 and 0 E S{J' 

I fm "P(r, 0) I < (sec (W 37T _1_ . 
2 p(x/2) 

Now write 

Re "P(r, 0) = ~ J.Z'll dt(t - x) 
p(x) 'll/2 t"'[(t - X)2 + y2] 

r'" r2
'" dt (1 - X)2 

p(x) )"'/2 t'" (t - X)2 + l 
X _1_ pCt) - p(x) 

pet) t - X • 

The first term on the right side is less in absolute value 
than (sec (l)a(ln 2)/p(x) for 0 E Sp, by the same argu­
ment as in (b). To estimate the second term, note that, 
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since p(x) is concave in [a, (0), the function (p(t) -
p(x»/(t - x), for fixed x (> a), is a monotonic 
decreasing function of t for a S t < x and for 
t > x (its left and right limits at x need not be equal, 
but of course the left limit ~ the right limit). Thus 

r~ (2X dt (t - X)2 1 pet) - p(x) 

p(x) J"'/2 ta. (t - X)2 + l pet) t - x 

< r~ p(x) - p(x/2) (2X dt 

- p(x)p(x/2) x/2 J"'/2 t" 

< 3 (!.)rJ. p(x) - p(x/2) < 3 (!.)"_1_ 
x p(x)p(xj2) x p(x/2)' 

Combining the above inequalities, 

l?p(r, 0)1 < (!.)"(31T + In 2 + 3) _1_ , 
x 2 p(x/2) 

so that we may choose X such that l?p(r, 0)1 < E/2 for 
all r, 0 satisfying r cos 0 ~ X, 0 ESp. Combining the 
above estimates completes the proof of (c). 

Clearly the conclusion of Theorem 2 holds if g(x) 
can be written as the sum of a finite number of terms, 
each of which satisfies one of the conditions (a), (b), 
or (c). The simplest examples of functions p(x) 
satisfying the condition (c) are In x (with a> 1) and 
In In x (with a > e). This means that we could have 
hex) In x - a nonzero constant as x - 00 in (a). 

Corollary: Suppose that x"g(x) = A + hex), where 
A, 0( are constants, ° < 0( < 1, and hex) is the sum of 
a finite number of terms, each of which satisfies one of 
the conditions (a), (b), or (c) on hex) in Theorem 2. 
Then 

r"eiIZOF(r, 0) - A1T(cot 1T0( + i), 
as r - 00, uniformly for ° S 0 S 21T. 

Proof' For ° < 0 < 21T, 

It i"OAfa dt - r e 
.... 0 t~(t - reiO) 

+ "i"ofa g(t) dt + ~ i,,01 .... 00 dt h(t) r e . r e . . 
.... 0 t - retO a t"(t - retO) 

The extension to 0 = 0, 21T is clear. The first term on 
the right side is 1TA(cot 1T0( + i). The result proved 
early in Sec. II applies to the second and third terms 
and Theorem 2 to the fourth term. 

V. A BOUND ON THE TRANSFORM 

The theorem to be proved in this section is similar 
to one of Lanz and Prosperi.3 

Theorem 3: Suppose that g(x) = h(x)/x~ (0 < 
oc S 1), where hex) satisfies the conditions: 

(i) Ih(x)1 < A, a constant, forx ~ a ~ I, and 
Oi) there exist constants K > 0, h > 0, p.. (1 ~ p.. > 

0) such that 

Ih(x2) - h(xI ) I s K IX2 - XIII' 

for all Xl' x2 satisfying Xl, x2~a, Ix2 -xi l sh. 
Then there are constants C, R (> a) such that 

IF(r, 0)1 < Cr-" In r 

for all r ~ R, 0 E [0, 21T]. 

Proof: By Theorem 4 of Ref. I and the result of 
Sec. II it is sufficient to prove that there exist constants 
C', R' (> a) such that 

I/(r, 0) I < C'r-" In r 

for all r ~ R', 0 E Sp . 

Take x = r cos 0 ;;::: (a + h) and divide the range 
of integration into three intervals [a, x - h], [x - h, 
x + h], and [x + h, (0), with 

f(r, 0) = (fl + f2 + f3)(r, 0). 

As in the proof of Theorem 2(a) there is a constant 
K' such that 

Ix"(g(x + u) -, g(x»1 s K' lull' 

for x ~ (a + h), lui s h, and so 

2K'h" 
IRe/ 2(r, 0)1 S --. 

p..x" 

For the other estimates we have 

I Imllr, 0)1 < 1TA/(x - h)", 

ix-ii dt A (I-a/x du 
INr, 0)1 < A a t~(X _ t) = X~ JIi/'" u(l - U)" 

< ~ (I-a/", du < A (In ~ + In ~) 
- x" JIi/'" u(1 - u) x" a h ' 

I f3(r, 0)1 < A (00 dt = A foo du 
J"'+Ii tlZ(t - x) x~ h/x u(l + ut 

< A ((1 du + (OO~) = ~(In ~ + oc-1). 
x lZ Jlil'" U J1 uI+1' XIZ h 

Thus, for 0 ESp, r ~ (a + h) sec 13, 

r" I/(r~ O)l/ln r < (sec 13Y(3A + B/ln r), 

where B is a constant. This proves the result. 
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The orbit-orbit, spin-spin, and spin--orbit Hamiltonians of the Breit-Pauli approximation are express­
ed in terms of irreducible tensors. One- and two-center expansions are given in a form in which the 
coordinate variables of the interacting particles are separated. In the one-center expansions of the orbit­
orbit and spin-orbit Hamiltonians the use of the gradient formula reduces some of the infinite sums to 
finite ones. Two-center expansions are discussed in detail for the case of nonoverlapping charge distri­
butions. The angular parts of the matrix elements of these Hamiltonians are evaluated for product 
wavefunctions. 

1. INTRODUCTION 

Relativistic effects cause energy splittings and 
energy shifts in atoms and molecules. They are 
responsible for certain "forbidden transitions," 
which are often significan,t in spectroscopy. These 
effects also modify the interaction between atoms and 
molecules at large separations. 

The lowest-order relativistic corrections to the 
energy of a system can be calculated by using the 
Breit-Pauli Hamiltonian. Corrections of order higher 
than a;2 (where a; is the fine-structure constant) cannot 
be obtained consistently in this approximation. This 
Hamiltonian is limited to systems containing nuclei 
with Z« 137. However, this does not seem to be a 
practical limitation for many problems since the 
valence electrons are shielded by the inner-shell 
electrons and thus are not appreciably affected by the 
bare nuclear charges. In long-range force calculations 
the Breit-Pauli approximation is valid for inter­
molecular separations less than the wavelength of the 
characteristic transition in the molecules.1. 2 At 
larger separations retardation effects become more 
important and quantum electrodynamics must be 
used to calculate the higher-order corrections.3 

In this paper one- and two-center expansions for the 
orbit-orbit, spin-spin, and spin-orbit Hamiltonians 

• This research was supported by the National Aeronautics and 
Space Administration, Grant NsG-275-62. 

t Present address: Physics Department, Oregon State University, 
CorvallIs, Oregon. 

t Present address: Chemistry Department, University of Western 
Ontario, London, Ontario, Canada, 

1 E. A. Power and S. Zienau, J. Franklin Inst. 263,331 (1957). 
2 w. J. Meath and J. O. Hirschfelder, J. Chern. Phys. 44, 

3197,3210 (1966). 
3 H. B. L. Casimir and D. Polder, Phys. Rev. 73, 360 (1948); 

M. R. Aub, E. A. Power, and S. Zienau, Phil. Mag. 2, 571 (1957); 
E. A. Power and S, Zienau, Nuovo Cimento 6, 7 (1957); I. E. 
Dzialoshinskii, J. Exptl. Theoret. Phys. 3, 977 (1957); C. Mavroy­
annis and M. J. Stephen, Mol. Phys. 5, 629 (1962). 

are derived using the algebra of irreducible tensors. 4 •5 

This technique makes it possible to separate the 
coordinate variables of the interacting particles. If 
product wavefunctions are used, then the matrix 
elements can be evaluated in a straightforward 
manner. 

In the one-center expansions the coefficient involving 
the radial variables contains an infinite sum. In the 
case of the orbit-orbit and spin-orbit Hamiltonians, 
the use of the gradient formula results in a finite sum. 
This technique has also been used by Blume and 
Watson6 for the spin-orbit Hamiltonian. 

In the two-center expansions only the expressions 
for n ')novedapping charge distributions are discussed 
in detail. The general case, however, can be treated 
using the same techniques. 

For other expansions and integrations of the spin­
spin Hamiltonian, see Ref. 7. 

2. THE BREIT-PAULI HAMILTONIAN 

The following Breit-Pauli HamiltonianS describes 
the interactions of electrons moving in a nuclear 
Coulomb field. The operators for the spin and linear 
momentum of the )th electron are denoted by Sj and 
Pi = (lji)Vj, respectively. All the results are in 
atomic units (energy in e2/ao units, length in ao units 
where ao is the Bohr radius). The vector going from 
electron k to electron) is fik = fj - f k • We use Greek 

• M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc" New York, 1957). 

5 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(John Wiley & Sons, Inc., New York, 1957). 

6 M. Blume and R. E. Watson, Proc. Roy. Soc. (London) A270, 
127 (1962). 

7 R. M. Pitzer, C. W. Kern, and W. N. Lipscomb, J. Chern. Phys. 
37,267 (1962); M, Geller and R. W. Griffith, J. Chern. Phys. 40, 
2309 (1964); D. M. Schrader, J. Chern. Phys. 41, 3266 (1964). 

• The starting point for this Hamiltonian is the Breit-Hamiltonian: 
G. Breit, Phys. Rev. 34, 553 (1929); 36, 383 (1930); 39, 616 (1932). 
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indices to designate nuclei and Roman indices to 
represent electrons. 

The derivation of the Breit-Pauli Hamiltonian 
is discussed for a 2-electron atom by Bethe and 
Salpeter.9•1o The generalization to a molecular 
system is given by Hirschfelder, Curtiss, and BirdY 
The grouping of the tcrms is similar to the one used 
by Bethe and Salpeter9 : 

H = H. + a2H rel , (2.1) 

where a = e2jlic is the fine structure constant, 

with 

HLL = - .! 1-} [r~kPj' Pk + r ik • (rik • Pj)Pk], (2.4) 
2k>i rik 

HSL represents the spin-orbit magnetic coupling 
between electrons. 

H p is the relativistic correction due to the variation 
of mass with velocity. 

H D is a term characteristic of the Dirac theory, 
which has no simple interpretation. 

In the above equations the nuclei are considered 
fixed (Born-Oppenheimer approximation)" and we 
assume no external electric or magnetic fields. 

In order to derive the one- and two-center expan­
sions of the Breit-Pauli Hamiltonian, it is convenient 
to use the algebra of irreducible spherical tensors.4.5 
This method allows the separation of the variables 
into product form and permits the application of the 
Wigner-Eckart theorem12 in the calculation of 
matrix elements. The first step in this procedure is to 
write the various terms in the Breit-Pauli Hamiltonian 
as contractions of irreducible tensors. To illustrate 
the method of contraction, we consider HLL specific­
ally, and then state the results for the other relativistic 
Hamiltonians without derivation. 

In the first term of H LL one has to contract Pi • Pk' 
This can be done by introducing the following 
spherical tensor of the arbitrary vector A: 

Then 
1 

Pi' Pk = 1 (-l)"'Ti(Pi)Tl'''(Pk)' (2.10) 
",=-1 

Hp = -} Ip~, 
j 

(2.7) The second term of HLL can be written as a double 

Equation (2.2) is the usual nonrelativistic Hamiltonian 
for the system. Z" is the nuclear charge of the ath 
nucleus. 

The first term in the relativistic Hamiltonian Hre1 

gives the orbit-orbit interaction corresponding to the 
classical electromagnetic coupling of the electrons. 

The coupling of the spin-magnetic moments is 
given by Hss. The Fermi contact term involving the 
delta function gives the behavior of this Hamiltonian 
when 'ik = O. The second term is only applicable 
when 'ik ~ O. 

9 H. A. Bethe and E. E. Salpeter, Quall/um Mechallics of Olle­
and Two-Electron Atoms (Academic Press Inc., New York, 1957), 
p. 170. 

10 This Hamiltonian has recently been derived using quantum 
electrodynamics by T. Itoh, Rev. Mod. Phys. 37, 159 (1965). 

11 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular 
Theory of Gases alld Liquids (John Wiley & Sons, Inc., New York, 
1954), p. 1044. 

contraction. The first contraction is as follows: 

where ll~O('jk) is a solid spherical harmonic which in 
general is defined as13 

(2.12) 

Then 

'ik • ('ik . pj)Pk 

4 1 1 

= ~ L L (-l)"'+"1!r'(rik)1l7(rjk)TIW(pj)Tl"(Pk)' 
3 w=-1 '1=-1 

(2.13) 

12 E. P. Wigner, Z. Phys. 43, 624 (1927); c. Eckart, Rev. Mod. 
Phys. 2, 305 (1930). 

13 The phase convention we use for the Y;"(O, fP) is the same as that 
used, for example, in E. U. Condon and G. H. Shortley, Theory of 
Atomic Spectra (Cambridge University Press, London, 1935), and 
in Refs. 4 and 5. 
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The two solid spherical harmonics can now be coupled 
together14 : 

'Yr(rjk)'Y~(rjk) = r;k I 3 ! C(1I1; w, n) 
I [41T(21 + 1)] 

x C(1l1; OO)y;'*'1(Oik' ((iik)' (2.14) 

The Clebsch-Gordan coefficient C(11l; 00) vanishes 
unless (1 + 1 + /) is even and I is in the range 0 to 2. 

Using Eqs. (2.10)-(2.14), one obtains 

-1 I (-l)"'Tf(pi)T~"'(pk) 
OJ 

1 (21T)! HLL = I - - - I (-l)W+"C(112; w,n) 
k>; rik 15 """ 

X y~+'1(Oik' <)?jk)T1"'(Pi)T1"(Pk) 

(2.15) 

The first part of Eq. (2.15) contains a contribution 
from the 1==0 term of Eq. (2.14). The Clebsch­
Gordan coefficient in Eq. (2.15) can be given in closed 
formls : 

C(112; W'fJ) 

_ [ (2 + OJ + n)! (2 - w - n)! J! 
- 6(1 + w)! (1 - w)! (1 + n)! (1 _ n)! . (2.16) 

In a similar fashion the spin-spin Hamiltonian can 
be contracted to yieldI6 

- 81T b(Sl(rik) I (-l)wTf(sj)T1"'(sk) 
3 (J) 

(241T)! + I ( -1 )"'+"C(112; wn) 
5 rnew,,, 

Hss=I 
k>j 

X Y~+"(0:lk' c/>jk)Tl"'(sj)T~"(sk) 

(2.17) 

It is sometimes convenient to couple the spins 

together to form a total spin tensor defined by4.l> 

TiV(Sj, Sk) 

== I C(lll; -K, -1' + K)T}"(Sj)T}v+K(Sk)' (2.18) 

" 
Then the Fermi contact term contracts to a scalar 
and in the spin-dipole-dipole term the spin transforms 
like a second-rank tensor: 

~; b(3)(r jk)r:(sj, Sk) 

HSS=k~j _ (241T)!+I(_IY 
5 r ik v 

. (2.19) 

X Y2(Ojk' ({iik)T;:V(sj, Sic) 

In the spin-orbit Hamiltonian HSL one can first 
introduce a tensor T,:(r x p) to give 

1 '" '" Zp '" w w '" HSL = - """"""3 "",,(-1) TI(t jp x Pj)T;:" (Sj) 
2 P i riP W 

-! 1 ~ I (-1)'" 
2 kl< i r~k w 

X [Tf(tik X Pj) - 2Ti(rjk x Pk)] Tl"'(Sj)' 

(2.20) 

In the first term of Eq. (2.20), (riP x Pi)' is the orbital 
angular-momentum operator of electron j with 
respect to nucleus p. The vectors (rjk x pj) and 
(rik x Pk)' however, are not angular momentum 
operators about a fixed center. Here it is convenient 
to write them as a contraction which separates the 
position variables from the momentum operator: 

Tf(rik x Pj) 

1/f1T 1 = -:- - I C(llI; n, w - n)'Y1(rik)Tr-"(pj)' (2.21) 
l 3 ,,~1 

The Clebsch-Gordan coefficient in Eq. (2.21) is 
given by 

[[

(1 + n)! (1 - w + n)! (1 + w)! (1 - W)!J! 1 
1 (1 - n)! (1 + W - n)! [n! (n - W)!]2 

C(llI; 1}, OJ - f)) = -= . 
.)8 _ [ (1 - 1})! (1 + W - n)! (1 + w)! (1 - w)! Ji 

(1 + n)! (1 - w + 1})! [(1 - n)! (w - n)!]2 

(2.22) 

The remaining relativistic Hamiltonians Hp and 
Hn only involve scalars and thus need not be 
considered further. 

14 See, for example, Ref. 4, p. 61. 
15 Closed form expressions for these coefficients are available 

(see Refs. 4 and 5), and they are tabulated in Ref. 13. The 3-j 
symbols, which are closely related to the Clebsch-Gordancoefficients, 
have been tabulated in detail by M. Rotenberg, R. Bivins. N. Metro­
polis, and J. K. Wooten, Jr., The 3-j and6-j Symbols (The Technology 
Press, Cambridge, Mass., 1959). 

16 P. R. Fontana, Phys. Rev. 125,220 (1962). 

3. ONE-CENTER EXPANSIONS 

In general, the origin of the coordinate system is 
arbitrary. The vectors fp and 'j denote the position 
of a nucleus and an electron, respectively. 

The derivation of the one-center expansion for 
H LL, Hss, and HSL ' respectively, consists of three 
steps. First one has to express the Yf(Ojk' ({ijk) as a 
sum of products in the spherical harmonics of (OJ, ({ii) 
and (Ok' ({ik)' Then (l/rjk)n is expanded in a similar 
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manner. Finally the two expansions are coupled 
together. 

The general addition theorem for the solid spherical 
harmonics is given by Rosel7 : 

lIN(rjk) = [47T(2N + I)!]! 
xI f (_1)L C(L,N-L,N;K,p-K) 

L=O K=-L [(2L + I)! (2N - 2L + 1)!]! 

x lI~~::~Hrj)lIL(rk)' (3.1) 

The one-center expansion for (l/rik)n can always be 
written in the formls 

1 4 ~ ~ R( -n, I) (1)vyV(O ) -V(O -;;- = 7T £.. £.. - I 1> <Pi Yt k' <Pk)' 
r ik !=Ov=-! (21 + 1) 

(3.2) 

where R( -n, l) is a function of r, and rlr,' Only the 
radial coefficients for n = 1, 3, and 5 are required. 
In the limiting case rj = rk the functions R( -n, /) 
diverge for n ~ 3, and one has to introduce a special 
cutoff in the integrations. Letting rj = rk(l - €) at 
the limit avoids these difficulties. After integrating 
and adding up the sums, € can be set equal to zero. 
If one uses the Laplace expansion, thenlS 

r~ 
R( -1,1) = f1' (3.3) r; 

00 r2n+1 
R( -3, 1) = (21 + 1) I 2':Z+3' (3.4) 

n=O r> 

R( -5,1) = (21 + 1)i (n + 1)(21 + 2n + 3) ~::l 5' 
3 n=O r';:+ + 

(3.5) 

where r> and r < stand for the greater or lesser of rj 
and rk • The coefficients R(-n, /) can also be written 
symmetrically with respect to rj and r k • There are two 
such expansions; they involve powers of (rr + r:)! 
and (rj + rk ), respectivelyIS.19: 

R( 1 I) - (21 + 1) '" (2n - 1)1! r~r~ 
-, - f.' (n + 1 + I)!! (n - I)!! r2n+l ' 

(3.6) 

R 3 1 - (21 1 '" (2n + 1)!! rir~ 
(- , ) - +) f.' (n + 1 + I)!! (n - I)!! r2n+3 ' 

(3.7) 

R(-5 1) = (21 + l)I (2n + 3)!! r~r~ 
, 3 n(n+l+l)!!(n-l)!!r2n+5

' 

(3.8) 

17 M. E. Rose, J. Math. & Phys. 37, 215 (1958). 
18 R. A. Sack, J. Math. Phys. 5, 245 (1964); 5, 252 (1964). 
19 P. R. Fontana, J. Math. Phys. 2, 825 (1961); Y. N. Chiu, J. 

Math. Phys. 5, 283 (1964). 

where 

r = (r2 + r2)! n = I I + 2 / + 4 ... 'J k' , , , , 

(2k)!! = 2 ·4 ... 2k, 

and 

(2k + 1)!1 = l' 3 .. · (2k + 1); 

R( -1, 1) = 2(21 + 1) 

~ (21 + 2n - I)! (1 + n)(rhY+/l 
x£.. , 

n=o(21 + n + I)! n! (r; + rk )2!+2n+l 

R(-3, 1) = (21 + 1) 

R(-5, 1) = (21 + 1) 
6 

(3.9) 

00 (21 + 2n + 3)! (r irktin xI . 
n=o(1 + n + 1)(21 + n + I)! n! (rj + rk)2!+2n+5 

(3.11) 

Finally, Eqs. (3.1) and (3.2) are combined using the 
coupling theorem for spherical harmonics14 ; 

= [47T(2N + I)!]! I I Ix1fv(l, v; L, K; q; t) 
1,v L,I\. q,t 

N-L LR( l)yl'+V-K(O )yK-V(O ) X rj r k -n, q i' <pj t k' <Pk , 

(3.12) 

where 

x'N(l, v; L, K; q; t) = (_l)L+v 

C(L,N - L,N; K,p - K)C(N - L, 1, q;p - K, v) 
X I 

[(2q + 1)(2t + 1)(2L)! (2N - 2L)W 

x C(N - L, 1, q; OO)C(L, 1, t; K, -v)C(L, 1, t; 00). 

(3.13) 

Here the sums over q and t are controlled by the 
Clebsch-Gordan coefficients. 

One can now apply Eq. (3.12) to the tensorial 
representation of the relativistic Hamiltonians [Eqs. 
(2.15), (2.17), and (2.20)]. The resulting one-center 
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expansions are 

Hu = -8rr ~ 
k>j 

Hss = -8rr ~ 
k>j 

00 I 1 

+ t ~ I ~ (_l)V+W 
1~0 v~-l w~-l 

x R(-l, I) yV(t1. .) 
(21 + 1) I) , cP J 

X YI V(t1,n cpk)T~(Pi)T:;-W(Pk) 
rIO I 2 L 1 

+I~~~2:~ 
1~0 v~-IL~OK~-L q.t w.~~-l 

X (-l)w+~C(112; (I), rj) 

X X';+~(l, V; L, K; q; t)r;-Lrf 

X R(-3, l)y~H+v-K(t1i' cPj) 

_X y;-V(t1k' cpk)T:;-W(pj)T:;-~(Pk) 

(3.14) 
1 

+ to(3)(r jk) ~ T~(Si)T:;-ro(Sk) 
ro~-l 

00 I 2 L 1 

+ 62: 2: ~ 2: ~ ~ 
I~Ov~-IL~OK~-Lq.t ro.~~-l 

X (-1)WHC(112; W,rj) 

X X';H(l, v; L, K; q; t) 

X r;-Lrf R( - 5, 1) 

X y~+~+V-K(t1j, cp)') y;-V(t1k> CPk) 

_ X T;ro(Si)T:;-~(Sk) 

(3.15) 

HSL = 1 ~I ~P ± (-I)WT~(riP x Pi)T:;-"'(s;) 
2 (J ; r;(J ",~-1 

- 4:n-! i ± ± ! ! ± (_l)W 
I k*;I=Ov=-IL~OK~-Lq.t "'.~=-1 

X C(111; rj, W - rj) 

X xW, v; L, K; q; t)r}-LrfR(-3, 1) 
X y~+V-K(t1;, CPt) Y7-V(t1k , CPk) 

X [Tr-~(p;) - 2T~-~(Pk)]T:;-ro(s;). (3.16) 

There is a striking similarity between the second 
terms of H LL and H ss' the difference being the radial 
coefficient R and the appearance of linear-momentum 
operators in HLL and spin in Hss. It is interesting to 
note that the angular-momentum operators do not 
appear in H LL' It is indeed possible to rewrite this 
Hamiltonian in such a way that it contains angular­
momentum terms, but the transformed Hamiltonian 
does not simplify appreciably. 20 In all these expansions, 

20 The transformed Hamiltonian has the following form 
1 I 

HLL = - 2' I :;- [2r~k(p;· Pk) - (r; X Pk)(P; X Pk) 
k>jr;k 

- (rik X Pk)' I; - (rki X Pi) .Ik ). 

The terms of the form (rik X Pk)' I; represent the coupling of the 
angular momentum of electron k relative to electron j with the 
angular momentum of electron j. 

the variables associated with electron j and k are now 
separated. In this form the angular part of the matrix 
elements of these Hamiltonians can be carried out in 
a straightforward manner (see Sec. 5). A difficulty 
arises in the radial integrations since the coefficients 
R( -n, /) for n > 1 involve infinite sums. 

In the case of H LL and HSL these infinite sums can 
be transformed into finite ones by applying the 
gradient formula to Eqs. (2.4) and (2.6), respectively. 
The procedure makes use of the fact that r;k!r:k 
appears in these two Hamiltonians. By making use of 
the relationship 

(3.17) 

and the gradient formula21 

Ti(V)<I>(r)Y~(t1, cp) 

( i..±..l)!C(l, 1, I + 1; v,ft)Y;tt(t1, cp) 
21 + 3 

x (d<l> _ 1 <1» _ (_1 -)! C(l 1 1 - 1 . Y 11.) 
dr r 21 - 1 " " r 

x Y;~i(t1, CP)G~ + 1: 1 <1», (3.18) 

the ftth component of r;dr:k can be written as 

Tf (-V; -.L) = +4rr! (-I)'C(lln; 00) 
r jk l,n,v 

x C(lln; Y, -ft) 

x y~-V(t1;, CPt) Y~(t1k' CPk)A I,n' (3.19) 

where 

A - (21 + I)! r~ E(r _ r ) 
1,1+1 - 21 + 3 r;+2 ; k , 

A = _ (21 + I)! r~-1 E(r _ r.) 
1,1-1 21 _ 1 ri+1 k 3 ' 

(3.20) 

and E(X - y) = 1 for x > y, E = 0 for y > x. With 
these equations one can rewrite HLL and HSL in the 
following way: 

HLL = - (4rr)2! .i ± ± (_I)"+w R(-I, 1) 
6 k>; I=Ov=-lw=-1 (21 + 1) 

x Y;(t1;, CP;)YIV(t1k , CPk)Tr(p;)T1W(Pk) 

- (41T)\/2! .i ± ± ! I ± G 
6 k>; 1=0 v=-IL=O K=-L n,q. tro,q=-1 

X l-L LA yq+W-V-K(LJ )yV+K(LJ ) r; rk I,n q u;, cP; t uk' CPk 

X T:;-W(p;)T:;-q(Pk)' (3.21) 

., M. E. Rose, MUltipole Fields (John Wiley & Sons, Inc., New 
York, 1955), p. 28. 
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._-:.1 

FIG. I. Coordinate system for two-center expansions. 

where 

G = (_I)L+v+w-t~[ (2n + 1)(21 + 1) J1-
(2L)! (2 - 2L)! (2q + 1)(2t + 1) 

X C(L,1 - L, 1; K, W - K)C(lln; 00) 

X C(l1n; v, -fj)C(n, 1 - L, q; fj - v, OJ - K) 

X C(n,1 - L, q; OO)C(ILt; v, K)C(ILt; 00), 

(3.22) 

HSL = -2
1 !! ~II i (-I)(J}T~(rill x Pi)1'lm(Si) 

II i rill m=-1 

27T.J2 00 I 1 - -.-! ! !! ! C(111;fj, W - fj) 
l k<#il=Ov=-ln m,~=-1 

X C(lln; v, -fj)C(lln; 00) 

X y~-V(Oi' lPi)Y~(Ok' IPk) 

X AI,n[T~-~(Pi) - 2Tr-~(pk)]Tlm(si)' (3.23) 

In a calculation of matrix elements of H LL the 
angular integration restricts the ranges of g and t 
and then C(/, L, t; 00), say, limits the sum over I. 
For HSL the angular integration directly limits the 
sum over I. 

4. TWO-CENTER EXPANSION 

One has to distinguish several regions in two­
center expansions. 22 In long-range force calculations 
the distance R between the two centers is larger than 
the size of the charge distributions of the interacting 
molecules. In this case one can expand the Breit­
Pauli Hamiltonian in a series in inverse powers of R. 
To obtain two-center expansions for the regions 
where the charge distributions overlap, one begins 
with the one-center result, transforms to the second 
center, and re-expands the result. 

The coordinate system used in the two-center 
expansion is given in Fig. 1. The x, y, and z axes of 
the two coordinate systems are parallel. In general, 
R is not along the z axes. However, in most applica­
tions R is chosen to lie along the z axes. The vector 
ri specifies the position of electron j with respect to 
center A, and r~ the position of electron k referred to 

•• R. J. Beuhler and J. O. Hirschfelder, Phys. Rev. 83, 628 (1951); 
85, 149 (1952). 

center B. The position of the nuclei are designated by 
ra and rft , respectively. 

The quantities Yi(Oik' fPik) and r;t which occur in 
the tensor forms of the Breit-Pauli Hamiltonian must 
be expressed in terms of the variables of the two 
coordinate systems. To generalize Eq. (3.1) to two 
centers, one makes use of the relations fik = f, -

rk = ri - r~ - R. Then 
N L 

'Y~rjk) = [47T(2N + 1)!]1-! ! (_I)N+L 
L=OK=-L' 

X C(L, N - L, N; K,p, - K) 

[(2L + I)! (2N - 2L + 1)!]1-

X 'Y~-=-L(rk)'Y1(rj), (4.1) 

where on the right-hand side we have permuted rk 
and fj' which introduces the phase factor (_I)N. 
Since rk = r~ + R, 'Y~-=-L(rk) can be expanded using 
Eq. (3.1) to give 

N L N-L J 

'YMrjk) = 47T! ! ! ! (-I)N+L[(2N + I)!]! 
L=OK=-L J=Om=-J 

X C(L, N - L, N; K, P, - K) 
X C(J, N - L - J, N - L; w,p, - K - w) 

[(2L + I)! (2J + I)! (2N - 2L - 2J + 1)!]1-

X 'Y1(fj)'Y~(r~)'Y~~~J(R). (4.2) 

If R lies along the z axes, then23 

'Y~~i~ARz) 

= R N- L - J [2N - 2L - 2J + IJ! t5 (4.3) 
47T /l-K-<O,O 

and 

'Y~fjk) = r7kYMOik' lPik) 

= [47T(2N + 1)]1-! NiL! (_I)N+L 
L=O J=O/C=-L (N - L - J)! 

[ 

(N + p,)! (N - p,)! ]! 
X (2L + 1)(2J + 1)(L + K)! (L - K)! 

X (J - P, + K)!(J + p, - K)! 

L 'JRN-L-JyK(fl )Y -K(fl' ') X rj rk LVi' lPi J vklPk' 
(4.4) 

The two-center expansion of rikn for overlapping 
charge distributions is in general very complicated. 
For n = I the expansions have been done for the 
overlap regions.22 A method19 has been developed 
that can be used for the general expansion of rikn. 
For the nonoverlapping region a useful expansion 
has recently been derived by Sack. 24 In this case 

•• P. R. Fontana, Phys. Rev. 123, 1865 (1961). 
•• R. A. Sack, J. Math. Phys. 5, 260 (1964). 
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electrons j and k are associated with centers A and B, 
respectively. The following result is valid for R along 
the z axes25 : 

where 

K(ll' 12 , la; 'II) 

[t(l1 + 12 - la)]! [!(/1 + la - 12)]! [t(l2 + 13 - II)]! 

X [

(2/1 + 1)(212 + 1)(21a + 1)(/1 + 12 - la)! ]i 
X (11 + la - 12)! (/2 + 13 - II)! 

(11 + 12 + la + I)! 

X C(11/2/a; -'II, 'II) (4.6) 

(4.5) and 

. ..' 211
+!2+

HtrrtCn + 11 + 12 + la) + q + t] G(n, 11' 12 , la, q, t, r j , rk) = ----------~-.:...-~~~---.!~:...-.!:-..:..~------ (4.7) 

r(~)rrtCn - 1)](2/1 + 2q + I)!! (212 + 2t + I)!! q! t! 

X rrHn + 11 + 12 - la - 1) + q + t]r~Hll(r~)2t+ll. 

In Eq. (4.7) rex) is the Gamma function and the 
double factorials are defined in Sec. 3. The two 
center expansion fOl the orbit-orbit, spin-spin, and 
spin-orbit Hamiltonians can now be obtained by 
substituting Eqs. (4.4) and (4.5) in Eqs. (2.15), (2.17), 
and (2.20), respectively, and coupling the various 
spherical harmonics. In the resulting equations26 the 
variables associated with centers A and B are separated. 

The Wigner-Eckart theorem12 when applied to the 
angular parts of the matrix elements of H LL, Hss , 
and HSL yields selection rules for these Hamiltonians. 

S. MATRIX ELEMENTS 

The one- and two-center expansions of the Breit­
Pauli Hamiltonians H LL , Hss , and HSL are of the 
general form 

HLL ""'-'! { }Y:(O;, Cf'j)Y:(Ok' Cf'k)T~"'(p;)T~"(Pk)' 
(5.1) 

Hss ""'-'! { }Y:(O;, Cf';)Y:(Ok' Cf'k)T~"'(s;)~"(Sk)' 

(5.2) 

HSL ""'-'! { }Y:(O;, Cf'j)Y:(Ok' Cf'k)T~"'(pj)T~"(Sk)' 

(5.3) 
If the wavefunction'¥ is of the type 

'¥ = ~ en IT {1f'n(r;, s;)}, (5.4) 
n i 

where 

'5 The result for n = I agrees with the previous work of R. C. 
Carlson and L. S. Rushbrooke, P.roc. Cambridge Phil. Soc. 46, 
626 (1950) and Refs. 17 and 22. 

•• See appendices I.A-I.C of W. J. Meath, The University of 
Wisconsin Theoretical Chemistry Institute Technical Report 
WIS-TCI-75, April, 1965. For explicit expressions through (lIR3) 
see W. J. Meath and J. O. Hirschfelder, J. Chern. Phys. 44, 3197 
(1966). 

then the matrix elements of the Hamiltonians can be 
calculated in a straightforward manner. In Eq. (5.5) 
'YJp,(s;) is a two-component spinor (Pi = ±!). 

In HLL and HSL one first has to operate with 
Tl"'(P;) on the wavefunction. Application of the 
gradient formula [Eq. (3.18)] yields 

T1-"'(p;)<I>(r;)Y;"(O;, Cf'j) 

= ~ ~ C(llu; m, -w)C(llu; 00) 
I u 

where 

A
I
,I+1 = (21 + l)t (d<l> _ i <1» 

21 + 3 dr; rj , 

A _ = (21 + l)t(d<l> + 1 + 1 <1» 
1,1 1 21 1 d ' - rj r; 

(5.7) 

with all the other A's vanishing because of the tri­
angular condition in C(/, 1, u; 00). The angular 
integrations in HLL , Hss , and HSL are now all of 
the same form, namely27 

(Y("(Oj, Cf';)1 Y~(O;, Cf'j) IY;"(Oj, Cf';» 

= [(21 + 1)(2q + 1)]iC(1 1" m 'II m')C(1 /'. 00). 
41T(21' + 1) q , , , q , 

(5.8) 

The selection rules for this angular integration can be 
directly obtained from the Clebsch-Gordan coeffi­
cients. The integral vanishes unless I + l' :::;; q :5: 
II - 1'1 and the sum I + I' + q is even. Also m' = 
m+y. 

.7 See, for example, Ref. 4, p. 62. 
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The integration over the spin variables is given by 
the expression28 

(1]p,(Sj)I TIW(sj) l1]p(sj» 

J3 I 

= 2 CClli;,Lt, -w,,Lt) 

• 8 See, for example, Ref. 4, p. 89. 

The remaining radial integrals depend on the 
particular choice of <I>('i) and cannot be done in a 
general manner. 
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Complementary variational principles are developed for the solution of Fredholm integral equations 
with symmetric positive-definite kernels. In particular, the theory is applied to .linear equations of the 
type 

tp(r) = f(r) + AI J\,(r, 5)tp(5) ds, 

and bounds are obtained for S ftp dr. When A is negative, the bounds are complementary upper and lower 
ones. When A is positive, the bounds are one-sided, but an improvement is made on a result of Strieder 
and Prager [J. Math. Phys. 8, 514 (1967)]. A condition given by these authors for the existence of bounds 
does not seem to be strictly necessary, and alternative conditions are derived. Systematic improvement 
of bounds by iterative and scaling procedures is discussed. 

1. INTRODUCTION 

Recently Noblel and Ra1l2 have developed comple­
mentary variational principles which are relevant in 
physical situations described by a pair of simultaneous 
equations 

T<I> = oW 
au' 

TtU = oW 
0<1> ' 

(1 a) 

(lb) 

T being a linear operator and Tt its adjoint. Applica­
tions of the theory have been made to ordinary 
differential equationsl and also to partial differential 
equations of diffusion3.4 and Poisson5 type. 

1 B. Noble, Univ. Wisconsin Math. Res. Center Rept. No. 473 
(1964). 

2 L. B. Rail, J. Math. Anal. Appl. 14, 174 (1966). 
3 A. M. Arthurs, Proc. Roy. Soc. (London) A298, 97 (1967). 
• A. M. Arthurs and P. D. Robinson, Proc. Roy. Soc. (London) 

A303, 497 (1968). 
• A. M. Arthurs and P. D. Robinson, Proc. Cambridge Phil. Soc. 

(to be published). 

In this paper we show how the theory can be 
applied to integral equations with symmetric positive­
definite kernels, and, in particular, to nonhomo­
geneous linear integral equations with parameter A. 
When A is negative, we obtain complementary upper 
and lower bounds; and when A is positive, we obtain 
one-sided bounds which are an improvement on a 
result of Strieder and Prager. 6 A condition given by 
these authors for the existence of bounds does not 
seem to be necessary, and alternative conditions are 
derived. Systematic improvement of bounds by 
iterative and scaling procedures is also discussed. 

2. THEORY 

A. Complementary Variational Principles 

In the simplest form of the theory (which suffices 
for the present paper), <I> and U are real functions of 
the position vector rand W is also real, depending on 

6 W. Strieder and S. Prager, J. Math. Phys. 8, 514 (1967). 
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<1>, U, and r. Tt is the adjoint of T in the sense that B. Integral Equations with Symmetric, 
Positive-Definite Kernels 

f U(T<I» dr = f (T
t 

U)<I> dr, (2) These variational principles are immediately appli-

the integrations being taken over the whole configura­
tion space. If we define the functional 

1(<1>, U) = J W(r, <1>, U) dr - J U(T<I» dr (3a) 

= f W(r, <1>, U) dr - f (Tt U)<I> dr, (3b) 

then the following results can be derived l : 

Stationary property: /(<1>, U) is stationary at (T, u) 
if Eqs. (Ia) and (Ib) hold simultaneously at (T, u). 

First variational principle: Choose a trial <I> close 
to T, and determine U(<I» so that (1a) is satisfied 
identically. 

Then, if (1 b) holds at (T, u), we have 

G(<I» == 1(<1>, U(<I>)) = I(T, u) + t~l(<I» + 0(<1> _ T)3, 

(4) 
where 

Second variational principle: Choose a trial U 
close to u, and determine <1>( U) so that (1 b) is satisfied 
identically. 

Then, if (la) holds at (T, u), it follows that 

J(U) == I(<I>(U), U) = I(T, u) + t~2(U) + O(U - U)3, 

(6) 
where 

~2(U) = - f {[~(U) - T]2[~:;1,u 

- (U - U)2[02~J } dr. (7) 
AU <p,U 

If terms of higher order than the second are ne­
glected (or vanish), we see that the functionals G( <1» 

and J(U) furnish complementary upper and lower 
bounds for I( T, u) when ~l and ~2 do not have the 
same sign. If ~l and ~2 do have the same sign, then 
G(<I» and J(U) become different one-sided bounds. 

cable to integral equations of the type 

whenever 

m(<I» = J J\,(r, s)<I>(s) ds, (8) 

J{,(r, s) = J b(r, t)b(S, t) dt (9) 

and it is assumed that the functional m has an inverse. 
We may write (8) and (9) together as 

m(<I» = K<I> = TtT<I>, (10) 

where K, T, and yt are now integral operators. [If T 
corresponds to the real kernel b(r, s), then the adjoint 
Tt corresponds to the kernel b(S, r).] Condition (9) 
clearly implies that J{,(r, s) is a symmetric kernel (or, 
equivalently, that K is a self-adjoint operator, assum­
ing always that orders of integration can be changed). 
It also implies that J{,(r, s) is a positive-definite kernel, 
since, for an arbitrary real function 1p(r), we have 

J 1pK1p dr = f 1pTt T1p dr = J(T1p)2 dr ~ O. (11) 

Further discussion of the kernel J{, is given in Sec. 5. 
If we take 

W = tu 2 + M(<I», (12) 
where 

dM/d<l> = m (<I», (13) 

then it is easy to see that Eq. (10) is equivalent to the 
pair of simultaneous equations 

T<I> = U = oW , (14a) 
AU 

Ttu = M(<I» = oW. 
0<1> 

(14b) 

The function T is to be the solution of Eq. (8) for <1>, 
and u is TT. On substituting from (12) and (13) into 
the various formulas of Sec. 2A, we obtain the 
expressions 

G(<I» = f {_t(T<l»2 + M(<I>)} dr (15) 

= f{-t<1>K<I> + M(<I»} dr, (16) 

J(U) = f {tU2 + M(m-l(TtU» 

and 
- (Tt U)m-l(Tt U)} dr, (17) 

I(T, u) = f {-tTm(T) + M(T)} dr. (18) 
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It is interesting to note that expression (15) for 
G(<I» does not involve the T operator explicitly. A 
similar expression for J is obtained if we restrict 
ourselves to trial functions U of the form 

U= T0, (19) 

when (17) becomes 

J(T0) = I U0K0 + M(m-\K0» 

- (K0)m-I(K0)} dr. (20) 

From (5), (7), and (12) it is evident that, if 

[02W] = [dm] < 0 (21) 
0<1>2 <p, u d<l> <p - , 

then G(<I» is a lower bound to I( rp, u) and either J(U) 
or J(T0) are upper bounds which are complementary 
to G(<I». 

3. NONHOMOGENEOUS LINEAR 
INTEGRAL EQUATIONS 

A. Basic Formulas 

The nonhomogeneous linear equation 

<I>(r) = fer) + A I J{,(r, s)<I>(s) ds (22) 

provides an example of the foregoing theory with 

m(<I» = A-I(<I> - f) (23) 
and 

The various functionals become 

G(<I» = I {-i<l>K<I> + A-I(!<I>2 - f<l»} dr, (25) 

J(U) = IUU2 - iA-I(f+ ATtU)2} dr, (26) 

J(T0) = I U0K0 - tA-I(f + AK0)2} dr, (27) 

and 

I(rp, u) = -lA-IIfrp dr. (28) 

The ,quantity I acts as a measure of the accuracy of the 
solution of the integral equation (22). In situations 
where S frp dr is of physical interest, this technique is 
particularly advantageous. 

C. Bounds for Positive A 

If A is positive, a closer examination of the func­
tionals AI(<I» and A2(U) is required. From (5), (14), 
and (24) we have 

AI(<I» = I P-I(<I> - rp)2 - [T(<I> -'- rp)]2} dr 

= I(<I> - rp)(A-I 
- K)(<I> - rp) dr (30) 

and 

A2(U) = - I {A[Tt(U - uW - (U - U)2} dr 

= +A I(U - u)(A.-I 
- K)(U - u) dr. (31) 

Thus the 
positive-definiteness of (A-I - K) (32) 

is a necessary and sufficient condition for both AI(<I» 
and A2( U) to be nonnegative. 

In this situation G(<I» and J(U) are each upper 
bounds to J(rp, u), and the question arises as to which 
is the less. In general, we cannot say, but in the partic­
ular case when 

U = T<I>, (33) 

it is not difficult to see that J is less than G. From (4) 
and (6) we have 

G(<I» - J(T<I» 

= iAI(<I» - iA2(T<I» 

= iA-I I (<I> - rp)(l - 2AK + A2 K2)(<I> - rp) dr 

= iA-I I {(l - AK)(<I> - rpW dr ~ O. (34) 

The evaluation of J(T<I» requires only a single applica­
tion of the K operator, as does G(<I»; in principle we 
have a better bound. 

When K satisfies the Hilbert-Schmidt condition 

It should be noted that W is merely a quadratic If 
functional of <I> and U, so that in this case there are J{,2(r, s) dr ds < 00, (35) 
no third- or higher-order terms in Eqs. (4) and (6). 
Thus the condition that <I> and U should be close to we note that (32) is equivalent to the condition 

the exact rp and u can be dropped. 0 < A < AI' (36) 

B. Complementary Bounds for Negative A 

Whenever A is negative, condition (21) holds and we 
obtain complementary lower and upper bounds 

G ~J~J. (29) 

where Al is the smallest eigenvalue of K (these eigen­
values are all positive, since K is positive-definite). 
This follows from standard integral-equation theory, 
which tells us that, as 1p varies, the quantity S 1pK1p dr 
has greatest value Ail S 1p2 dr. 
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D. Systematic Improvement of Bounds by Iteration 

When A is positive, condition (36) is precisely the 
one required in order that the Neumann series for the 
solution of the integral equation (22) by iteration 
should converge. Thus, if<l>n is an approximation to q;, 
we expect <l>n+l' defined by 

<l>n+l =/ + AK<I>n' (37) 

to be a better approximation. From (34) it follows 
that 

(38) 
Moreover, since 

~l(<I>n+l) 

= fU + AK<I>n - q;)(A-1 
- K)U + AK<I>n - q;) dr 

= f (<I>n - q;)AKO-1 
- K)AK(<I>n - q;) dr, (39) 

we have 

J(T<I>n) - G(<I>n+l) 

= t~2(T<I>n) - t~l(<I>n+l) 

= t f(<I>n - q;)(K - 2AK2 + A2K3)(<I>n - q;) dr 

= t f {(I - AK)(<I>n - q;)}K{(l - AK)(<I>n - q;)} dr 

~~ (~ 

from (11). Thus, starting with any initial function <1>1, 
it follows from (38) and (40) that, when condition 
(36) is satisfied, 

G(<I>l) ~ J(T<I>l) ~ G(<I>2) ~ J(T<I>2) 

2 G(<I>3) 2 ... ~ I( q;, u). 

If A is negative and satisfies 

\A\ < AI, 

then the result corresponding to (41) is 

G(<I>I) S G(<I>2) S ... S I(q;, u) 

S ... S J(T<I>2) S J(T<I>l)' 

E. Improvement of Bounds by Scaling and Ritz 
Procedures 

(41) 

(42) 

(43) 

Because of the quadratic nature of the functionals 
G and J, they can readily be improved by scaling 
procedures. For example, if IX is a parameter, it 
follows from (25) that 

G(IX<I» = !1X
2J <1>0-1 

- K)<I> dr - IXA-1JI<1> dr. (44) 

tional is 

{ff<l> drf 
G(<I» = G(lXo<l» = - -~'---~:.---

2)..2f <1>(1.-1 - K)<I> dr 

(45) 

For a given <1>, 0(<1» is a best lower bound when A is 
negative and a best upper bound when (1.-1 - K) is 
positive-definite. Similarly, from (26) and (27) we 
obtain 

and 

{ffK0 drf 
j(T0) = -tA-1JI2 dr - _--C:'---_--'-__ 

2 f(K0)(1 - )..K)0 dr 

(47) 

When (1.-1 - K) is positive-definite, we can extend 
the result (34) to give 

G(<I» ~ j(T<I». (48) 

This follows because 

G(<I» = G(lXo<l» ~ J(TlXo<l» ~ j(T<I». 

However, results (40), (41), and (43) do not necessarily 
hold for individually optimized G's and J's. 

Instead of introducing a single scale factor we can 
adopt a Ritz procedure and set 

<I> = rJ.1"P1 + 1X2"P2 + ... + IXm"Pm (49) 

in (25), where the "P's are m linearly independent 
functions. The consequent optimized functional is 

Gm(<I» = -tB'A-1B 

0 B1 B2 Bm 

Bl All A12 AIm 

B2 A2l A22 A 2m 
= +t(det A)-l 

(50) 
where 

Bi = A-I jl"Pi dr, (51) 

Aii = Ai; = j "P;(A-1 
- K)"Pi dr, (52) 

Let lXo be the value of IX which optimizes (44), chosen A is the square symmetric m x m matrix with ele­
by setting (}G/(}IX equal to zero. The optimum func- ments Ai}, B is the column matrix with elements B i , 
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and B' is the transpose of B. A similar result is obtain­
able for J. When (A-1 - K) is positive-definite, we 
have 

(53) 

analogously to (48). Also it can be proved that7 

G1(<P) 2 G2(<P) 2 ... 2 Gm(<P) 2 ... 2 I(f/!, u) 

(54) 
and 

jl(U) 2 j2(U) 2 ... 2 jm(U) 2 ... 2 I(f/!, u). (55) 

For negative A the result is 

G1(<P) S G2(<P) S ... S I(f/!, u) 

S ... S j2(U) S jl(U), (56) 

4. COMPARISON WITH A RESULT OF 
STRIEDER AND PRAGER 

In a paper on bounds for Knudsen flow rates, 
Strieder and Prager6 discuss an integral equation like 

.:. (22), subject to the conditions 

A> 0, (57) 

3\,(r, s) = 3\,(s, r) 2 0, (58) 
and 

A-I - f 3\,(r, s) dr 2 0, (59) 

which arise naturally from physical considerations. 
They show in effect that G(<P) and also G(<P) are 
upper bounds to I( f/!, u) under conditions (57)-(59). 
(They actually take A to be unity, but we need not do 
so.) 

These conditions are in fact stronger than our 
condition (32) (which is both necessary and sufficient), 
as the following argument shows. Condition (32) is 
equivalent to stating that, for an arbitrary 1p(r), 

A-I J 1/(S) ds - J J 3\,(r, s)1f!(r}!p(s) dr ds 2 0. (60) 

Since 3\,(r, s) is a symmetric kernel, the left-hand side 
of (60) can be rearranged to give 

f{A-1 
- f 3\,(r, s) dr}1f!2(s) ds 

+ t f J J\,(r, s){ 1f!(r) - VI(S)}2 dr ds. (61) 

If the Strieder-Prager conditions (57)-(59) hold, 
expression (61) is never negative and thus our con­
dition (60) [Le., (32)] is satisfied. To show that (60) 

, See, for example, 1. M. Gel'fand and. S. V. Fomin, Calculus of 
Variations (Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963), 
Chap. 8. 

can be satisfied when (59) is not, it is enough to 
consider the simple example 

3\,(x,y)=5xy/2A, A>O, Osx,YSI. (62) 

This' kernel is positive-definite and has the single 
eigenvalue (6A/5); thus condition (60) holds [cf. (36)]. 
However, condition (59) is not satisfied when 0.8 < 
ySI. 

Strieder and Prager do not obtain the bound J(T<P) , 
which is, in principle, superior to G(<P); it appears to 
be new. Our methods do not reveal certain lower 
bounds derived by these authors when A is positive. 

5. DISCUSSION 

The foregoing analysis has dealt with variational 
principles for certain integral equations. The derivation 
was based on the generalized canonical Euler equa­
tions (Ia), (1 b) to emphasize the complementary nature 
of the results, but it should be noted that the principles 
obtained in Secs. 3B and 3C are actually independent 
of the decomposition of the operator K into the form 
TtT. Thus, for A < 0, the principles G SIS J in 
(29) hold for any symmetric positive-definite kernel 
3\,(r, s), while for A > 0 the principles IS G, IS J 
hold by (30) and (31) if, in addition, (A-1 - K) is 
positive-definite. 

The decomposition K = TtT, although not strictly 
necessary, can give useful insight into the properties 
of K and it does permit a somewhat more flexible 
J bound. If 3\,(r, s) is a function of (r - s) only, the 
kernel b(r, s) can be found in principle by Fourier­
transform convolution techniques; Laplace trans­
forms serve to this end when 3\,(r, s) depends only on 
(r + s). More generally, jf there is an expansion 

n 

in terms of any orthonormal set {On(r)}, it follows 
that, formally, 

b(r, s) = L cx~On(r)(.ln(s). (64) 
n 

The case of negative A has applications in potential 
theory,8 in bound-state quantum-mechanical per­
turbation theory, and possibly also in time-series 
analysis.9 
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Th.e ex~licit form o~ the. projection ?perat?r for ~onstructing antisymmetric wavefunctions for N 
fermlOns. m the app~oxI~atlOn ,?f no spm-orbl.t couphng is developed. Projection is applied within the 
one particle approxlm~tIon. It IS shown t~at If the ~rbitals associated with the minority spin can be 
completely expanded ~n terms of the ,?rbltals assoclat~d with the majority spin, then the projected 
Hartree-~o~k scheme I~ compl~~ely eqUIvalent to unproJected Hartree-Fock theory. In the unrestricted 
case, devla~lons from. thiS conditIon are not expected to be large, and integral properties such as energies 
calculated m the proJ~ted sch~me sh,?uld not be significantly different from unprojected results. How­
ever, for such !,r~pertJes ~s spm density at the ?-ucleus in atoms or ions with nominally closed s shell, 
there may be slgmficant differences between projected and unprojected schemes. 

INTRODUCTION 

For a system of N interacting but indistinguishable 
fermions the Pauli principle requires that the system 
wavefunction transform anti symmetrically under 
permutations of the particle coordinates. This imposes 
additional correlations among the particles, which is 
evident by noting that the wavefunction must be 
identically zero in any region of phase space where the 
spatial and spin coordinates of any two are the same. 
This has important physical consequences, some of 
which are well known. Owing to the difficulties intro­
duced by the many-body interactions, calculations 
and much of the theoretical development are inevit­
ably carried out within some approximational scheme. 
Thus much of our theoretical understanding. of the 
consequences of the Pauli principle is intrinsically 
linked to these approximating schemes. In the much 
utilized Hartree-Fock one-particle self-consistent 
field scheme, anti symmetry of the wavefunction gives 
rise to the so-called "exchange terms." If relativistic 
effects can be neglected, the one-particle functions are 
considered to be a product of separate spatial and 
spin parts. Exchange is effective only between particles 
with the same spin projection due to the orthonorma­
lity of the spin functions. This form of the exchange 
term has been the basis for postulating strong magnetic 
correlations via Coulombostatic coupling (as in the 
Heisenberg theory of magnetic interactions). More 
recently the exchange interaction has been the basis 
for developing the spin-polarized Hartree-Fock 
scheme (SPHF), which admits to different orbitals 
for different spin, in contrast to the usual (restricted) 
scheme in which a given orbital may be occupied 
twice corresponding to the two possibilities for the 
fermion spin. Contact hyperfine interactions in the 
iron-transition series and in somer are earths have 
been analyzed using SPHF calculations and theory.l 
In most of these cases surprisingly good results are 

obtained. However, for the lighter elements such as 
nitrogen and oxygen, SPHF calculations have not 
been reliable for predicting such electronic properties 
as the spin density at the nucleus. 2 The question then 
arises as to how mu~h the SPHF results represent 
physical consequences of the Pauli principle and to 
what extent they are influenced by the ad hoc restric­
tions introduced in the approximation scheme. The 
question, of course, is appropriate to any of the 
various schemes for solving approximately the many­
fermion problem. 

In this article we treat two subproblems of this more 
general question. If relativistic effects can be ignored, 
then the intrinsic and extrinsic angular-momentum 
operators (S2 and V) commute with the Hamiltonian 
and can be simultaneously diagonalized along with 
the energy. The Pauli principle requires that the per­
mutation symmetry of the spatial parts of the 
wavefunction match the permutation symmetry of the 
spin parts of the wavefunction so that an antisym­
metric linear combination of their products can be 
formed. The problem can be exactly formulated in 
group-theoretical terms using the permutation group 
of N items. This is done in Sec. I, and the explicit 
form for antisymmetric projection assuming no 
spin-orbit coupling is deduced. 3 The form of this 
operator allows significant reductions to be made 

·Pr~seI?t address: Department of Physics and Astronomy, South­
ern Illmols Umverslty, Carbondale, Illinois. 

1 R. F. Watson and A. J. Freeman, Hyperjine Interactions, A. J. 
Freeman and R. B. Frankel, Eds. (Academic Press Inc., New York, 
1967), p. 53. 

2 C. M. Moser, Hyperjine Interactions, A. J. Freeman and R. B. 
Fr:nkel, Ed~. (Academic Press, Inc., New York, 1967), p. 95. 

Smce thIS work was completed, articles by W. A. Goddard 
[phys. Rev. 157, 73, 81,93, (1967)] have appeared in which he also 
obt~ms the. antisymmetric projection operator assuming no spin­
orb!t couplmg. The method presented here is independent of his 
derivatIOn, although our final result is the same. The form of our 
reduced matrix element (2) is equivalent to his Eq. (15). The other 
results and discussions of this paper are different from the work 
reported there. See also R. D. Poshusta and R. W. KramIing, Phys. 
Rev. 167, 139 (1968). 
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when one considers the diagonal matrix element of an 
operator completely symmetric under the permutation 
of the particle coordinates. When the operator is also 
completely symmetric under permutation of the 
spatial coordinates alone (e.g., the system Hamil­
tonian), a further reduction can be made. These 
reduced matrix elements are given at the end of 
Sec. I. 

Having solved for the explicit form of the anti­
symmetric projection operator assuming no spin­
orbit coupling, we can ask how does a one-electron 
self-consistent field scheme incorporating this projec­
tion (often called projected or extended Hartree­
Fock) compare to the SPHF scheme. Consideration 
of the projected one-electron approximation is made 
in Sec. II. It is shown that the projected scheme will 
be different from SPHF only when the intersection of 
the orbital spaces nominally associated with spin up 
and spin down does not exhaust either space. This is 
invariably the case when one allows different orbitals 
for different spins, as is strikingly illustrated in con­
sidering the singlet He ground state4 or in using 
SPHF to consider spin density at the nucleus for 
atoms or ions with nominally closed s shells.1 

Some consequences of using antisymmetric pro­
jection for no spin-orbit coupling are discussed in 
Sec. III. 

I. ANTISYMMETRIC PROJECTION OPERATOR 

In this section the antisymmetric projection operator 
assuming no spin-orbit coupling is developed. Reduced 
forms for the diagonal matrtx elements of operators 
completely symmetric under the exchange of identical 
fermions are presented. 

It is well known that the antisymmetric representa­
tion of the permutation group SN is contained only 
and only once in the Kronecker product of conjugate 
irreducible representations. It is easy to symbolically 
construct operators corresponding to a given spin 
value S that will project out of general spin and 
orbital spaces a spin space and a conjugate orbital 
space that are irreducible under permutations of S N' 

The difficulty in this projection method is that the 
linear combination coefficients involved in the 
projection operators are, in general, unknown. How­
ever, out of all the possible linear combinations of the 
products of the two representations, one needs only 
that unique combination that is antisymmetric in S N' 

This allows an explicit evaluation of the coefficients 

• C. A. Coulson, Quantum Theory of Atoms, Molecules and the 
Solid State, P. O. Lowdin, Ed. (Academic Press Inc., New York, 
1967), p. 97. 

of interest and the desired anti symmetric projection 
operator. 

The projection operator that will project out of any 
space a function that transforms as the rth row of the 
A irreducible representation of SN with irreducible 
matrix elements U:.(P) is defined by5 

e), ==.!!.3.. ~ PU),(p-l) = n), ~ PU),*(P) _ ),t. 
r. N' 4..r N' "" r. - e.r , 

. PC8N . pc8N 

r, S = 1, ... , n),. 

These operators are the primitive elements of the 
group algebra and have the usual orthogonal multi­
plication rule 

In the N many-electron problem the irreducible repre­
sentation associated with the spin angular momentum 
S can be uniquely designated by the bipartition of 
N, [(N/2) + S, (N/2) - S]. The conjugate representa­
tion for the orbital function is designated by the 
partition [12', 2(N/2)-S]. Although in this paper we are 
directly concerned with the many-electron problem, 
a number of the propositions made here are applicable 
or easily extended to Fermion problems involving 
other than bipartition representations, such as the 
nuclear-isospin problem. 

We can symbolically write our desired antisym-

metric projection operator as {A}(e~)[efl], where 

{A} ==..!.. 2 (-l)P{P} 
N! pc8N 

is the antisymmetric projection operator operating 
in both orbital and spin space, [efzl is the projection 
operator associated with the internal angular momen-
tum SIi, and operates in spin space only, and (e~) is 
the projection operator for the irreducible representa­
tion conjugate to S defined by the relation 

(-l)PU~i(P) = U~;(P) 

and operates in orbital space only. The derivation of 
the following identities for this projection operator is 
straightforward: 

{A}(etj)[efa = b~sbik ~ ~ (e~j)[e~l] = b;sbik{A}[e~a· 
ns m 

In general, the coefficients U~(P) are unknown; 
however, as shown below, one can explicitly derive 
all the coefficients that enter into the final antisym­
metric projection operator. 

A well-known theorem states that, in an irreducible 

5 D. F. Johnson, Rept. Progr. Phys. 23, 66, (1960). See the general 
theory of Part I, and especially Sec. 4 of Part II that treats the N­
fermion problem. 
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space transforming under the permutation group SN 

as the [AI' ,1.2' ••• ] irreducible representation, there 
always can be found one and only one vector S;. 
symmetric, that is, invariant under the permutations 
of the subgroup SA == S;'l X S;'2 X .• '. Or equiv­
alently, there can always be found one and only one 
vector A;. antisymmetric, that is, antisymmetric under 
the permutation of the subgroup S,!. 6 This S;. sym­
metric vector is chosen to be the first member of the 
basis for the invariant spin space. Consequently the 
A,! antisymmetric vector is the first member in the 
basis for the conjugate invariant orbital space. Let 
Q be a coset of the subgroup S,! with respect to the 
fuII group SN: 

(More exactly, Q is a set of coset representatives q of 
the subgroup S,! with respect to the full group SN') 

The spin projection operator can be written as 

Let S;. and A;. be, respectively, the symmetrizer and 
antisymmetrizer on the subgroup S;.: 

S,! == I h and A,! == I (-l)hh. 
kCS,! hCS,! 

Because there is one and only one S;. symmetric 
vector in the spin basis and it is chosen to be first in 
order, the spin projection operator can be written as 

ns II n,!il 
s . s 

[emIl = -N'-'- I Um1(q)[q][S;.]. 
• aCQ 

By an entirely equivalent argument the orbital 
projection operator can be written as 

To obtain the desired anti symmetric projection 
operator, one takes the product of the above two 
operators and sums on m. Because all q are chosen 
to be self-inverse (see below) and the elements of the 
subgroup S;. have the property 

U~lh) = bn1 = UfnCh) 

by construction, the problem is completely resolved 

6 A. Messiah, Quantum Mechanics (John Wiley & Sons, New York, 
1962), Vol. II, Appendix D,p. 1119. 

7 R. Gouavne, Theory of Groups in Classical and Quantum Physics, 
translated by T. Kahan (Oliver and Boyd, London, Edinburgh, 
1965), Theorem 9, p. 287. 

if the coefficients U~(q) of elements belonging to the 
coset Q are known. 

The coset Q can be uniquely constructed in the 
folIowing manner. The permutations of the coset Q 
correspond to all distinguishable ways of selecting j 
indices from the first (NI2) + S indices and j indices 
from the last (NI2) - S indices, both arranged in 
numerical order, and then intercha,nging the two sets. 
The elements of Q thus are jth -order products of 
mutually commuting transposes, i.e., they belong to 
the class (I N-2i, 2i). The index j varies from 0 to 
(NI2) - S, and there are 

elements of Q with the same index j, where (~;s) 
represents the binomial coefficient. It is convenient to 
define the operator Qi == I q with the same index j. 

The coset Q constructed in such a manner has the 
folIo wing useful properties: 

(1) Qi commutes with SA. and A;. 

(2) Any product qQ contains one and only one 
element from each coset; 

(3) The coefficient U~(q) depends only on the 
index j of q and is 

UW) - (-1)/ (~; s) 
The proofs of these statements are given in Appendix 
A. 

The desired antisymmetric projection operator in 
the approximation of no spin-orbit coupling is 

where Jf is an unimportant normalizing constant. 
Let ~ be &. spin function that has maximum projected 
spin value along some axis M. = S. The function is 
chosen to have spin up in the first (NJ2) + S positions 
and spin down in the remaining (NJ2) - S positions, 
and thus is already S;. symmetric. 

Consider the antisymmetric state projected from the 
product of this function with a general orbital function 
<1>. The expectation value with respect to this state of 
an operator symmetric under the permutation of the 
spin and orbital coordinates and which does not 
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cause spin flip can be reduced to 

where the group orthogonality relations and the 
relation 

([q']~1 Op I[q]~) = bq'iq)(~1 Op I~)(q) 

have been used to accomplish the reduction. If the 
operator is purely orbital (e.g., the assumed Hamil­
tonian), one has the further reduction to 

(NI2)-s(N + S)-1 
j~ "2. «A;)<I> I Oporb I(Qj)(A,,)<I» 

II. THE ONE·PARTICLE APPROXIMATION 

In this section the projection formulas developed 
above are applied within the one'particle approxi­
mation where the starting orbital function <I> is assumed 
to be a simple Nth-order product of one-particle 
functions. If the one-particle orbitals are determined 
by making the expectation value of the Hamiltonian 
an extremum, this is the projected Hartree-Fock 
scheme. We use the notation 

(A,,)<I> == d!Pin',in' d!pin,in' 

where d signifies "the determinant of," i~ is the numer­
ically ordered set of the first (NI2) + S indices, in is 
the numerically ordered set of the last (NI2) - S 
indices, and !Pi i is the matrix of one - electron 
orbitals !Pi(rj) wh~~e the row indices denote the states 
and the column indices denote the coordinate vari­
ables (i.e., dgJi i is a Slater determinant). 

Because of "the determinantal form, the orbitals 
within the same determinant can be assumed to be 
orthogona1.8 Nothing is inferred as to the orthog­
onality of orbitals occurring in different determinants. 

• In the variational calculation of the projected Hartree-Fock 
scheme, the "matrix" of Lagrange multipliers introduced by this 
orthonormality condition can be put in diagonal form, as can be 
shown by arguments identical to those used in the conventional 
Hartree--Fock scheme. 

(1) 

Because of this lack of orthogonality, a special 
formalism for bookkeeping purposes is needed. Let 
{OJ, i = 1, ... , N, be an orthogonal set that spans an 
N-dimensional space such that 

N 

!Pi == I UijO j , 
;~1 

i = 1,"', N + S, 
2 

i = N + S + 1,"', N. 
2 

Orthonormality requires 
N N 
IU~Uk;=(jik' -+S<i, and k~N. 
j~1 2 

The second Slater determinant may be expanded in 
terms of the Ui/s and the O;'s by9 

d!Pin,in = I dUin.k dOk.in , 
k 

where k sums over all distinguishable sets of (NI2) -
S indices chosen from the N indices. The essential step 
for the analysis is noting that (Qj)(A,,)<I> corresponds 
to Laplace expansions of the two determinants by j 
columns and can be changed to a Laplace expansions 
of the two determinants by j rows. The sign factors 
involved in these expansions exactly compensate. 
Thus one can equivalently think of the permutations 
as acting on the coordinates or the state indices, and 
can write 

(Q;)(A,,)<I> = I dUin .k I d8in'+(w-W'),in' dOk+(W'-w),in' 
k w,w' 

where w is summed over all distinguishable sets of j 
indices chosen from the set k of (NI2) - S indices; 
w' is summed over all distinguishable sets of j indices 
chosen from the set i~; and the notation (w - w') 
means the set w' is substituted by the set wand vice 
versa. 

If we make the ad hoc restriction that all orbitals 
!Pi are completely expandable in the first (NI2) + S 
orbitals, a nonzero result is obtained only when the 
set k and (thus) the set w also are contained within the 
set (. For such choices the determinant dOin,+(w-w'l.i; 
is nonzero only when the set w is identical with the 
set w'. Summing on wand w' multiplies the original 
determinants by an unimportant numerical factor 
which will cancel for normalized expectation values. 

• G. Kowalewski, Determinalltentheorie (Chelsea Pub!. Co., 
London, 1948), Sec. 36. 
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We may conclude that if the orbitals associated with 
the minority spin [lPi; i = (NI2) + S + 1," " N] 
are restricted so as to be completely expandable in 
terms of the orbitals associated with the majority spin 
[lPi; i = 1,"', (NI2) - S], then 

(Q;)(A,)<I> = .N';(A;)<I>. 

With this restriction a projected Hartree-Fock 
scheme is completely equivalent to an unprojected 
Hartree-Fock scheme. 

While such an ad hoc restriction may not be serious 
for average properties such as one-electron energies, 
it would be untenable for investigating properties such 
as spin polarization, which depend strongly on the 
possibility that the minority spin oribtals cannot be 
completely expanded in terms of the majority spin 
orbitals. 

Further reduction in the more general case can be 
accomplished by noting that the usual Hamiltonians 
contain, at most, two body operators. Only three 
cases for the set i~ + (w - w') are of interest: 

Case 0: The set i~ + (w - w') is identical to the 
set i' . 

C;;e 1: The set i~ + (w - w') differs from the set i~ 
by one index i~ + (w - w') = i~ + (x - n, IE i~ 
andKEin ; 

Case 2: The set i~ + (11' - w') differs from the set 
i~ by two indices i~ + (w - w') = i~ + (IX + fJ -
I - g), g E i~ and fJ E in. 

Reduced forms for these cases are given in Appen­
dix B. 

III. DISCUSSION 

While the forms we have presented for the anti­
symmetric projection operator assuming no spin-orbit 
coupling are complicated, they are, in principle, no 
more difficult than antisymmetrizing when spin-orbit 
coupling is significant. Correct projection seems 
desirable in order to distinguish results which follow 
due to the Pauli principle from those due to spin-orbit 
coupling. With modern computers the use of the forms 
presented here should not prove to be impractical. 

The explicit factorization of the antisymmetrizer 
(A A) clearly shows that arguments based on the 
properties of this operator still are valid. Two particles 
associated with the same spin cannot occupy the same 
orbital position. The occurrence of the operators (Qj) 
implies additional correlations in orbital space, but 
we can offer no simple interpretation for this at 
present. ] n the one-particle approximation the invari­
ance of a Slater determinant to linear combination of 
its rows and columns has been used to argue that only 
the introduction of orbitals previously vacant can 
effect expectation values based on Slater deter-

minants.lO This is important in comparing an ionic 
situation with a covalent situation when the latter is 
described by linear combinations of the atomic 
orbitals (LCAO) used for describing the ionic con­
figuration. Such qualitative arguments are seen to be 
unaffected by projection. 

Because exchange is of secondary importance in 
determining the one-particle orbitals and their ioniza­
tion energies in a variational scheme, one would 
expect that the orbitals associated with the minority 
spin could almost be expanded in terms of the orbitals 
associated with the majority spin. It follows from the 
results of Sec. II that SPHF or even restricted Hartree­
Fock should not give results significantly different 
from projected Hartree-Fock for those properties 
that represent an average over all space, such as the 
one-electron ionization energies. However, in the 
SPHF theory a nonzero spin density at the nucleus in 
the transition elements is a direct consequence of the 
fact that the occupied spin-down s orbitals cannot be 
completely expanded in terms of the occupied spin­
up s orbitals. l For a problem such as this, it is possible 
that the present scheme will give quantitative results 
significantly different from those of SPHFY 

Lastly, we wish to note that it seems desirable for 
qualitative reasons that a one-particle approximation 
scheme be such that the one-particle spatial symmetry 
group is the same as for the N-particle problem. 
Symmetry classification of the one-particle functions 
would significantly reduce the number of nonzero 
expansion coefficients that have to be considered In 

the expansions given in Sec. II. 
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APPENDIX A: PROPERTIES OF THE COSET Q 

Let qj be an element of Q with index j and h any 
element of the subgroup SA' 

(a) The transformation hqjh- l = q;h' is merely a 
substitution instruction for the indices appearing in 
qj. The element q; must have the same index as q; and 
!z' must have even parity, because the transformation 
can neither change the index nor the parity of the 
permutation. 

10 R. E. Watson and A. J. Freeman,Phys. Rev. 134, A1526(1964). 
11 In Goddard's work (Ref. 3) his calculations of the lithium atom 

seem to support this conjecture, although the major part of the spin 
density is due to the single 2$ orbital. The'S ground state of nitrogen 
would provide a more unambiguous test. 
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(b) By examining the possible results of multiplying 
q; by a transpose contained in Q, one can conclude 
that 

q;q; = h'h-1 implies q; = qi and h' = h. 

(c) Because the group is closed we have 

SN = qSN = qQS .. = QS ... 

From these statements one can conclude that the 
elements q; do generate mutually exclusive right or 
left cosets, that the symmetrizer and antisymmetrizer 
of the subgroup commute with the operators Q; 

S .. Q, = Q;S.. and A .. Q; = Q,A .. , 

and that qQ contains one and only one member from 
each coset. 

One can deduce the coefficient Uf1 (q;) as follows: 
(d) By statement (a) above we may infer that, for 

all q;, q~ with the same index j, there exists some 
element h of the subgroup such that 

UZ.<qi) = L Ufm(,,-1)U';.n<q;)U~1(h) 
m,n 

= Uf1(q;) = uZ.u). 

This proves that the coefficient depends only on the 
indexj. 

(e) In our specific representation the basic group 
orthogonality relations take the form 

N! c5 ... c5iuc5 jv = L Ufm(q)u:n(q) 'L U';.;(h)U~ . .(h), 
n. Q,m,n S .. 

where we have used the real and unitary property of 
the permutation group. For A being the completely 
symmetric representation this becomes 

(NI2)-S(ti _ s) (ti + s) s . 'L 2 2 U11(}) = O. 
;=0 . . 

] ] 

For A being the representation corresponding to S this 
becomes 

ti+ S + 1 

(NI2)-S(ti _ s) (N + s) Us'( .) = 2 'L 2 2 11 } 2S + 1 
;=0 j j 

Both these relations are satisfied by 

(

N )_1 
ufl(j) = (_I)i "2; S 

Although this cannot be strictly considered a proof, it 

can be shown by independent arguments that the 
formula is valid for j = 0, 1, and 2. 

APPENDIX B: REDUCED FORMS IN THE 
ONE-ELECTRON APPROXIMATION 

Let X k be the number of indices of the set k that 
come from set in' Then we can write for 

'N:r(~ ; Sr;Q;XA;~ 
the following12: 

Case 0: 

~ dUo k[1 - Xk ] dO· , . , dOk . 7 'n. 2S + X
k 
+ 1 'n ,'n ,'n' 

N 
0< X k < - - S. 

- - 2 

Terms coming from the factor unity in the square 
bracket are entirely equivalent to unprojected Hartree­
Fock. All other terms and those of Case 1 for one- and 
two-body operators and those of Case 2 for two-body 
operators are additional and particular to the pro­
jected Hartree-Fock scheme. 

Case 1: 

N 1::;; X k ::;; - -S, 
2 

(

N-2 ) 
where the sum on k is over the ~ _ S _ 1 sets k that 

contain IX and do not contain f. 

Case 2: 

LdU 2(2S + 1) 
k in,k (2S + X k + 1)(2S + X k )(2S + X k - 1) 

X dOin'+(a+/l-f-g),in' dOk+U+g-a-/l) ,in ' 
N 

2::;; X k ::;; - - S, 
2 

(

N -4 ) 
where the sum on k is over the ~ _ S _ 2 sets k that 

contain IX and (3 and do not contain! and g. 

12 The sum formulas used can be derived from the identity 

~ = :~n(N~ I)(N 7 n) 
given in M. Boll, Tables numeriques universelles (Dunod et Cie., Paris, 
1964), 3rd. ed., p. 539. 
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Irreducible Corepresentations of Groups Having a Compact Simple 
Lie Group as a Subgroup of Index 2 
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For aU possible extensions g of the compa~t simple ~ie gr~ups G! such that G be a subgroup of g 
of index 2, we determine those corepresentatlOns of g III which umtary operators correspond t~ the 
elements of the subgroup G, antiunitary operators to its coset. We find that any irreducible umtary 
representation of G can be extended to an irreducible corepresentation of g in various ways summarized 
in Table IV. 

1. INTRODUCTION 

Consider a compact simple Lie group G and another 
group g such that G is a subgroup of g with index 2. 
The elements of G will be called the unitary operators 
and denoted by the letters u, V," '. The elements 
of the coset of G in g will be called the anti unitary 
operators and denoted by the letters a, b,' . '. A 
set of unitary matrices D(g) , g an element of g, is 
said to form a corepresentation of g if the following 
equations are satisfied: 

D(u)D(v) = D(uv), 

D(a)D*(u) = D(au), 

D(u)D(a) = D(ua), 

D(a)D*(b) = D(ab), 

where D* denotes the complex conjugate of D. The 
corepresentation D(g) is said to be reducible if for a 
fixed matrix IX, the matrices D'(u), D'(a), 

D'(u) = lX-lD(u)lX, D'(a) = lX-lD(a)IX*, 

all have the reduced structure 

~, 
~ 

~ and 'YJ being nonzero submatrices. If no such IX can 
be found, D(g) is said to be irreducible. In the above 
discussion, the matrix 'CI, may be assumed to be 
unitary. 

An irreducible unitary corepresentation D(g) of g 
may belong to one of three possible categories l : 

(i) D(u) is irreducible. The corepresentation is 
said to be of type I. 

(ii) D(u) reduces into two irreducible equivalent 
representations. The corepresentation is said to be of 
type II. 

(iii) D(u) reduces into two nonequivalent irreduc· 
ible representations of equal size. The corepresenta­
tion is said to be of type III. 

1 E. P. Wigner, Group Theory and Its Applications to the Quantum 
Mechanics of Atomic Spectra (Academic Press Inc., New York, 
1959), Chap. 26. 

The above three categories may also be enumerated 
as follows. We choose an arbitrary fixed antiunitary 
operator ao and denote an irreducible part of D(u) by 
~(u). Then: 

A. If D(u) is of type I, D(u) = A(u), then A * (aoluao) 
and A(u) are equivalent, A * (aoluao) = fJ-lA(U)fJ, and 
fJfJ* = +A(a~). These equations are valid for all a 
if they are valid for one of them, ao, though fJ depends 
on the choice.of ao . Moreover, fJ can be assumed to be 
unitary. 

B. If D(u) is of type II, then D(u) may be trans­
formed to 

D(u) = [A(U) 0 J. 
o A(u) 

A * (ao1uao) and A(u) are equivalent, A * (ao1uao) = 
{3-1~(U){3, and (3{3* = -~(a~). The remark made 
before about the choice of ao applies in this case and 
in the following one, also. 

e. If D(u) is of type III, it may be transformed to 

[
A(U) 0 ] 
o A*(ao1uao)' 

where A * (ao1uao) and ~(u) are not equivalent. 
Note that the reducibility of only D(ll), u an ele­

ment of G, is considered in the above; the D(g) is of 
course taken to be irreducible. The A(g) is defined 
only when g is an element of G and a symbol like 
~(ao) is neither defined nor used anywhere in this 
article. 

The irreducible unitary representations A(u) can 
again be classified into three categories as follows2 : 

A. The representation A(u) is not equivalent to its 
complex conjugate A*(u):~(u) ~ ~*(u) (type C).3 

B. It is equivalent to its complex conjugate but 
cannot be made real by any similarity transformation 
(type Q).3 

2 A. Loewy, Trans. Am. Math.Soc.4.171 (1903); G. Frobeniusand 
I. Schur, Sitzber. Deut. Akad. Wiss. Berlin, KI. Math., Phys. Tech. 
186 (1906); E. P. Wigner, Ref. I, Chap. 24. 

3 F. J. Dyson, J. Math. Phys. 3,1199 (1962). 

1375 
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C. It can be made real by a similarity transforma­
tion (type R).3 

The letters C, Q, and R correspond, respectively, 
to complex, quarternion, and rea1.3 

For any compact simple Lie group G, all irreducible 
unitary representations ~(u) are known. 4 In what 
follows we have tried to answer the natural question 
that for each possible group g having G as a subgroup 
of index 2, what is the type of the irreducible co­
representation D(g) such that the irreducible part of 
D(u), u an element of G, is equivalent to a given ~(u). 
In other words, we try to answer the following 
question: For a given group g having G, any compact 
simple Lie group, as a subgroup of index 2 and a 
given irreducible representation ~(u) of G whether 
~(u) and t,(u) == ~ * (aoIuao) are equivalent, and in 
case they are, t,(u) = f3-I~(UW, whether f3f3* = 

+~(a~) or f3f3* = -~(a~). 
2. INNER AND OUTER AUTOMORPHISMS 

Let ao, as before, be a fixed anti unitary operator 
and u E G. Then u ~ F(u) = ar;Iuao is an automor­
phism of G, which we shall call the automorphism 
induced by the anti unitary operator ao. It may be an 
outer automorphism, i.e., no element Vo E G can be 
found such that aoIuao = voIuvo for every 11 E G. 
Or else the automorphism may be inner, i.e., there 
exists a Vo with the above property. If the automor­
phism induced by one antiunitary operator of g in 
G is outer (inner), then the automorphism induced by 
any other anti unitary operator of g in G is also 
outer (inner). Any automorphism of a compact 
simple Lie group is either an inner automorphism or 
an inner automorphism together with one of a 
particular finite set of outer automorphisms. 5 For 
any given group this finite set of outer automorphisms 
is generated by those permutations of the simple 
roots6 of its Lie algebra which preserve their scalar 
products: rJ.j~rJ.~, (rJ.jrJ.k)- (rx~rJ.~) for every j and k. 
In other words, an outer automorphism of a semi­
simple Lie algebra is defined uniquely, except for an 
inner automorphism, by a symmetry operation on 
its Dynkin diagram. 7 The image of any other element 
of the algebra may be inferred from the commutation 
rules and the linearity of the automorphism. The 
following result is useful. 

4 E. Cartan, Bull. Soc. Math. France 41, 53 (1913); H. Weyl 
Math. Zeit. 23, 271 (1925); 24, 328, 377 (1925). 

• E. Cartan, Bull. Soc. Math. France 49,361 (1925); E. B. Dynkin, 
Dok!. Akad. Nauk. SSSR 76,629 (1951); N. Jacobson, Lie Algebras 
(Interscience Publishers, Inc., New York, 1962), p. 281, Theorem 4. 

6 E. Cartan, Oeuvres completes (Gauthiers-Villars, Paris, 1952), 
Pt. I, Vol. 1, p. 193, Theorem XI; E. B. Dynkin, Usp. Math. Nauk 
20, Ser. 2, S9 (1947) [Am. Math. Soc. transl. No. 17 (1950), paras. 
6 and 7]; N. Jacobson, Ref. 5, Chap. IV, Sees. 3-6. 

7 E. B. Dynkin, Ref. 5; N. Jacobson, Ref. 5, Chap. IV, Sec. S. 

Theorem 2.15: For the groups AI' B n , C n , £7' £S, 
F4 , and G2 , all the automorphisms are inner. For the 
groups An (n ~ 2), Dn (n ~ 5), and £6, there is an 
outer automorphism, unique up to an inner auto­
morphism. For the group D4 there are five distinct 
outer automorphisms. 

Thus for any fixed ao we have aoIuao = V01iivO' for 
all u in G where Vo is a fixed element of G, ii = u if 
G is any of the groups AI, B n , Cn , £7' £S, F4 , G2 , 

and ii is either equal to u or obtained from u by a 
symmetry operation of the Dynkin diagram if G is 
any of the remaining simple groups An (n ~ 2), 
Dn (n ~ 4), £6' A glance at the Dynkin diagrams, 
Table I, shows that for all compact simple Lie groups, 
except possibly for D4 , U = u. The five outer auto­
morphisms of D 4 correspond to the interchanges 
(12), (23), (31) and the cyclic permutations (123), 
(132) of the simple roots. For the first three auto­
morphisms, we have Ii = u. For the last two, Ii ¥- u, 
but they correspond to even permutations of the 
simple roots and therefore cannot be induced by 
anti unitary operators; in other words, there is no 
group g having D4 as a subgroup of index 2 corre­
sponding to these two automorphisms. 

Thus, for all the cases we have to consider, u = u. 
Putting a~ = aovol and calling it again ao, we see that 
it satisfies the equations 

so that ag commutes with all the elements of G. 
Also, ag is an element of G, since G is a subgroup 
of index 2. Thus ag is an element of the center C = 
{c j } of G, say ag = cj ' where cj = cj • If we put a l = 
aOcl with CI any element of C, then this a l satisfies 
Eqs. (2.1) and ai = (aOc1)2 = a~(\cI = cAcl' Thus 
the choices ag = cj and ag = cjclc! lead to the same 
group g. On the other hand, if two elements Cj and Ck 

of the center C are such that cj = cj , ck = Ck , and 
cj "c CkCIC1 for any element CI of C, then one can 
convince oneself that the choices a~ = cj and a~ = Ck 

leadS to distinct groups g. 
In the following, we take for G the groups obtained 

by exponentiation of the Lie algebras corresponding 
to the Dynkin diagrams given in Table I. For example, 
An denotes SUn+l, the (n + I)-dimensional uni­
modular unitary group, while Bn denotes the universal 
covering group of the (2n + I)-dimensional orthog­
onal group. 

8 L. Michel, Group Theoretical Concepts and Methods in Ele­
mentary Particle Physics, F. Glirsey, Ed. (Gordon and Breach, 
Science Publishers, Inc., New York, 1962). 
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TABLE I. Dynkin diagrams for the simple Lie groups. On a par­
ticular diagram, the simple roots denoted by dots are all equal 
in length, so also are those denoted by crosses, while the length 
of a root denoted by a dot is VZ times that of the one denoted 
by a cross. For the group G., the ratio of the lengths of its two 

simple roots is v3", as indicated. 

<X1 <X2 <X3 CX n-1 an 
An • • .------------.... 

<X2 a3 a, a n_
1 an CX1 

Bn • • .---------~ 

<X1 a2 a3 a n_2 a n_l an 
Cn )( )( )(-- - - - - - - ~xc::::::>e 

a 3 a, <Xl 

:~-------~~ On • • 
Cl2 

a 1 a2 a 3 a, as 
ES • 

la6 

• • 

a 1 a 2 ~3 a, as as 
E7 

la7 

• 
a1 a 2 a, as as Cl7 a3 

Ea 
/ 

• • 
laB 

• • 

a3 <X, a 1 <X2 F, )( )c:==:>e • 

<Xl <X2 
2 2 G2 ~( 1. 3<X 1 =CX 2 

3. CLASSIFICATION OF COREPRESENTATIONS 

The classification of all the irreducible corepresenta­
tions of a given group is greatly facilitated by the 
following theorems, which we give here without proof 
as they follow in much the same pattern as for the 
classification of irreducible representations. lo 

Theorem 3.1: Let ~;(u), j = 1, 2, 3 be three irre­
ducible representations of G satisfying 

~j(u) == ~~(aoluao) = /J;I~j(U)f3;, j = 1,2,3, 

with 

f3jf3~ = Ej~j(a~), 10; = ±1, j = 1,2,3. 

Let ~3(U) occur in the reduction of the direct product 
~I (u) X ~2(U). Then 101102103 = + 1. 

Theorem 3.2: Let two irreducible representations 
~I(U) and ~2(U) of G be such that ~I(U) and ~I(U) == 
~i(aoluao) are not equivalent, while ~2(U) and ~2(U) 
are equivalent, i.e., ~:(aoluao) = f3-1~2(U)f3. If ~2(U) 
occurs in the reduction of ~I(U) X ~1(U), then f3f3* = 
+~2(a~). 

An irreducible representation ~(u) of any compact 
simple Lie group can be characterized by 1 non­
negative integers AI' ... , Al so that 

I 

II = ~AiIIj 
j~1 

is the highest weight of ~(u), and ~(u) occurs in the 
reduction of the direct product 

The elements of the center of G can be written9 as where 
~i' X ~:2 X .•. X ~tl, 

(2.2) 

where a.j is one of the I, I-dimensional simple roots, 
II; the fundamental dominant weight corresponding 
to it, defined by 

211;. a.k = (a.k • a.k)(j;k, k = 1,2, ... ,I, (2.3) 

and H is the I-dimensional element of the commuting 
subalgebra of the Lie algebra of G. If for every irre­
ducible representation ~(u), ~(c;) = ~(Ck)' then c

j 
and 

Ck represent the same element of the center. The 
multiplication table and the behavior under outer 
automorphisms of the central elements cj can all be 
inferred from their form (2.2). The fundamental 
dominant weights for various groups are listed in 
Table II. 

9 J. P. Serre, Seminar Sophus Lie (Ecole Normale Superieure 
Paris, 1954/55), expose No. 23. ' 

~'<j = ~. X ~. X ... X ~. 
J ,1 1-.., l' 

Aj times 

and ~; == ~;(u) is the irreducible representation 
having the highest weight IIj , the fundamental dom­
inant weight defined by Eq. (2.3). In view of theorems 
3.1 and 3.2, we need to study only the fundamental 
irreducible representations ~j(u) in order to make a 
statement about any irreducible representation ~(u). 

Theorem 3.310
,11: Any irreducible unitary representa­

tion ~(u) of G falls into the following three classes 
depending on Ai and G. These results are also summa­
rized in Table III. 

10 M. L. Mehta, J. Math. Phys. 7, 1824 (1966); M. L. Mehta and 
P. K. Srivastava, J. Math. Phys. 7, 1833 (1966). 

11 A. I. Maltcev, Izv. Akad. Nauk SSSR. Ser. Mat. 8, 143 (1944) 
[Am. Math. Soc. trans!. No. 33 (1950)]; E. B. Dynkin, Tr. Mosk. 
Mat. Obsc.l, 39 (1952) [Am. Math. Soc. trans!. 6, Ser. 2, 245 (1957)]; 
N. Haruo, Sci. Rept. Tokyo Kyoiku Daigaku A9, Nos. 202-208, 
p. 32 (1965). 
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TABLE II. The fundamental dominant weights for the simple Lie groups corresponding to the simple 
roots as marked in Table I. They are expressed as linear combinations of the simple roots themselves 

and possess the property that 2(IIj • ak) = (ak' ak).'J;k, where the dot means the scalar product. 

G 

An 

B" 

Fundamental Dominant Weights 

II; = -- I k(n + 1 - j)ak + I j(n + 1 - k)ak' j = 1, 2, ... , n 
1 (i-l n 

n + 1 k=1 k=i 

II, = ina, + ! i (k - 1 )ak 
k=2 

;-1 n 
III = (j - l)a, + I (k - l)ak + I (j - l)ab j = 2, 3, ... , n 

k=2 k=i 

i-I n-l 
eft III = !ja .. + I kak + I jak, j = 1, 2, ... , n 

k=1 k=i 

D" II, = Ina, + !(n - 2)a. + ! i (k - 2)ak 
k=3 

II. = !(n - 2)a, + Ina. + ! i (k - 2)ak 
k=3 

;-1 n 
II; = Hj - 2)(a, + a.) + I (k - 2)ak + I (j - 2)ako j = 3,4, ... ,n 

1<=3 k=i 

E. II, = H4, 5, 6,4,2,3) == !(4a, + 5a. + 6a3 + 4a. + 2a. + 3a.) 

II. = H5, 10, 12,8,4,6), II. = (2,4,6,4,2,3) 

II. = !(4, 8, 12, 10,5,6), II. = H2, 4, 6, 5,4,3) 

II. = (1,2,3,2,1,2) 

E7 II, = (2,3,4,3,2,1,2) == 2a, + 3a. + 4a3 + 3a. + 2a. + a. + 2a7 

II. = (3,6,8,6,4,2,4), II3 = (4,8, 12,9,6,3,6) 

II. = H6, 12, 18, 15, 10, 5,9), II. = (2,4,6,5,4,2,3) 

II6 = H2, 4,6,5,4,3,3), II7 = H4, 8, 12,9,6,3,7) 

E, II, = (4,7,10,8,6,4,2,5) == 4a, + 7a. + lOa3 + 8C1. + 6a. + 4a. + 2a7 + 5a. 
II. = (7, 14,20,16,12,8,4,10) II. = (10,20,30,24,18,12,6,15) 

II. = (8, 16,24,20,15, 10,5, 12) II. = (6, 12, 18, 15, 12,8,4,9) 

II. = (4,8, \2, 10,8,6,3,6) 

IIs = (5, 10, 15, 12,9,6,3,8) 

II7 = (2,4,6,5,4,3,2,3) 

F. II, = (2,3,2,1) == 2a, + 3a. + 2C1. + CI, 

II. = (3,6,4,2) II. = (4,8,6, 3) II, = (2,4,3,2) 

A. It is of type C, ~ *(u) ;f:; ~(u); if G is: (ii) or B4rn+1 or B4m-1 2, with Al odd; 

(i) either An (n ~ 2) and Aj 0;6. AIt! 1-j for some 
j; 

(ii) or D2k+1 and .1.1 ~ .1.2; 
(iii) or £6 and at least one of the equalities Al = 

As, A2 = A4 is not satisfied. 

B. It is of type Q, if G is: 

(i) either A 2n- 1 , Aj = A21t-;, j = I, 2, ... , 
2n - 1, and nAn is odd; 

(iii) or e" and Al + A.3 + As + ... is odd; 
(iv) or D4k-t2 and Al + )'2 is odd; 
(v) or £7 and A4 + As + A7 is odd. 

C. It is of type R, if Gis: 

(i) either of the B41n , B4m- 1 , D4k , G2 , F4 , £8; 

(ii) or A2n with A; = A2n-11-;,j = 1,2,'" ,2n; 
(iii) or A2n- 1 with Aj = A2n- j , j = 1, 2,'" , 

211 - 1, and nAn even; 
(iv) or B4m-11 or B4m+2 with Al even; 
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TABLE III. The types of the irreducible unitary representations of a simple Lie group having the h.igh~t weight ~ AjDj , 
where Di are the fundamental dominant weights listed in Table II and AI are nonnegative mtegers. 

Representation Types 
G 

R Q C 

A2n- 1 Ai = AOn-i, j = 1,2,' .. ,n Ai = A2n-i, j = 1,2,'" ,n Ai ~ A.n-i, for some j, 
and nAn even and nAn odd j = 1,2, ... ,n 

A'n Ai = )'2n+l-i, j = 1,2,"', n No Ai ~ A."+1+i for some j, 
j = 1,2,'" ,n 

Bn in(n + I)A1 even in(n + 1),1.1 odd No 

:'Oin+l :'Oin+l 
en L A.I_1 even L ,1..1-1 odd No 

1 1 

D. n- 1 ,1.1 = Ao No ,1.1 ~ A. 

Don n(A1 + A.) even neA1 + A.) odd No 

£. Ai = A.-I, j = 1,2 No either Al ~ A. or A. ~ A. 
or both 

£7 ,1..+,1..+,1.7 even A.+A.+A7 odd No 

£8 Yes 

F. Yes 

G. Yes 

(v) or Cn with Al + As + Ao + .. ·.even; 
(vi) or D4k+2 with Al + A2 even; 

(vii) or D2k+1 with Al = A2; 
(viii) or E6 with Al = A5 and A2 = A4; 

(ix) or E7 with A4 + A6 + A7 even. 

This list exhausts all possibilities for G. 

The discussion in Sec. 2 gives us the possibility of 
defining all the group extensions ~ of G, and classifying 
their various corepresentations. One of the possible 
extensions is always defined by adding an ao which 
induces an inner automorphism on G and a~ = 1. 
For this case one may make a general remark. 

Remark 3.1: For those group extensions ~ of G, 
where ac;luao = u and a~ = 1, the reality classes R, Q, 
and C coincide with the corepresentation types I, II, 
and III. Henceforth we leave this case from our 
discussions; the summary in Table IV, however, 
includes all these results as well. 

A n- 1 or SUn: Let G be SUn' and let the auto­
morphism induced by the anti unitary operators be 
inner. We choose ao such that ii == ar;l uao = u. The 
center of SUn is the discrete cyclic group Zn and 

No No 

No No 

No No 

consists of the elements 

1 and ck = exp (47Ti(nk • H)/(Clk ' Clk )], 

k = 1,2, ... , n - 1, (3.1) 

Ck = c~, c~ = 1. (3.2) 

For finding the number of distinct group extensions 
we have to find the order of the factor group Zn/Z~, 

For n odd, Z! = Zn, i.e., every element of the 
center C is the square of some other element of C; 
C2i = c;, C2i- 1 = c;+i(n-ll' Thus from the discussion 
after Eq. (2.1), there is only one group extension ~ 
for SUn' n odd, and may be characterized by a~ = 1. 
For n even, there are two such possibilities character­
ized by a~ = I and a~ = Cl; every other element of Zn 
can be written either as c; or as c1c;. The cases a~ = 1 
are covered by remark 3.1. For the case n even, 
n = 2m and a~ = c1 , the corepresentation is of type 
III if Ll(u) is of class C. If Ll(u) is of class R or Q, i.e., 
if Ai = A2m- i , j = 1, 2, ... , m, then Ll(c1) = (_l)Am. 
Thus the corepresentation is of type I or II, accordingly 
as (m + I)Am is even or odd, provided that Aj = 
A2m- j ,j = 1,2,'" ,m. 

A familiar example in this case is G = SU2 • The 
automorphisms are all inner. The group Agl(l) 



                                                                                                                                    

TABLE IV. The types of irreducible unitary corepresentations D of a group g such that a compact simple Lie group G is a subgroup of g with index 2, while an irreducible part 
of the representation obtained by restricting D to G is equivalent to a given irreducible unitary representation ,i of G. The highest weight of ,i is ~ AIHi as in Table III. The 
words "inner" or "outer" refer to the automorphism of G induced by any of the elements of the coset of Gin g. The automorphism induced by an operator ao, given by a sym­
metry operation on the Dynkin diagram, and the value of a~ fix g. In particular, for G = D., the outer automorphism induced by ao is a 1 +--+ a 2 ; the results for the automorph-

isms a. ~ a. and a 1 ~ a 3 can be simply obtained by cyclically permuting the indices of A. 

Auto- Corepresentation Types 
G Center mor- g ao 

phism I II III 

AM)(l) Al even Al odd No 
Al I,C1 =-1 inner 

Al~l)(l) C1 Yes No No 

AIA)(2n - 1) AI = A2._I ,j = 1,2,··· , n; AI = A2.-I,j = 1,2,··· ,n; AI ~ A2n_1 for some 
and nAn even and nAn odd j,j=1,2,···,n 

inner 
Al~1)(2n - 1) Cl AI = A.n-bj = 1,2, ... ,n; AI = A.n_.;,j = 1,2,··· ,n; AI ~ A,2n-i for some 

and (n + 1)An even and (n + I)A. odd j,j = 1,2,· .. ,n A 2._1 1, C., C2,···, C2n-l; 

n~2 cl = Ci, ein = 1 n n 

A~~\(2n - 1) ~ A.,_1 even ~ A21_1 odd No 
1 1 

outer 
A~~1) (2n - 1) c. Yes No No 

inner Ai~)(2n) A; = A.n +1-;,j = 1,2, ... ,n; No AI ~ A,2n+1-I, for some 

A 2• 1, CI, C2 ,·"· ,C2n; 
i,j = 1,2,··· ,n, 

n~1 c{ = Cj, (,~n+l = 1 
outer Ab~~(2n) Yes No No 

$l~)(n) in(n + I)A1 even !n(n + I)A, odd No 
B. 1, CI = -1 inner 

:S~n+l :Stn+l 
$j~I)(n) C, !n(n + 3)AI + ~ A21 even !n(n + 3)A, + ~ A21 odd No 

:S!n+l :S!n+l 
elJ.'(n) ~ A21~_' even ~ A21-1 odd No 

Cn l,c,=-l inner 
el~l)(n) c, Yes No No 
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:Dl~J(2n - 1) 
inner 

D •• _, 1,c},c2,c3, 
:Dj~ll(2n - 1) C, 

n~3 ci = c~ = Cs, 
C,c, = c; = 1 :D~~~(2n - 1) 

outer 
:D~,;;,i (2n - I) CO 

:Dj~J(2n) 

:Dj~11(2n) c, 

inner 

:Dj~21(2n) C2 

D.n 1,C1 "Cz"ca , :Di~3)(2n) Co 

n~2 ci = c~ = C~ = 1, 
c,c,C. = 1 outer :D~~i(2n) 

inner &1~J(6) 

4. 1, Ct. C2 = c~. 
d = 1 outer &~~U6) 

&M)(7) 
£, 1, c. = -1 inner 

&i~~)(7) c. 

£8 inner EjJI(8) 

F. inner S"jJ)(4) 

G. inner !1jJl(2) 

A, = A. 

n 

A, = A., I A.i_, even 
2. 

(n - 1)0'1 + lJ even 

neAl + A2) even 

n(A, + A2) even 

n 

lo + I Ao;_, even 
2. 

n 

A, + I A2;_, even 
2 

(n + 1)(A, + A2) even 

A, = A. 

Ai = A._i,j = 1,2 

Yes 

A. + A6 + A, even 

Yes 

Yes 

Yes 

Yes 

No 

n 

A, = A., I A21-' odd 
2. 

(n - 1)(1.1 + A.) odd 

n(A, + A.) odd 

n(A, + A.) odd 

n 

Ao + I A2;-1 odd 
2. 

n 

A, + I Ao;_, odd 
2 

(n + 1)(A1 + A.) odd 

No 

No 

No 

A. + Ao + A, odd 

No 

No 

No 

No 

A, ~ A. 

A, ~ A. 

No 

No 

No 

No 

No 

No 

A, ~ A. 

either A, ~ ).. or 
A2 ~ A. or both 

No 

No 

No 

No 

No 

No 
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consists of the elements u, aou, where u is the set of all 
2 )( 2 unitary matrices with determinant 1. The 
mUltiplication table is 

U2 aOu2 

U1 U1U2 aOu1u2 (3.3) 

aOul aOulu2 UIU2 

and has the 4m X 4m irreducible unitary corepresenta­
tion of type II: 

where ~(u) is the 2m X 2m irreducible unitary 
representation of SU2 and the 2m X 2m matrix {l is 

(3.5) 

It is easy to convince oneself that it is a corepresenta­
tion. To see that it is irreducible, let, if possible, IX 

reduce it. Writing IX also in the partitioned form of 
2m X 2m blocks, we have 

IX = [; !} (3.6) 

This means that the nonsingular IX satisfies 

and 

or 

[a bJ [A(U) 0 J = [~(U) 0 J [a bJ 
c d 0 B(u) 0 ~(u) c d 

[a bJ [; OJ = [0 - {lJ [a* b*J ,. 
c d 0 1J (l 0 c* d* (3.7) 

aA(u) = ~(u)a, cA(u) = ~(u)c, 

bB(u) = /1(u)b, dB(u) = ~(u)d, 

a; = -{lc*, c; = {la*, 

b1J = -{ld*, d1J = (lb*. 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

As A(u) and ~(u) are irreducible representations of 
the group SU2 , we see by Schur's Lemma that c is 
either nonsingular or zero. The same statement is 
true for the matrices a, b, and d. If c = 0, then from 
Eqs. (3.10) a = 0 and IX is singular. Thus c is non­
singular. Similarly, each of the matrices a, b, and d 
are nonsingular. Now from Eqs. (3.8) one sees that 
ac-1 commutes with every ~(u) and therefore, by 
Schur's Lemma, a = kc, k a constant. Substituting 
this in Eqs. (3.10), one gets after a little manipulation 
kk* = -1, an absurdity. 

The multiplication table for Al~l)(l) is 

u2 aou2 

U1 U1U2 aOu1u2 

aOul aOu1u2 -U1U2 

and can be realized by choosing ao = (lK, where K is 
the complex conjugation operator and 

(3.12) 

is an element of SU2 • It is well knownl that all co­
representations of this AMl)(l) are of type I. 

Consider now the possible group extensions with 
the outer automorphism, which we take as the 
reflection of the Dynkin diagram Cl., ~ Cl.n- J , j = 
1, 2, ... , n - 1. The elements of the center (3.1) 
undergo the same automorphism and cj = cn- j • In the 
case of n being odd, there is no invariant element in 
the center besides 1, and hence the value of a~ can 
only be 1. However, for n even, n = 2m. In addition 
to 1, Cm is invariant. Also, as CkCk = CZm-kCk = 1 
for all k, a~ = 1 and a~ = Cm give rise to different 
extensions of SU2m • We no~ determine the co rep­
resentation type for the irreducible n-dimensional 
representation with the highest weight U1 . The n 
weights Uf of the representation are given by 

k 

n~ = n1 , n~+1 = n1 - L Cl.; , k = 1, 2, ... , n - 1. 
;=1 

We choose a basis so that the matrices of Hand Ea; 
are 

(Hhk' = nk
<5kk" (E~Jkk' = <5kA'.i+1; (3.13) 

the other matrices of the representation can be found 
by calculating their commutators. We want to 
determine whether there exists a nonsingular {l such 
that 

(3.14) 

This implies for the matrices of E~, the following: 

-{lE~ = Ean _,{3. (3.15) 

Using explicit expressions for (Ea)kk' , we get the 
following relations: 

{lo.n-l = -{31.n-2 = {32.n-3 = ... = (_l)(n-ll{3n_l,o, 

{l;k = 0, if j + k '¢ n - 1. (3.16) 

Thus {l is symmetric or antisymmetric, accordingly 
as the sign (- I)(n-l) is even or odd. Also, as {J is 
unitary, 

{l{l* = (_I)(n-lJ. (3.17) 
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Thus if a~ = 1, we have 

fJfJ* = (_I)("-l)A(a~). (3.18) 

For n = 2m the value of the center element Cm can be 
calculated in the above representation as 

A1(cm) = exp [27Ti(2IIm· II1/cxm • cxm)] = (-1). (3.19) 

Using these two facts, one gets that all the co­
representations are of type I, when n is odd (a~ = 1) 
or when n is even and a~ = Cm" For n = 2m and 
a~ = 1, the corepresentation containing A(u) is of 
type I or II accordingly as (A'1 + A3 + As + ... ) is 
even or odd. 

Remark 3.2: The above result seems to be in 
contradiction with what one may have naively guessed. 
The outer automorphism may have been defined as 
that of complex conjugation; then one would have 
immediately implied Ai(u) = A}(u), A}(u) being 
identical to u. Thus A is of type I for a~ = 1 regardless 
of n being even or odd. This apparent contradiction 
is easily removed by the following consideration. 

Let ao and a1 be two antiunitary operators of the 
same group @ and let a;luao = u and a11ua} = u', 
with u = u" = u. The element Vo = a;lal belongs to G 
and D(jluvo = u' for every u in G. Also, a~ = (aovo? = 
a~vovo' Thus, if there is an element Vo of G such that 
VoDo, an element of the center of G, is different from 
unity, then one may choose a~ different from a~ . For 
n even, this is the case, because there exist antisym­
metric unitary matrices Do with vrivo = -l. One can 
in fact verify that the reflection of the Dynkin diagram 
and complex conjugation of the self-representation 
of An_lor SUn differ exactly by such a transformation. 

Bn: For these groups all the automorphisms are 
inner and the center consists of two elements 1 and 
CI . The representative of CI in A(u) is 

A(cl ) = (_ltA1+.l..+.I.4+·... (3.20) 

For a~ = 1 the case is covered by remark 3.1, and 
for a~ = CI , the corepresentation is of type I or II 
accordingly as 

E = (_l)!n(n+3»).1+.1..+.1.4+··· 

is +1 or -l. 
(3.21) 

en or SP2n: For these groups all the automorphisms 
are inner and the center consists of two elements, I 
and cl . The representative of Cl in the representation 
with highest weight ~ AjIIj is 

A(c l ) = (_1)-<1+.1.3+.1.5+.... (3.22) 

Combining with the results in Table Ill, we see that 
for the case a~ = Cl , all the corepresentations are 
of type I, while the case a~ = I is covered by remark 
3.1. 

Dn: The center consists of four elements 1, Cl' C2 , 

and Ca. The representatives of these in a representa­
tion with the highest weight Z Aknk are 

A(cl) = exp [i!7T(.A.ln + ).2(n - 2»](_1»).3+.1.5+"', 

A(C2) = exp [ii7T(Al(n - 2) + A2n)]( _1),lO+.l.5+·", 

A( Ca) = (_l)'h+.l... (3.23) 

The multiplication laws for n even and n odd are 
different, as can be verified from Eqs. (3.23). For n 
odd the group is Z4, 

C~ = Ca, c~ = C2 , c~ = 1, 

and for n even, the group is Z2 X Z2, 

(3.24) 

c: = c~ = c; = 1 and C}C2Ca = 1. (3.25) 

First consider the inner automorphisms. Let n be 
odd. From (3.24) and the discussion after Eq. (2.1), 
one sees that there are two extensions g, characterized 
by a~ = 1 and a~ = c}. The case a~ = 1 is already 
covered by remark 3.1. For a~ = C}, A(u) and A*(u) 
are equivalent only when A} = ).2' Thus, if A} =F ).2, 

the corepresentation is of type III. If Al = ;'2' then 
A *(u) = fJ-lA(u)fJwith fJfJ* = 1, A (Cl) = (-1).1.3+).5+"', 
and therefore the corepresentation is of type I or II 
accordingly as ).3 + ).5 + ... is even or odd. Now let 
n be even, n = 2m. All irreducible representations 
A(u) satisfy A *(u) = fJ-lA(u)fJ with 

fJfJ* = (_l)m().l+).'). 

As the square of each element of the center is I, 
each one of them used as a~ gives a different extension 
g. Comparing fJfJ* = (_I)m().,+.1..) and A(a~), we see 
that the corepresentation is of type I or II accordingly 
as E, as given below, is + I or -1: 

a~ = 1, E = (_l)mU1+).'), 

a~ = Cl ' € = (_1»).·+).3+).5+"', (3.26) 

a~ = C2 ' € = (_1/'+).3+).5+"', 

a~ = Ca , € = (_1)(m+l)U1+).'). 

Next consider the outer automorphisms. We take 
u to be obtained from u by interchanging the simple 
roots (Xl and CX2 , so that c} = C2 and c2 = Cl , while 
c3 = Ca , I = 1. In case n is odd, a~ can be chosen to 
be either I or Ca , giving different group extensions g. 
On the other hand, when n is even, ClClCa = C2ClCa = I 
and there is only one extension g, characterized by 
a~ = 1. 

Now we have to see whether A * (a;luao) and A(u) 
are equivalent and, in case they are, A * (a;luao) = 
fJ-lA(U)fJ, what is the value of fJfJ*? As any A(u) 
occurs in the reduction of a direct product of certain 
direct (or Kronecker) powers of A1(u), A 2(u), and 
Aa(u), in view of Theorems 3.1 and 3.2, it is sufficient 
for the above purpose to study only these last three 
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fundamental representations. Let us begin with 
~3(U) with the highest weight 

n 

TIs = teal + (2) + Ia;. 
j=S 

All the weights are simply calculated to be 

n 

n~ = Hal + ( 2) + 2 a;, k = 1,2,"', n - 2, 
i=k+2 

n;-l = Hal + ( 2), 

n~+k = _ n~-k+1, 
n; = teal - as), 

k = 1,2,' .. ,n. 

(3.27) 

Setting a representation in which H is diagonal, the 
representatives of Ei == EI1., can be simply written as 

(Eih = 1, if n~ - n~ = ai' 

= 0, otherwise. (3.28) 

The automorphism a l +--+ a 2 just interchanges n; 
and n;+l. The equations {J~ * (ai)}uao) = ~(u){J in 
terms of the Ej read 

The equation {J~ * (ai)luao) = ~(n){J implies for the 
algebra 

-{JHn = -Hn{J, -{JHi = Hi{J, 

j = 1,2, ... , n - 1, (3.35) 

-{JEr = E2{J, -{JE'{ = E}{J, (3.36) 

-{JEr = Ej{J, j = 3,4, ... , n. (3.37) 

From (3.30) and (3.35) one sees that the only possible 
nonzero elements of {J are 

(3.38) 

where €j = -Ej • As the product of all the Ej is fixed, 
this implies that {J = 0 unless n is odd. When n is odd, 
we indicate the element (3.38) by (3( E1' ..• , En)' 

Equation (3.37) then shows that 

(3(E1,"', E;_2' 1, -1, Ej+1"", En) 

= -(3(E1,"',E;_2,-1,1,E;+1,"',En) (3.39) 

and (3.36) gives 

(J(E1,"', En-2' 1,}) = -(J(EI"", En-2' -1, -1). -(3Er = E2(3, -(3E[ = E1(3, 

-(3Ey = Ej(3, j = 3, 4, ... , n. (3.29) (3.40) 

Equations (3.27)-(3.29) give 

(3n-1.n+2 = (3n+2.n-l = -(3nn = -(3n+1,n+} ' 

(3j,2n-1+1 = -(31+},2n-j, 
j = 1, ... , n - 2, n + 2,·' .. , 2n - 1. 

All other elements of (3 are zero. Thus (3(3* = 1. 
The representations ~l(U) and ~2(U) are conven­

iently given in a basis labelled by IE) = lEI, E2, •.. , En), 
where E; = ± 1 independeptly of each other except 
for their product El' •.. , En' which is + 1 for ~1 and -1 
for ~2' Thus 

(EI H; IE') = !Ej(l(E, E') == !E;(l(E}, ED'" (l(En' E~), 

j = 1, 2, ... ,n, (3.30) 

(£/ E1 /1:') = (l( E1, E~) .•• (l(En_2, E~_2) 

X (l(En_l, E~_} + 2)(l(En' E~ + 2), (3.31) 

(EI E2 IE') = (l(E} , ED'" (l(En_2, E~_2) 

X <'l( En_1 , E~_} + 2)<'l( En , E~ - 2), (3.32) 

(EI E; IE') = (l(E} , E~)'" <'l(E;_2' Ej_2 + 2) 

X <'l(Ei_l, E1-1 - 2) ... <'l(En' E~), 

j = 3, 4, ... ,n. (3.33) 

The automorphism a} +--+ a 2 interchanges E} and E2 
and, as a consequence, the matrices for H;, given in 
terms of the commutator of the E's, change as 

b n == aC;}Hnao = -Hn' iij = H;, 
j = 1, 2, ... , n - 1. (3.34) 

These equations give after a little manipulation 

(3(El' ... , En) = (_1)!<n-l){J(€l' ... , £n-l' En), (3.41) 

i.e., 

fJT = (_1)!(n-I)fJ or fJfJ'" = (_1)!(n-I), (3.42) 

taking fJ unitary. Thus for n odd, n = 2m + 1, the 
representation ~(u) satisfies ~ * (ai)luao) = fJ-1fl.(U)fJ 
with 

fJfJ* = (_I)m().1+;'2)~(a~), if a~ = 1, (3.43) 

and 

fJfJ* = (_1)(m+1)(;'l+A·)fl.(a~), if a~ = Cs . (3.44) 

For n even, the automorphism a1 ~ a 2 interchanges 
fl.l and ~2' Thus the corepresentation is of type III 
unless Al = ,1.2' When ,1.1 = ,1.2, it is of type 1. 

For D4 and the outer automorphism a1 +--+ az, the 
above conclusion holds. For the automorphism 
a1 ~ a s(a2 ~ as), the corepresentation is of type III 
unless Al = As (.1.2 = .1.3), In case Al = .1.3 (.1.2 = As) 
it is of type I. 

Eo: For the group E6 , the center consists of three 
elements Z3 == {I, Cl' C2 = c~; C1C2 = I}. As c~ = C2 , 

there is only one extension § for inner automorphisn:s, 
characterized by a~ = 1. This case is covered by 
remark 3.1. The outer automorphism may be taken 
as 1 +--+ 5, 2 ~ 4, 3 -- 3, 6 -- 6. As cl = C2, c2 = Cl , 

there is only one extension characterized by a~ = 1. 
Therefore the outer automorphism may also be taken 
as the complex conjugation of the 27-dimensional 



                                                                                                                                    

IRREDUCIBLE COREPRESENTATIONS OF GROUPS 1385 

representation ~l (u) without any complication of the 
type encountered in SU2n • All the corepresentations 
are of type I, since ~(u) occurs in the reduction of 
some direct product of direct powers of ~l(U) and 
~5(U), both being of type I. 

£7: All automorphisms are inner. The center has 
two elements, 1 and c4 • The representative of C4 in 
~(u) is 

~(C4) = (_1)l4+J.6+,l7. 

Thus, for the choice a~ = c4 , all corepresentations are 
of type 1. For the choice a~ = l, see remark 3.1. 

£8' F4 , G2 : For these groups, all automorphisms 
are inner and the center has only one element, the 
identity. Thus a~ = 1. See remark 3.1. 

Remark 3.3: A glance at Tables III and IV shows 
that class III, C occurs only when the automorphism 
induced by ao is inner. Hence, in accordance with 
Dyson,12 using his notation, only class CC2 (and not 
CCl) occurs when G is a compact simple Lie group. 
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In a previous paper the first few terms of the adiabatic invariant of a particular class of dynamical 
systems were found by solving Liouville's equation. The system considered was a periodic motion to 
which small perturbations were applied. The period of the unperturbed orbits was a constant and the 
perturbations were tirr.e-independent. In this paper similar methods are used to find the invariant for the 
more general system, in which the period of the unperturbed orbits is a function of the coordinates and in 
which the perturbation varies slowly with time. The results are applied to a simple example, the Lorentz 
pendulum. 

1. INTRODUCTION 

In a previous paperl (referred to in the text as I) a 
study was made of a dynamical system with a Hamil­
tonian of the form 

H = PI +, eo.(qi,Pi), (Ll) 

where qi and Pi (i = 1, 2, ... , N) are canonical co­
ordinates, 0. is periodic in ql period 217, and e is a 
small parameter. When e is zero, the orbits are curves 
along which qi varies linearly with the time and the 
other coordinates remain constant. If ql is an anglelike 
variable, then the orbits form closed loops, the time 
taken to pass once around being the same for all 
loops. The dynamical system with E nonzero then 
consists of a slow drift superimposed on these periodic 
motions. Such a nearly periodic system possesses an 
adiabatic invariant and the first few terms in the 
series representation of it can be found. I Examples of 

1 B. McNamara and K. J. Whiteman, J. Math. Phys. 8, 2029 
(1967). 

this kind arise in the study of nonlinearly coupled 
oscillators and in various problems in celestial 
mechanics. 

A more general system with somewhat similar 
properties is one with a Hamiltonian of the form 

H='F + eO., (1.2) 

where, as before, 0. is periodic in qi period 217. 'Y is a 
function that is independent of ql' depends on PI, 
and varies slowly with all the other coordinates and 
time t. 0. depends on all the coordinates and varies 
slowly with time, i.e., 

'F = 'Y(eq2"", eq""pu ep2'" " r;p.Y' et), (1.3) 

0. = o.(ql"" ,qN,Pl,'" ,P,\', et). (1.4) 

When e is zero, the equations of motion are 

~q/ = (A).=o, where 
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representation ~l (u) without any complication of the 
type encountered in SU2n • All the corepresentations 
are of type I, since ~(u) occurs in the reduction of 
some direct product of direct powers of ~l(U) and 
~5(U), both being of type I. 

£7: All automorphisms are inner. The center has 
two elements, 1 and c4 • The representative of C4 in 
~(u) is 

~(C4) = (_1)l4+J.6+,l7. 

Thus, for the choice a~ = c4 , all corepresentations are 
of type 1. For the choice a~ = l, see remark 3.1. 

£8' F4 , G2 : For these groups, all automorphisms 
are inner and the center has only one element, the 
identity. Thus a~ = 1. See remark 3.1. 

Remark 3.3: A glance at Tables III and IV shows 
that class III, C occurs only when the automorphism 
induced by ao is inner. Hence, in accordance with 
Dyson,12 using his notation, only class CC2 (and not 
CCl) occurs when G is a compact simple Lie group. 
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and 

where 

du _ 0 
dt - , 

u = (q2' .. " qN,PU' .. ,PN)' 

Along the orbits u is constant and ql varies with a 
rate that is a function of Pl. (It is assumed in the 
following that;' :;E= 0.) Again, if ql is an angle variable, 
the orbits are closed loops, but now the periodic time 
varies from orbit to orbit. This system, too, possesses 
an adiabatic invariant and it is the purpose of this 
paper to obtain the first few terms in its series. Exam­
ples arise in the study of the motion of charged particles 
in a slowly varying magnetic field and the motion of a 
satellite about a slightly nonspherical earth. The 
question of whether magnetic fields possess magnetic 
surfaces can also be posed in a similar canonical 
form.2 

In I two methods were used to calculate the invari­
ant. In the Poisson-bracket method, Liouville's 
equation was solved by expanding in E and using an 
algebra of operators to reduce the equations to forms 
which had an obvious solution. In the second, Krus­
kat's averaging procedure3 was used to evaluate the 
action integral as an asymptotic series in E. Both 
methods have again been used to calculate the invar­
iant for the more general system discussed here. In 
Sec. 2 the Poisson-bracket method is outlined and 
the modification to Kruskal's method indicated in 
Sec. 3. Section 4 contains some general comments. 
In Sec. 5 the invariant is calculated for a simple 
example, the Lorentz pendulum. 

2. THE POISSON BRACKET METHOD 

A constant of the motion J is sought for the dynam­
ical system described by the Hamiltonian (1.2)-(1.4). 
J must satisfy Liouville's equation 

dJ == oj _ [J H] = 0 (2.1) 
dt ot ' , 

where the Poisson bracket is defined by 

[A, BJ = oA oB _ oA oB . (2.2) 
op, oq, oq; oP. 

In this paper no attempt is made to find a general 
solution of (2.1), as this would depend on the precise 
form of H(q, p, t), which is not specified. What can be 
found is a particular solution making use of the 
known properties of the Hamiltonian. Following I, 

, B. McNamara and K. J. Whiteman (to be published). 
• M. Kruskal, J. Math. Phys. 3, 806 (1962). 

J is first expanded as a power series in E: 

(2.3) 

Furthermore, J is required to have the same depend­
ence on the coordinates as the Hamiltonian H. 
That is, J is to be a function of qi and pi, but only a 
slowly varying function of the time, varying as Et. 

H is periodic in ql period 27T and J is required to be 
periodic also. This latter restriction on J has important 
consequences, since it prevents the occurrence of 
secular terms (like qf sin ql, for example) and leads 
to a series that can be an adequate representation of 
the invariant even for large values of ql . 

The expansion scheme is complicated by the slow 
variations of "P, and therefore of J, and the most 
compact expression of the scheme is achieved by 
regrouping the expansion of J as 

where 
J = jCn-I ) + enJn + O(en+I ), 

n-l 
J(n-I) = I emJm. 

m=O 

Equation (2.1) becomes 

(2.4) 

~J ~J(n-I) 
en;. _fl_n = [f n- 1 ), HJ _ _ fl __ + O(en+I ). (2.5) 

Oql ot 
The condition that I n be periodic is that no constant 
terms appear on the right-hand side of (2.5), i.e., 

olen-I) 
-- - [J(n-I ), H] = O(En+l). (2.6) ot 

As in paper I, the average I of a periodic function of 

- 1 12 
.. /= - jdql' 

27T 0 
(2.7) 

Also, as before, 

J= JU-/)dQ1 , (2.8) 

where the constant of integration is chosen to make 

J = O. Equation (2.5) can now be integrated to give 
~ 

1 ~ 1 ~J(n-I) 
enJ = - [J(n-I) H] _ - _fI -- + EnG (2.9) 

n;. , ;. ot n' 

where the Gn are constants of integration, i.e., they can 
depend on all the coordinates except ql' The J nand 
Gn are found by solving Eqs. (2.6) and (2.9) order by 
order. From (2.5), Jo is independent of qi and so the 
lowest-order periodicity condition (2.6) becomes 

oJo - 2 a; - [Jo, HJ = O(e). (2.10) 
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The only obvious solution is Jo = JO(PI), since 0 
is independent of ql' As any function of an invariant 
is also invariant, the solution can be chosen to be 
Jo = Pl' The same solution for Jo could have been 
chosen in I, but in that case would merely have 
added the constant Hamiltonian to the invariant 
found. In order to pursue the expansion scheme 
further, the operator algebra of! [Eqs. (3.11)-(3.19)] 
is required. Complications arise in the general case 
because A is a function of the coordinates and is 
outside the Poisson bracket in Eq. (2.9). The following 
additional relations are useful and easily demonstrated 
from the definition (2.2): 

[jg, h] = j[g, h] + g[j, h] = [j,gh] + [g,Jh] (2.11) 

and 
[jg,f] = ![g,P]. (2.12) 

Using (2.9) and (2.4), one now finds 

() 0-11 
J I = PI + E + EG1 (2.13) 

,t 

and 1he first-order periodicity condition gives 

aa~} - [G}, OJ + *,(0 ~ !1) - [0 ~!1 ,H J= O(E3
). 

(2.14) 

The last term can be rewritten, using 1(3.18),1(3.16), 
and (2.12); 

{O ~ !1, 0] = {1, Q2 ~ !1] = O(E3
). 

The third tetm is zero, using 1(3.12), and so (2.14) 
becomes 

(2.15) 

This is the same equation as (2.10) and the appropriate 
solution is G1 = G1(Pl) = O. The methods now 
become much harder to operate than in I, and a 
further operator has to be introduced to handle the 
slow variations of 1p and A. We define the slow bracket 
of 1p with! = !(Pi, qi' t) by 

[1p,1l = A :! + E{1p,j}. (2.16) 
uql 

Using (2.5), one now finds 

E J 2 = - [p}, HJ + - --, H - - - - + EZGz 
2 1 E [0 -!1 ] E a (!i) 

A. A. A. A. at A. 

= ~{!i til} + ~ [! Oz] - ~ [.Q !iJ 
,t ,t'r ,t,t' 2 A.,t' 

- ~ ~ (!i) + E
2G (2.17) A aEt A. 2' 

The only new relation needed to solve (2.6) for G2 

is for the average of the Jacobi identity involving a 
slow bracket; 

[{1p,j}, g] + [{g, 1p},j] + {[f, g], 1p} = {A.,! :~}. 
(2.18) 

The equation for G2 can now be rearranged to read 

i(G - ![O !iJ) - [G - ![O !iJ OJ = O(E2). at 2 2 A.' ,t 2 2,t',t' 

(2.19) 

As before, the particular solution of this equation is 
chosen to be 

(2.20) 

The adiabatic invariant correct to O( E2) for the Hamil­
tonian of (1.2)-(1.4) is therefore 

(
0 -!1) J = p} + E ,t 

+ e2(! {!i 1p} + [_1 iii] _ ! [!1 !i] 
A. A.' 2A,2' 2 A.,t , 

- ! ~ (!i) +! [0 , !iJ) + O(E3
). (2.21) 

A. aEt A. 2 -,t A. 

The slow dependence of 1p and ,t on the coordinates 
greatly increases the work involved in using this 
method. It would be a lengthy task to obtain higher­
order terms, but we believe that no further operator 
algebra would be needed. 

3. KRUSKAL'S AVERAGING METHOD 

Kruskai3 deals with a set of equations 

dx 
X t == - = F(x, E) (3.1) 

dt 

such that for E = 0 the point x(t) traces out closed 
curves as t increases. He has shown that one can 
introduce a transformation to new coordinates 

x-(y,v) 

such that (3.1) becomes 

Yt = Eg(y, v) (3.2) 
and 

vt = X(y) + Ej(y, v), (3.3) 

where! and g are periodic in v period 217 and X is 
independent of v. In I the particular case was consid­
ered where X was a constant (taken equal to unity) and 
the averaging method was applied. That is, the 
transformation of coordinates 

y, v ~ Z, q> 
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was found (as far as terms of second order in e) such 
that Zt and q;t were functions of Z alone and not of q;. 

Taking X = 1 was sufficient to allow the adiabatic 
invariant to be found for the dynamical systems 
considered in 1. For the more general systems con­
sidered in this paper, it would seem necessary to carry 
out the averaging procedure for the general case 
where X = X(y). However, we remark that if one 
changes the independent variable from t to s where 

ds 
dt = X(y), 

then (3.2) and (3.3) become 

Y8 = e(g/x), 

v. = 1 + e(f/x). 

These are now of the form considered previously. 
The equations of motion for the Hamiltonian 

system described by (1.2)-(1.4) are 

dql 1 r. 
- = II + e~"Pl' 
dt 

dqi Q - :::; e( 'P£~. + P.)' dt ., , i ;i' 1, (3.4) 

~j = -e('P<o, + 0 0), i = 1,2,' .. , N. 

Choosing ds/dt = A, Eqs. (3.4) can be written as 

where 

and 

G= 

dY 
- = a+eG, 
ds 

Y = (q, p, €f), 

a = (1, 0, 0, ... , 0), 

(3.5) 

(3.6) 

(3.7) 

(
0. 1 1 1) 
;. , ~ ('PEP, + Qp.), ... , - ~ ('PEO' + 0 0), ... '~ . 

(3.8) 
Denoting the averaged coordinates by 

Z = (Q, P, eT), 

the averaging transformations are given as before by 
1(4.25) and 1(4.26). The only change arises when 
representing these expressions in terms of Poisson 
brackets. 

Using the notation of I(Sec. 4), one finds 

"" 1 "" G • Sy = ~ [0, S], 

- "" 1 aS 1 "" 1 "" G· Sy = - - + - [n, S] + - {'P, S}, 
A o€f A A 

and so on. It is now possible to make calculations 
similar to those in I(Sec. 4) and evaluate the invariant 

~ p • dq taken around a curve on which Ql varies and 
the other coordinates Qj, Pi, and T remain constant. 
The working is not reproduced here, but gives the 
same expression as (2.21) of this paper. 

4. DISCUSSION 

The important feature that allows an invariant to be 
found by the methods of this paper is that the domi­
nant term in 

is the term containing the derivative OJn/Oql' Another 
form of Hamiltonian different from (1.2) to (1.4) 
that has this same property is one with 

'P = 'P(eq2,"', eqN,PI,P2' ep3,"', epN' €f) (4.1) 

and 

0= O(ql' eq2, q3, .. " qN'PI,' .. ,PN' e/). (4.2) 

That is, 'P depends both on PI and P2 instead of PI 
and ep2, and 0 depends on Eq2 instead of q2' The total 
Hamiltonian is a function of eq2 and we therefore 
seek an invariant having the same dependence. As a 
result, the lowest-order term in (2.1) is just AOJo/Oql' 
The analysis proceeds exactly as above and the 
invariant can be found. In fact, 'P can be allowed to 
depend on any number of the qi and pi, as well as on 
PI, provided that the total Hamiltonian varies only 
slowly in the conjugate coordinates; an invariant can 
still be found and it has precisely the form given in 
(2.21). 

The motion of a charged particle in a magnetic 
field has a Hamiltonian that can be written in this 
form. One finds that 'P = BPI + P2, where PI = 
v'}j B, P2 = v~, and B is the magnitude of the magnetic 
field, where VII and v 1.. are the components of particle 
velocity along and perpendicular to the field. Provided 
that B is assumed to vary slowly in the direction of the 
field (as eq2), an invariant can be found. The lowest­
order invariant from (2.21) is just PI = v'}jB. The 
next term, 

(0- n) 
E A. ' 

gives the usual form4 of the first-order correction to 
the magnetic moment. 

5. THE TIME-DEPENDENT OSCILLATOR 

An example for which the adiabatic invariant is 
simply found by the methods described is the oscillator 
with a time-dependent frequency, the Lorentz pen­
dulum. (The frequency of the lowest-order orbits is 
constant, but the perturbations are time-dependent.) 

• T. G. Northrop, The Adiabatic Motion of Charged Particles 
(Interscience Publishers, Inc., New York, 1963). 
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The Hamiltonian for this system can be written 

H = t(x2 + W2X2), (5.1) 
where 

w = w(et). 

Defining a canonical transformation to new co­
ordinates (PQ) by means of the generating function 

W(x, P) = ~ (2wP - W2X2)t + P sin-1 (!!!..)\ (5.2) 
2 2P 

[found by solving the Hamilton-Jacobi equation 
H(x, oW/ox) = wP], one obtains 

(
2P)* x = ~ sinQ 

and 
x = (2Pw)* cos Q. (5.3) 

The new Hamiltonian H* is given by 

H* =H+ oW ot 
w' 

= wP + e-Psin2Q, (5.4) 
2w 

where w' = dw/det. This is of the standard form 
(1.2)-(1.4) and the invariant is, from (2.21), 

J = P + e 0 + .le2[O 0J _ ~ ~ (0) + O(e3\ 
A 2 lt'A Aod A " 

(5.5) 

JOURNAL OF MATHEMATICAL PHYSICS 

since n = 0 and A is independent of P and Q. Evaluat­
ing this, one obtains 

J = P + e w' P sin 2Q + ~ (W')p 
2w 8 w2 

+ wP cos 2Q (WII _ 2(W
f )1l) + O(e3) (5.6) 

2 w4 w5 

= 1+- - +-xx (x
2 + W2X2) ( e

2 (W')2) ew' " 
2w 8 o} 2w2 

+ ~ (xl! _ W2X2)(Wrr _ 2(W/)2) + O(e3). (5.7) 
8 w4 w5 

To lowest order this is just Hlw, the familiar form of 
the invariant for the Lorentz-pendulum problem. The 
result of (5.7) to second order agrees with an expression 
given by Littlewood5 [there is a typographical error 
in Eq. (11) of Ref. 5]. Although H/w varies as w 
varies slowly in time, one can see that the change in 
H/w between two states for which w' = 0 is zero. 
This result has been obtained to all orders by Kulsrud.6 
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for integrals which was proved in a paper by Wein­
berg.5 In addition to stating and proving conditions 
under which a Feynman integral converges, Weinberg 
developed a method for determining a polynomial 
bound on the value of the integral as subsets of the 
external momenta become large, provided the usual 
rotations of energy contours can be performed. The 
value of his technique is that one need not evaluate 
the integrals under consideration. The bound on the 

• S. Weinberg, Phys. Rev. 118,838 (1960). 
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integral is determined simply from the asymptotic 
properties of the integrand alone. 

Weinberg's analysis, however, does not determine 
the logarithmic asymptotic behavior of convergent 
integrals. A method which provides some clue to the 
logarithmic asymptotic behavior of the photon and 
electron self-energy graphs of quantum electro­
dynamics is the renormalization group approach 
(cf. Bjorken and Drell,6 Bogoliubov and Shirkov,7 
and LandauS). The renormalization group is, by def­
inition, the group of transformations which, when 
applied to the propagators, charges, and masses of a 
theory, yields new propagators, charges, and masses 
which do not change the expressions for observable 
quantities. The arguments of the renormalization 
group approach rely upon several fundamental 
assumptions which lead to anomalous results which 
in turn make one suspect the original assumptions. 

In this paper, we develop a technique for deter­
mining the logarithmic asymptotic behavior of a cer­
tain class of convergent integrals and apply it to 
various Feynman integrals of quantum electro­
dynamics. We use Weinberg's results5 as a basis, 
although we are required to modify and extend them. 

n. ASYMPTOTIC THEOREMS FOR INTEGRALS 

A. Introduction 

In this section we are concerned with extending the 
results of Weinberg.5 Before undertaking this task, 
however, we briefly summarize his results and, in so 
doing, we use essentially the notation used by Wein­
berg. 

B. Summary of Weinberg's Results 

Let f(PI, ... ,Pn) be a complex-valued function of 
the n real variables PI' ... 'Pn' We will consider the 
variables PI, ... ,P n as the components of a vector 
P in Rn , and we will be concerned only with those 
functions f(P) which belong to a certain class An 
defined as follows: 

Definition: A function f(P) is an element of the 
class Ail if and only if, for each subspace S c Rn, 
there exist coefficients <x(S), P(S) such that, for any 
choice of m ~ n independent vectors L1 ,"', Lm 
and bounded region W c Rn, we have 

f(L1'fJI ••• 'fJm + L 2'fJ2 ••• 'fJm + ... + Lm'fJm + C) 
= O{'fJ~({Ll})(log 'fJI)P({Ll}) ..• 'fJ:.({Ll,··· ,Lm}) 

X (log 'fJm)P({Ll,··· ,Lm})} 

• J. Bjorken and S. Drell, Relativistic Quantum Fields (McGraw­
Hill Book Co., New York, 1965) . 

• N. N. Bogoliubovand D. V. Shirkov, Introduction to the Theory 
of Quantized Fields (Interscience Publ., Inc., New York, 1959). 

8 L. D. Landau, in Niels Bohr and the Development of Physics, W. 
Pauli, Ed. (McGraw-Hili Book Co., New York, 1955). 

when 'fJl' ••• , 'fJm tend independently to infinity and 
C E W. The notation {L1 , ••• , Lr } denotes the sub­
space spanned by the vectors L1 , ••• , Lr • 

Let l be a subspace of Rn spanned by some set of 
orthonormal vectors L~,'" , L~, and consider the 
integral 

liP) = L:· . ·L: dYl' .. dYk 

X f(P + L~Yl + ... + L~Yk) 

= f dkp'f(P + P'). 
JP'eI 

Provided this integral exists,fI(P) is a function which 
depends only on the projection of P along the sub­
space I; that is, fI(P) depends only upon the com­
ponent of P in the subspace complementary to [. 

The following theorem was proved by Weinberg.5 

Theorem. 1: Suppose f(P) E An with asymptotic 
coefficients <x(S) and P(S) for any nonzero subspace 
S of Rn. Let f(P) be integrable over any bounded 
region in Rn (local integrability), and let 

DI = max {<x(S') + dim S'}, 
S'cI 

where dim S' is the dimension of S'. If DI < 0, then: 
(a) frCP) exists; 
(b) fI(P) E A n- k with asymptotic coefficient <XI(S) 

for SeE, where Rn == [ EEl E, given by 

<xrCS) = max {<x(S'} + dim S' - dim S}. 
AWS'=S 

A([) is the operation of projection along the subspace 
[and max means that the maximum is taken over 

A (l)S'=S 
all those subspaces S' which project onto S. 

C. Definition of the Subclass Bn 

Let f(P) E An with asymptotic coefficients <x(S) 
and peS). Let L1 ,"', Lm be m ~ n independent 
vectors and Wa finite region in Rn. We arrange the 
logarithmic asymptotic coefficients P({L1}),"', 

P({Ll' ... , Lm}) in increasing order, and suppose 
that 

P({L1 , ••• , L".}) ~ P({L1 , ••• , L lrl}) 

~ ... ~ P({L1 , ... ,L",,.}), 

where 171' ••• , 17m is a permutation of the integers 
1,"', m. 

Definition: A function f(P) is an element of the 
subclass Bn if and only if f(P) E An with asymptotic 
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coefficients (X(S) and peS) such that peS) is a non­
negative integer for all S c Rn and 

f(L l r/1 ..• 'fJm + L2'fJ2 ... 'fJm + ... + Lm'fJm + C) 

= O{'fJ~({L1)' ... 'fJ~{L'" ... L .. » 

x 11"~ .1yog 'fJ")11(10g 'fJ"2)12, •• " (log 'fJ" mY"} , 
when 'fJl' ••• , 'fJm tend independently to infinity and 
C E W, where the sum ranges over all nonnegative 
integers Yl' ... , Y m satisfying 

Yl ~ PC {Ll' ... , L .. 1}), 

Yl + Y2 ~ P({Ll' ... ,L.), 

Yl + .. , + Ym ~ P({L1 ,"', L"J). 

Since Bn C An' Theorem 1 applies to the subclass 

Bn· 

D. Generalization for One-Dimensional Integrals 

Our goal is to obtain a formula for P I(S) for inte­
grable functions in the subclass Bn similar to the 
formula for (XJCS) given in Theorem 1 for integrable 
functions in An. We begin with a definition based on 
this theorem. 

Definition: A subspace S' is said to be a maximizing 
subspace for the I integration (relative to a given 
subspace seE) if 

A(l)S' = Sand (XI(S) = (X(S') + dim S' - dim S. 

The proof of Theorem 1 given in Ref. 5 shows that 
maximizing subspaces always exist. 

Let us first consider the case when dim 1= 1. For 
this case, the maximizing subspaces fall into two 
categories-those for which dim S' = dim Sand 
those for which dim S' = dim S + 1. Let p be the 
number of nonempty categories of maximizing sub­
spaces; that is, p = 1 if all maximizing subspaces have 
the same dimension and p = 2 otherwise. By repeating 
the proof of Theorem 1 for the subclass Bn , we arrive 
at the following theorem: 

Theorem 2: Let f(P) E Bn satisfy all the conditions 
of Theorem 1 and suppose that dim I = 1. Then 
fI(P) E Bn- 1 with asymptotic coefficients (XI(S) given 
by Theorem 1 and thCS) given by 

PiS) = max peS') + p - 1, 
S'eM 

where M is the set of all maximizing subspaces. 

E. Generalization for Two-Dimensional Integrals 

In order to generalize this result when dim I > 1, 
let us next examine the case dim 1=2. We write 
I = II EEl 12 , where dim II = dim 12 = I, and integrate 
first with respect to the II variable and then with re­
spect to the variable in 12 and vice versa. Since we will 
be dealing only with integrable functions in Bn in the 
following, Fubini's theorem applies and we conclude 
that the integral is independent of the order of inte­
gration and of the particular choice of hand 12 , 

Let us perform the 12 integration first and then the 
II integration. We have 

(XI2(S') = max {(X(S") + dim S" - dim S'}, 
A(I2's"=S' 

(XiS) = max {(XI.CS') + dim S' - dim S} 
A(h'S'=S 

where 

= max {(X(S") + dim S" - dim S}, 
A(J)S"=S 

SeE with Rn = I EEl E, 

S' C E2 with R n = 12 EEl E2 , 

S" eRn. 

Let S~ c E2 be the maximizing subspaces for the 
I} integration relative to S after performing the 12 
integration. For each S~, let S;. c Rn be the maxi­
mizing subspaces for the 12 integration relative to 
S~. We have the relations 

A(I2)S;. = S~, (XI.(S~) = (X(S;.) + dim S;. - dim S~, 

A(Il)S~ == s, (XiS) = (XI.(S~) + dim S~ - dim S. 

We now want to determine the maximizing sub­
spaces for the full I integration relative to S; that is, 
we want to determine the subspaces S" c Rn for 
which A(l)S" = Sand (XI(S) = (X(S") + dim S" -
dimS. 

Lemma 1: The S;v are precisely the maxlmlZlng 
subspaces for the I integration relative to S; that is, 
each S;v is a maximizing subspace for the I integration 
relative to S and any such maximizing subspace for the 
I integration relative to S must be one of the S;v' 

Proof" To show that each S;. is a maximizing 
subspace for the I integration relative to S, we note 
that A(l)S;. = Sand 

(lAS) = rt.I.(S~) + dim S~ - dim S 

= (X(S;.) + dim S;. - dim S~ 

+ dim S~ - dim S 

= (X(S;.) + dim S;. - dim S. 

Conversely, suppose that S; is a maximizing sub­
space for the I integration relative to S and let 
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s~ = A(I2)S;. We have 

S = A{lI)S~ = A(J)S;, 

~iS) = ~(S;) + dim S; - dim S. 
Now 

~iS) = max {~12(S') + dim S' - dim S} 
A(!t)8'=8 

~ ~1.(S~) + dim S~ - dim S 

max {~(S") + dim S" - dim S~} 
11.(1.)8"=80' 

+ dim S~ - dim S 

~ ~(S;) + dim S; - dim S 

= ~iS), 
where the last equality follows from the assumptions 
on S~. Since the first and last terms in this chain are 
the same quantity, all inequalities must be equalities, 
and hence 

lXiS) = 1Xr.(S~) + dim S~ - dim S, A{lI)S~ = S, 

~I.(S~) = IX(S~) + dim S; - dim S~, A(J 2)S~ = S~. 

Thus, S~ is a maximizing subspace for the II integration 
relative to S after performing the 12 integration and 
so must be one of the S~. S~ is a maximizing subspace 
for the 12 integration relative to S~ (which is one of the 
S~) and consequently must be one of the S; •. 

We observe that Lemma 1 does not depend upon 
the fact that we are assuming dim II = dim 12 = 1. 

Let PI be the number of different dimensions among 
the maximizing subspaces for the II integration 
relative to S after performing the 12 integration, and 
let P2p. be the number of different dimensions among 
the maximizing subspaces for the 12 integration relative 
to S~. 

Lemma 2: P2p. is independent of ft. 

Proof: Suppose not. Then there exist two maximiz­
ing subspaces for the II integration relative to S after 
performing the 12 integration, say S~ and S~, such 
that P21 = 1 and P22 = 2. 

There are several cases to be considered. We work 
out the details for one case only because the others are 
all similar. 

Let S:1 be maximizing for the 12 integration relative 
to S~ and let S;1 and S;2 be maximizing for the 12 
integration relative to S; . Suppose dim S~ = dim S; = 
dim S:1 = dim S;1 = dim S;2 - 1. Performing the 
12 integration first and then the II integration, we 
obtain 

PiS) = max {PI.(S~), pr.CSm 

= max {P(S~I)' max {P(S~I)' P(S~2)} + I}. 

On the other hand, reversing the order of :ntegration 
gives 

PiS) = max {P(S~1)' P(S~1)' P(S~2)} + 1. 

These two expressions are not equal for all nonnega­
tive integral values of P(S") and hence we have a 
contradiction. 

Since P2P. is independent of ft, we will denote it 
simply by P2' 

Now let II and 12 be two one-dimensional subspaces 
of I different from II and 12, respectively, such that 
I = II EB 12 , Just as with II and 12 , we let r; be the 
maximizing subspaces for the II integration relative to 
S after performing the 12 integration, and, for each 
r;, we let r;,. be the maximizing subspaces for the 
12 integration relative to r;. Let PI be the number of 
different dimensions among the maximizing subspaces 
for the 11 integration relative to S after performing 
the 12 integration, and let P2 be the number of different 
dimensions among the maximizing subspaces for the 
12 integration relative to r;. By Lemma 2, P2 is 
independent of p and we have the following lemma: 

Lemma 3: Let I = II EB 12 and I = II EB 12 be two 
decompositions of the two-dimensional space of 
integration I into one-dimensional components. 
Let PI' P2' PI, and P2 be defined as above. Then 

PI + P2 = Pt + P2 . 

Proof' Consider the decomposition I = II EB 12 . 
Performing first the 12 integration and then the II 
integration, we obtain, by Theorem 2, 

P1.(S~) = max P(S;.) + P2 - 1, 
• 

PiS) = max P1'<S~) + PI - 1. 
p. 

Combining these two expressions, 

PZCS) = m:x tm~x P(S;.) + P2 - I} + PI - 1 

= max P(S;.) + PI + P2 - 2, p.,. 

since P2 does not depend upon ft. 
Similarly, for the decomposition I = II EB 12 , we 

have 

PiS) = max P(T~f1) + Pt + P2 - 2. 
p,,. 

By Lemma 1, however, the S;. are precisely the maxi­
mizing subspaces for the I integration relative to S 
and so are the r;,.. Consequently, the r;,. are merely 
the S=. relabeled. Thus, 

max P(S;.) = max p(r~,.) 
/l,V p,u 

and we obtain the desired result. 
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We see that the proof of Lemma 3 provides us with 
a formula for P I(S) when dim I = 2. 

Theorem 3: Let f(P) E Bn satisfy all the conditions 
of Theorem 1 and suppose that dim I = 2. Then 

PiS) = max peS') + PI + P2 - 2, 
S'EM 

where M is the set of all maximizing subspaces for the 
I integration relative to S. 

F. General Asymptotic Theorem 

The generalization to the case dim I = k is now 
reasonably straightforward. We write 1= h ffi ... ffi 
Ik , where each component subspace Ii has dimen­
sion one. 

Definition: Let I = II ffi ... ffi Ik with dim Ii = 1. 
The dimension numbers PI," . ,h are defined in­
ductively as follows: PI is the number of dimensions 
among the maximizing subspaces for the II integration 
relative to S after performing the 12 ffi ... ffi Ik 
integration. Pi' j = 2, ... ,k, is the number of 
dimensions among the maximizing subspaces for the 
Ii integration after performing the Ii+1 ffi ... ffi Ik 
integration relative to anyone of the maximizing 
subspaces for the I i- 1 integration after performing the 
Ii ffi ... ffi Ik integration. 

By definition, the dimension numbers Pi can take on 
only the values 1 and 2. The definition of Pi' j = 
2, ... , k, appears to be ambiguous, however, be­
cause it does not specify the maximizing subspace for 
the 11-1 integration relative to which Pi is computed. 
The next lemma shows that this ambiguity actually 
does not exist. 

Lemma 4: The dimension numbers Pi' j = 2, ... , k, 
are independent of the maximizing subspaces for the 
I i - 1 integration relative to which they are computed. 

Proof: The result for dim I = k = 2 was proved 
already as Lemma 2 in Sec. lIE. Therefore, if k > 2, 
we assume that the Pi' j = 2, ... , k - 1, are inde­
pendent of the maximizing subspaces for the [i-l 

integration relative to which they are computed. 
Suppose that h does not enjoy this property. Then 

there exist two maximizing subspaces S~ and S~ for the 
Ik- 1 integration after performing the Ik integration for 
which h = Pkl = 1 and h = h2 = 2. Using Lemma 
1, S~ and S~ are maximizing subspaces for the 
II ffi ... ffi I k- 1 integration relative to S after per­
forming the Ik integration. Let S; v and S;v be the 
maximizing subspaces for the Ik integration relative 
to S~ and S~, respectively. 

Since we are assuming that S~ and S~ are two 
different maximizing subspaces for the II ffi ... ffi I k - 1 

integration relative to S after performing the Ik 
integration, there exists a one-dimensional subspace 
J1 of II ffi ... ffi ITo-I and its orthogonal complement 
J2 in II ffi ' .. ffi I k - 1 (II ffi ... ffi I k - 1 = J1 ffi J2) 
such that the subspaces A(J2)S~ and A(J2)S; are 
different. (See Proposition Al of the Appendix.) We 
now integrate out the J2 subspace leaving the J 1 

subspace. Let 

A(J2)S~ = T~, A(J2)S~v = T~v' 
A(J2)S~ = T~, A(J2)S;v = T;v' 

By Lemma 1, T~ and T~ are maximizing subspaces for 
the J1 integration relative to S after performing the 
Ik ffi J2 integration, and T;v and T;v are maximizing 
subspaces for the Ik integration relative to T~ and T~, 
respectively, after performing the J2 integration. 

Let P~l and P~2 be the numbers of different dimen­
sions among the subspaces T;v and T;v' respectively. 
Then P~1 = Pki and P~2 = h2' Therefore, Pkl :F- h2 
implies that P~1 :F- P~2' which contradicts Lemma 2 
because dim J1 = dim Ik = 1. 

Lemma 5: Let I = II ffi 12 ffi ... ffi Ik and I = 
il ffi i2 ffi ... ffi ik be two decompositions of the k­
dimensional space of integration I into one-dimen­
sional components. Let PI, P2' ... ,h and PI, 
P2, ... ,Pk be the corresponding dimension numbers 
as defined above. Then 

k k 

2Pi = 2Pi' 
i=l i=l 

The proof of this lemma is almost identical to that of 
Lemma 3, where it is assumed that dim I = 2. 

The proof of Lemma 5 now gives us the general 
asymptotic theorem. 

Theorem 4: Let f(P) E Bn satisfy all the conditions 
of Theorem 1 and suppose that dim I = k. Let 
PI' P2, ... ,h be the dimension numbers correspond­
ing to any decomposition of I into one-dimensional 
components. Then fl(P) E Bn- k with asymptotic 
coefficients IXI(S) given by Theorem 1 and PI(S) 
given by 

k 

PiS) = max peS') + L Pi - k, 
S'EM i~1 

where M is the set of all maximizing subspaces for the 
I integration relative to S. 

III. ASYMPTOTIC ESTIMATES FOR SELF­
ENERGY GRAPHS 

A. Introduction 

We now apply Theorems 1 and 4 to photon and 
electron self-energy graphs in order to obtain asymp­
totic bounds for the corresponding renormalized 
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Feynman integrals. We remark that, although our 
discussion centers around photon self-energy graphs, 
the same results apply to electron self-energy graphs 
with the obvious modifications. 

B. Degree of Divergence of a Subgrapb 

Weinberg shows in his articleS that the integrand of 
any Feynman integral corresponding to a certain 
Feynman diagram is an element of the class A4N , 

where N is the number of independent four-momenta 
in the diagram, provided the energy contour can be 
rotated from the real to the imaginary axis. Thus, if 
q is a four-momentum, the hyperbolic metric 

q2 = q~ _ q~ _ q~ _ q: 

becomes negative -definite for qo purely imaginary. 
We therefore assume that this well-known energy­
contour rotation2.6 has always been carried out. 
Furthermore, since the logarithmic asymptotic co­
efficients of any Feynman integrand are zero, the 
integrands belong to the subclass B4N , defined in Sec. 
IIC. 

,For a detailed discussion of the connection between 
subgraphs of a Feynman graph and the corresponding 
subspaces of R4N, where N is the number of independ­
ent four-momenta in the Feynman graph, we again 
refer to Weinberg5 and also to Bjorken and Drell.6 In 
the following, the subspace S of Theorems 1 and 4 b 
always the subspace associated with the external 
momenta of the Feynman diagram, which, for the case 
of a photon self-energy graph, is simply the photon 
four-momentum q. The maximizing subspaces S' E 

M correspond to those subgrapps of the original 
Feynman graph with maximum degree of divergence. 
For a subgraph g' corresponding to a subspace S', the 
degree of divergence DI(g') is defined as 

DI(g') = oc(S') + dim S' - dim S, (1) 

where oc(S') is the asymptotic coefficient for the inte­
grand corresponding to the original graph. In re­
normalizable field theories, it turns out that 

DI(g') = 4 - !F(g') - B(g'), 

where F(g') and B(g') are the numbers of fermion 
and Boson lines, respectively, attached to the subgraph 
g', including external lines belonging to g'. (See, for 
example, Dyson2 and Bjorken and Drell.6

) 

Rules for determining the degree of divergence of a 
subgraph in which there are subtraction terms are 
given in Bjorken and DreIl. 6 By a simple counting 
technique, we can determine the degree of divergence 
DI(g') of a subgraph g', which, according to Eq. (1) 
and Theorems 1 and 4, is the quantity we need to 

know in order to calculate the asymptotic coefficients 
OCI(S) and (JI(S) of the integral. 

In order to calculate the logarithmic asymptotic 
coefficient (Jl(S), we must first determine the dimen­
sion numbers Pi defined in Sec. lIF. Before we can do 
this, however, we need some facts concerning maxi­
mizing subspaces of convergent Feynman integrals. 

C. Irreducible Subspaces of the Space of Integration 

Suppose that the space of integration I of a con­
vergent integral has dimension 4k, as is the case for 
Feynman integrands. Let I = II EB ... EB 14k be a 
decomposition of I into one-dimensional components 
Ii' and let I~, ... , I~ be the four-dimensional sub­
spaces of I defined as 

I~ = II EB 12 EB Is EB I" 

I~ = Is EB 16 EB 17 EB Is, 

I~ = 14lc-s EB l;k-2 EB 14k- 1 EB 14k , 

Furthermore, suppose that the maximizing subspaces 
for the I integration relative to S are of the form 

where 

s, 

S EB 1;1' 
S EB 1;1 EB 1;2' 

i 

S EB EfJl;i' 
;=1 

j=I,···,k, i.=I,···,k, 

lil < lia if il < i2 • 

Definition: Suppose that the maximizing subspaces 
for the I integration relative to S are of the form just 
given. A direct sum 

i 

J=91I" 
;=1 

where j = I,'" ,k, Ii = 1,'" ,k, and lil < lia if 
i1 < i2 , is called an irreducible subspace of I if every 
maximizing subspace for the I integration relative to 
S which contains one or more of the components IIi 
of J actually contains the entire sum J. 

For example, if I = I~ EB I~ EB I~ with I~ and 
I~ EB I~ irreducible, then the possible maximizing 
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FIG. 1. The subgraph of a photon self­
'VIf\.IVVVI.f\. energy graph corresponding to the sub­

space S. 

subspaces for the I integration relative to S are 

S, S EfJ I~, S EfJ 12 EfJ I~, 

S EfJ 1~ EfJ 12 EfJ I~ = S EfJ I. 

The subspace S EfJ I;, in particular, could not be 
maximizing because, by the irreducibility of 1~ EfJ I~, 
the subspaces I~ and 1~ cannot be split up. 

D. Maximizing Subspaces and Dimension Numbers of 
Convergent Feynman Integrals 

We begin with a lemma which applies to any 
photon self-energy graph. 

Lemma 6: For any renormalized photon self-energy 
graph, the subgraph shown in Fig. 1 has degree of 
divergence equal to 2. In other words, the subspace S 
is itself maximizing for the I integration relative to S. 

Proof" Clearly, A(l)S = S. 

For a given photon self-energy graph, let the corre­
sponding Feynman integral be denoted by 

n"v(q) = f dPrR".(Pr , q), 

where P r denotes the integration variables in the space 
of integration l. Suppose that R"v is the integrand 
which results after all subtractions have been per­
formed with the exception of the overall subtractions. 
Performing the overall subtractions, we obtain 

n;.(q) = f dPr{R"v(Pr , q) - R"v(Pr , 0) 

_ qp oR"v(Pr , 0) _ qpq" o2R"v(Pr , O)}. 
oqp 2 oqpoq" 

For this new integrand, we have that 

IX(S) + dim S ~ dim S = IX(S) 

= 2, 

which is equal to IXI(S) for a photon self-energy graph. 
We recall that S is the subspace associated with the 
external momentum q. In S, all the variables denoted 
by PI are zero. 

Thus, S is maximizing for the I integration relative 
to S. 

The counting technique for determining the degree of 
divergence of a subgraph gives the value of the 
expression 

Dr(g') = IX(S') + dim S' - dim S, 

and hence we can determine the maximizing subspaces 
for the I integration relative to S. In order to calculate 
the dimension numbers Pi' however, we must be able 
to determine the subspaces which maximize subinte­
grations of the full I integration. 

We again write I = II EfJ ••• EB 14k , where dim 
1= 4k, and define the four-dimensional subspaces 
I~, ... ,I~, as in Sec. IIIC. Let Pi' j = 1, ... ,4k 
be the corresponding dimension numbers defined in 
Sec.IIF. 

Theorem 5: Suppose there exists a decomposition of 
the space of integration I such that the irreducible 
subspaces of I can be written as 

1~ = 1~ ffi ... ffi I~1' 
1~ = I ~1+l EfJ ••• EfJ I~2' 

I';.. = I~m_1+l EfJ ••• EB I~m' k1 < k2 < ... < k m = k, 

for some integers m, k1' k2' ... , k m = k. In other 
words, we assume that the maximizing subspaces for 
the I integration relative to S are of the form 

S, 

S EfJ I;: ' 
S EfJ I;: EfJ I;~, 

i 

S EfJ EEl I;:, 
i=1 

where 
j = 1, ... ,m, Ii = 1, ... ,m, 

li1 < lis if i1 < i2· 

Furthermore, suppose that die subspaces 

S, S EfJ I~, S EfJ I~ EfJ I~, ... , 

S EfJ I~ EfJ ••• EEl I;;' = S EfJ I 

are included in the set of all maximizing subspaces. 
Then 

4k 

2Pi = 4k + m, 
i=1 

where m, defined implicitly above, is the number of 
irreducible subspaces of I. 

Proof" The proof of this theorem, although some­
what long, is not difficult. It amounts to calculating 
each of the dimension numbers Pi' and this is done by 
determining the maximizing subspaces for the sub­
integrations of the I integration. 
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Consider the sequence of maximizing subspaces 

S, S EB I~, S EB I{ EB It, ••• , 

S EB I; EB ••. EB I;;' = S EB I, 

and take any two adjacent subspaces from this se­
quence: 

S EB I~ EB ••• EB I; and S EB I; EB ... EB 1;+1 , 

O~r~m-1. 

In terms of the I;, these two subs paces are 

S EB I{ EB ••. EB I~r and S EB I; EB ••. EB I~r+l' 

and in terms of the I j , they are 

S EB II EB .•• EB 14kT and S EB II E& 0 •• EB 14kr+l 0 

(For r = 0, we define kT = O. Then S EB I; E& 0 •• EB I; 
and S E& I{ E& 0 •• EB l~r refer to the subspace So) Set 

So = S, 

Sj = S EB II E& 0 0 0 EEl I j , j = I, • 0 • , 4k. 

The two maximizing subspaces we are considering 
are then denoted S4k

T 
and S4kH1o Now 

Also, 

A(14kr+l)S4kr = S4kr ' 

A(J4kr+1)S4kr+l = S4kr 0 

<xiS) = max {OCI4k +lffi" 0 ffiI.k(S') 
A(Itffi'" ffilur)S'=s r 

S'CS'kr 

+ dim S' - dim S} 

~ <XIUr+1ffi '" ffiI4k(S4k) + dim S4kr - dim S 

= max {<XI .. Hffi'" ffiI4k(S") 
A<I4kr+l)S"=S4kr r 

S"CS4kr+ 1 

(2) 

+ dim S" - dim S4k.} + dim S4kr - dim S 

~ OCI4kr+2ffi'" ffiI4k(S4k) + dim S4kr - dim S 

max {<X( Sill) + dim Sill 
A(I4kr+2ffi .•. $ln)Sm=S4kr 

- dim S4kJ + dim S4kr - dim S 

~ <x(S4k) + dim S4kr - dim S 

= ociS), 

where this last step follows because S4k,. = S E& I; EEl 
••• EEl I; is a maximizing subspace for the I integration 
relative to S. Thus, 

<XI4kr+lffi'" ffi I 4k(S4k) 

= ocI"r Hffi .• , ffiI4k(S4k) + dim S4kr - dim S4kr ' (3) 

Similarly, 

ociS) ~ ocI4kr+lffi'" ffiI4/S4k) + dim S4kr - dim S 

~ <XICkrHffi ..• ffiI4k(S4kr+l) + dim S4kr+1 - dim S 

max {<x(SIII) + dim S'" 
A(I4krHffi ... ffi I 4k)sm=S4kr+l 

- dim S4kr+1} + dim S4kr+l - dim S 

~ et.(S4k) + dim S4k - dim S 

= <xiS) 

by the maximizing property of S4k = S E& I. Hence, 

<XICkr+lffi' .• ffi I 4.(S4k) 

= ocI4kr Hffi '" ffiI4k(S4kr+1) + dim 54kr+1 - dim S4/(, .• 

(4) 

Relations (2), (3), and (4) together imply that both 
S4k and S4k +1 are maximizing subspaces for the 
I4kr:l integration relative to S4kr after performing the 
I 4kr+2 EEl ••• EEl 14k integration. Since dim S4kr+1 = 
dim S4k + 1, the corresponding dimension number 
has thervalue 2; that is, 

P4k
r
+l = 2, r = 0, 1, ... , m - 1. 

We next consider the dimension numbers P4k
r
+l for 

r = 0, ... , m - 1 and 1= 2, ... ,4k
T
+1 - 4k

T
• Our 

task is to determine the maximizing subspaces for the 
14kr+ 1 integration relative to S4kr+l-l after performing 
the I 4kr+1+1 E& ••• E& 14k integration. S4kr+l is such a 
subspace because 

and 
A(J4kr+O)S4kr+l = S4kr +Z-l 

ociS) ~ <XI4kr+lffi . .. ffiI4k(S4krH-l) + dim S4kr+l-l - dim S 

~ <XI4kr+l+l ffi .. ' ffiI4k(S4kr+l) + dim S4kr+l - dim S 

~ <x(S4k) + dim S4k - dim S 

= <xiS). 

Since dim S4kr+1 = dim S4kr+l-l + 1, any other 
maximizing subspace for the I 4k.+1 integration relative 
to S4k +1-1 after performing the I 4kr+!+1 EEl ••• E& 14k 

integr~tion must have the same dimension as S4k.+I-l' 

Let T be such a subspace; that is, assume that T is a 
m~ximizing subspace for the I 4k.+1 integration relative 
to S4k.H-l after performing the I 4kr+!+1 EB ... EB I 4kr+ 1 

integration with 

T c; S4kr+l and dim T = dim S4kr+I-I' 

Then T is also maximizing for the II EB ... EB I4kr+l 

integration relative to S after performing the I 4kr+!+1 E& 
••• E& 14k integration because 

A(II E& ••• EB 14kr+I)T = S, 

(XiS) = OCI4kr+lffi' " ffi I 4k(S4kr+l-l) + dim S4kr+l-l - dim S 

= <XI I'D "PI (T) + dim T - dim S. 4kr +l+l\±.r ••• w 4k 

Now take any maximizing subspace T' for the 
14kr+!+1 EEl ••• E& 14k integration relative to T. By 
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Lemma 1, T' is a maximizing subspace for the full 
I integration relative to S. 

By assumption, T does not contain the subspace 
14k

r
+! and, consequently, neither does T'. Since 

14kr+Z C 1;+1 for 1 = 2, ... , 4kr+1 - 4kr , the hypoth­
eses of the Theorem 5 imply that we can write T' in 
the form 

; 

T' = S or T' = S (B E8 1;; (5) 
;=1 

forsomej = 1,···, m, wherel; = 1,··· ,m,l;l < I;a 

if i1 < i2, and I; ¥- r + l. 
Now we also have that 

A(I4k
r
+Z (B ••• (B 14k)T' = A(I4k

r
+!)T 

and we recall that 
= S4krH-l, (6) 

S4krtl-l = S (B 1~ (B .•• (B 1~ (B 14k!+1 (B •.• (B 14k,+H· 

Thus, if 2 ~ I ~ 4kr+1 - 4kr , S4kr+!-1 contains a non­
trivial part of 1;+1. The statements (5) and (6) are, 
therefore, not compatible for 2 ~ I ~ 4k,+1 - 4kr 

because no Ii in the direct su'm in (5) can take the 
value r + 1, and we have a contradiction. 

Hence, there are no maximizing subspaces for the 
14kr+ z integration relative to S4kr+Z-l after performing 
the 14k

r
+!+1 (B ••. (B 14k integration other than S4k

r
+Z. 

Thus, 
P4k

r
+z=1 for r=O,I,···,m-I, 

I = 2, ... , 4kr+1 - 4kr . 
Therefore, we have that 

4k m-l( 4kr+1-4kr) 

;~/; = r~ P4kr+l + l~ P4krH 

m-1 

= ,2 (4kr+1 - 4kr + 1) 
r=O 

= 4k + m. 

E. An Asymptotic Theorem for Self-Energy Graphs 

We now turn to the case of an arbitrary photon or 
electron self-energy graph of electrodynamics. 

Definition: The order of a self-energy graph is de­
fined as the number of vertex points in the graph. 
With this definition, the order of a photon or electron 
self-energy graph is always an even number. 

For photon self-energy graphs, we have the follow­
ing theorem: 

Theorem 6: Any nth-order photon self-energy graph 
with m irreducible insertions (m ~ n12) has asymp­
totic coefficients 

~i{q}) = 2, fJi{q}) = m, 

where q is the momentum of the photon. 

(a) 

(c) 

(b) 

FIG. 2. Examples of photon self­
energy graphs. 

Proof: The fact that ~l({q}) = 2 follows directly 
from Theorem 1. 

Consider a photon self-energy graph with m irre­
ducible insertions. Using Lemma 6, the counting 
technique for determining the degree of divergence 
of a subgraph, Theorem 4, and Theorem 5, we obtain 

'lk 

fJrC{q}) = max ~(S/) + ,2 Pi - 4k 
S'EJj,[ ;=1 

= 0 + 4k + m - 4k 

=m. 

Thus, the logarithmic asymptotic coefficient of the 
graph shown in Fig. 2(a) is fJA{q}) = 2, and the 
logarithmic asymptotic coefficient of the graph shown 
in Fig. 2(b) is fJI({q}) = 3. However, the graph 
shown in Fig. 2(c) has the logarithmic asymptotic 
coefficient fJ I( {q}) = 2 due to the irreducibility of the 
vertex insertion shown in Fig. 3. 

An analogous theorem for electron self-energy 
graphs is the following: 

Theorem 7: Any nth-order electron self-energy 
graph with m irreducible insertions (m ~ n12) has 
asymptotic coefficients 

~I({q}) = I, fJI({q}) = m, 

where q is the momentum of the electron. 

Theorem 7 for electron self-energy graphs is proved 
in exactly the same way as Theorem 6 for photon 
self-energy graphs. The only difference is that the 

FIG. 3. Irreducible vertex insertion 
in the graph shown in Fig. 2 (c). 
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maximum degree of divergence of a subgraph is 1 
instead of 2. 

IV. SUMMARY AND CONCLUSIONS 

A. Conclusions about the Perturbation-Expansion 
Parameter 

In Sec. III we showed that if 

(a) the energy contours of the Feynman integral 
corresponding to a photon or electron self-energy 
graph are rotated from the real axis to the imaginary 
axis, and 

(b) the momentum q of the photon or electron is 
replaced by tq, where t is a real scalar, 

then the asymptotic behavior of the photon or electron 
self-energy graph as t -+ 00 is given by 

cta(log tf, 

where c is a constant, IX = 1 for electron self-energy 
graphs and 2 for photon self-energy graphs, and 
{J = m, the number of irreducible insertions in the 
graph. For a given order n, the maximum value of the 
logarithmic asymptotic coefficient {J is n12. Conse­
quently, in a perturbation expansion of the total 
photon propagator or electron propagator, we would 
expect the expansion parameter to involve, not only 
the square of the charge e2 , but the quantity 

2 q2 

e log A,2 ' 

where renormalization is carried out by subtracting at 
the point q2 = }.2 < O. In perturbation expansions 
and renormalization-group arguments, ,one usually 
assumes that the expansion parameter is e210g (q2j}.2). 
(See, for example, Bjorken and DreIl,6 Bogoliubov 
and Shirkov,7 and Landau.S) That this assumption is 
the correct one is supported by our results. 

B. Summing Different Grapbs 

Although the maximum value of the logarithmic 
asymptotic coefficient {J for nth -order self-energy 
graphs is n/2, it may be that the sum of all the nth­
order graphs has a logarithmic asymptotic coefficient 
less than n/2. For example, consider the three fourth­
order photon self-energy graphs in Fig. 4. Each one 

FIG. 4. Fourth-order photon self­
energy graphs. 

of these graphs has logarithmic asymptotic coefficient 
{J = 2, but when the three graphs are summed to­
gether, the log2 (q2j}.2) terms cancel (see Bjorken and 
Dre1l6

). Thus, the total fourth-order photon propa­
gator has logarithmic asymptotic coefficient {J = 1. 

The arguments of the renormalization group predict 
this cancellation at least for the fourth-order and sixth­
order graphs in the perturbation expansion of the 
photon propagator (cf. Bjorken and Drell,6 Bogo­
liubov and Shirkov7

), and perhaps a similar cancel­
lation occurs for the graphs of other orders. (There is, 
of course, no cancellation for the single second-order 
self-energy graph.) This question is unanswered by 
our results as they stand. We are able to give the 
asymptotic behavior of any self-energy graph of 
arbitrary order, but we do so without regard for 
multiplicative constants. 

The problem of summing and determining asymp­
totic estimates for the entire perturbation expansion 
remains open. In the first place, it is not even clear 
that the perturbation series of quantum electro­
dynamics actually converge. Assuming they do con­
verge, it may turn out that the individual terms have 
an asymptotic behavior quite unlike that of their sum. 

C. Graphs Other than Self-Energy Graphs; the 
Problem of Unphysical Momenta 

We point out that the general theorems of Sec. II 
and the theorems about maximizing subspaces in 
Sec. III are applicable to any convergent Feynman 
integral. Although we have concentrated on self­
energy graphs, one could just as well determine the 
asymptotic behavior of a graph like that shown in 
Fig. 5, a contribution to eighth-order electron-proton 
scattering. Three of the four external momenta are 
independent, say PI, P2' and p~. Therefore, the asymp­
totic behavior of this graph will depend upon which 
subset of PI, P2, and p~ becomes large. 

In all of these results there remains one undesirable 
feature, the necessity of performing energy-contour 
rotations in order to avoid the singularities associated 
with the hyperbolic metric. Quantities of the type 

p' 
2 

FIG. 5. A contribution to eight­
order electron-proton scattering. 
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p" - m" == p~ - p~ - p: - p: - m2
, where m is a 

constant, appear in the denominators of Feynman 
integrals; however, if the energy contours can be 
rotated from the real up to the imaginary axis 
(Po ~ ipo), then the expression p2 - m2 never vanishes. 

By performing this rotation, we are restricting 
ourselves to unphysical momenta. It would be useful to 
determine the asymptotic behavior of graphs like that 
shown in Fig. 5 when a certain subset of the external 
momenta remains on the mass shell while others 
become large. In other words, one would like to apply 
asymptotic estimates to real physical experiments. 
This more difficult problem is not yet solved. 
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APPENDIX 

In this appendix, we prove a statement which was 
used in the proof of Lemma 4. Let S and I be two 
subspaces of Rn whose direct sum S EEl I is Rn. 

Proposition AI: Let SI and S2 be two different 
subs paces of Rn satisfying A(I)S, = S, i = 1, 2, 
where A(l) is the operation of projection along the 
subspace I, and suppose that dim I > 1. Then there 
exists a one-dimensional subspace J l of I such that 
A(JJSl #: A(J2)S2' where J2 is the orthogonal com­
plement of J l in I (I = J1 EB J2). 

The proof of this proposition will follow from the 
next three lemmas, 

If (1 is a point in S, we let 

A(l)-l(1 = {x:x E R", A(I)x = (1}. 

Lemma AI: Suppose A(I)S. = S, i = I, 2. Then 
SI = S2 if and only if A(I)-I(1 11 SI = A(I)-I(1 11 Sa 
for all (1 E S, 

Proof' Since A(l)S. = S, then 

S. = U {A(I)-I(1 11 Si}, i = 1, 2. 
/leS 

If SI, = S2' then clearly 

A(l)-I(1 11 SI = A(l)-I(1 11 S2 for all (1 E S. 

Conversely, if A(l)-I(1 11 SI = A(I)-I(1 11 S2 for all 
(1 E S, then we obviously have SI = Sa because 

Si = U {A(I)-l(1 11 Si}' i = I, 2. 
6eS 

Lemma A2: Suppose (1 E Sand A(I)S. = 8, i = 
1,2, Then 

A(I)-l(1 11 81 = A(I)-l(1 11 82 

if, and only if, 

A(S){A(I)-I(1 11 SI} = A(S){A(I)-I(1 11 S2}' 

Proof' If A(l)-I(1 f'I 81 = A(l)-l(1 f'I S2' then 
clearly 

A(S){A(l)-I(1 ("\ SI} = A(S){A(I)-l(1 uSa}. 

Conversely, suppose that A(S){A(l)-I(1 11 SI} = 
A(S){A(I)-I(1 11 S2}' Let x E A(l)-I(1 11 SI' Then x 
has the same S coordinates as (1. Now 

A(S)x E A(S){A(l)-I(1 11 SI} = A(S){A(l)-l(1 n S2}' 

Thus, there exists a point y E A(l)-I(1 ("\ S2 such that 
A(S)y = A(S)x. Since y E A(l)-I(1 11 Sa, Y has the 
same S coordinates as (1 and hence as x. Since 
A(S)y = A(S)x, y has the same I coordinates as x. 
Consequently, x = y and so x E A(l)-l(1 n S2' Thus, 
we have that A(l)-I(1 11 SI C A(l)-I(1 11 S2' A simi­
lar argument gives containment the other way. 

Now suppose that dim I = k and write 

I = II EEl ••• EB I k , 

S = Ik+1 EEl •• ''EEl In, 

where each of the component subspaces Ii' j = 1, ' . , , 
n, is one-dimensional. 

Lemma A3: Let Ii be one of the component sub­
spaces of J; that is, take j = 1, .. , ,k. Let So be a 
subspace of Rn for which A(I)So = S. Then for any 
(1 E S, 

We remark that, in general, iff maps X into Yand 
A and B are two subsets of X, then 

J(A 11 B) C J(A) 11 feB). 

Lemma A3 says that, in our special case, we actually 
have equality. 

Proof' Let x E A(IJ){A(l)-I(1 f'I So}. Then there 
exists a point y E A(l) -1(1 {'\ So such that A(I;)y = x. 
We have 

(i) Y E A(I)-I(1, 
(ii) Y E So, 

(iii) A(I;)y = x. 

Now (i) and (ii) imply that x E A(I;)A(l)-I(1, and (ii) 
and (iii) imply that x E A(Ij)So. Thus 

x E {A(Ij )A(I)-I(1} 11 A(I;)So. 
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Conversely, suppose that x E'{A(Ij)A(I)-l(J'} 1\ 

A(I;)So. Then x E A(I;)A(I)-l(J' and x E A (Ij)So . 
Since x E A(Ij)So, there exists a point Z E So such that 
A(Ij)z = x. Then 

/'-...... 
A(I)z = A(I1) ••• A(Ij) ... A(Ik)A(Ij)z 

/'-...... = A(/l) ... A(Ij) ... A(Ik)x, 

where the hat over A(Ij ) means that A(Ij) does not 
appear in the product. But since x E A(Ij)A(l)-l(f, we 
have that A(l)z = (f, and so Z E A(I)-l(f. Thus, 

Z E A(l)-lO' 1\ So 
and 

x = A(Ij)z E A(Ij){A(I)-lO' 1\ So}. 

We can now prove the proposition. 

Proof of Proposition Ai.' Since S1 ¥= S2 and A(I)Si = 
S, i = I, 2, Lemmas Al and A2 imply that there 
exists a point (J' E S such that 

A(S){A(I)-l(J' 1\ Sl} ¥= A(S){A(I)-l(J' 1\ S2}' 

Thus, there exists a point 

x E A(S){A(I)-lO' n Sl}, 
but 

x ¢ A(S){A(l)-l(J' n S2} 

(or vice versa). We can, therefore, find a point 
y E A(S){A(l)-l(J' 1\ S2} such that the I j component 
of x is not equal to the I j component of y for some 
j= 1,'" ,k. 

Now consider S ffi Ii' Since the Ii components of x 
and yare unequal, 

/'--.... 
A(I) ... A(Ij) ... A(Ik)A(S){A(I)-lO' n Sl} 

/"-... 
¥= A(I1) ••• A(Ii) ... A(Ik)A(S){A(I)-l(J' n S} 

or 

/"-... 
A(S)A(Il) ... A{Ij) ... A(Ik){A(I)-lO' 1\ Sl} 

/'--.... 
¥= A(S)A(Il) ... A(Ij ) ••• A(Ik){A(I)-lO' n S2}' 

Using Lemma A3, 

/'-.... 
A(S){A(Ij)-l(J' n A{Il) ... A(Ij) ... A(Ik)Sl} 

/'-.... 
¥= A(S){A(Ij)-I(J' n A{Il) ... A(Ij) ... A(Ik )S2}' 

By Lemmas Al and A2 again, this last statement 
implies that 

/"-... 
A(I1) ••• A(Ij ) ••• A(Ik )SI 

/"-... 
¥= A(Il) ... A(Ij ) ••• A(Ik)S2 

or 

A(II ffi ... ffi ~ ffi ... ffi Ik)Sl 

¥= A(II ffi ... 6) ~ 6) ••• 6) Ik )S2 . 

Therefore, we can take 'I = I j and 

'2 = II 6) ••• ffi ~ ffi .•. 6) Ik • 
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A scalar product is defined which results in the single- and double-valued spherical harmonics span­
ning a seminormed linear vector space that carries all of the irreducible unitary representations of the 
group SU(2). The possibility of defining such a scalar product was indicated in a previous paper. A 
Hilbert space is derived from the seminormed space through a further construction involving equivalence 
classes of vectors. 

INTRODUCTION 

In a previous paper,l hereafter designated I, one 
of us showed that the double-valued spherical har­
monics provide a basis for the irreducible spinor 
representations of the three-dimensional rotation 
group 0(3), or, more precisely, its covering group 
SU(2). Two difficulties arise when such a construction 
is attempted. The first difficulty is that the vector 
space Vj spanned by the double-valued spherical 
harmonics Yjm is not closed with respect to the 
generators JIl of 0(3); to be specific, 

(1) 

does not vanish and is not a linear combination of the 
Y jm • This difficulty was met in I by observing first 
that, although one can be led out of Vj according to 
Eq. (1), one cannot be led back in since 

integer j values. In addition,. it turns out that all 
functions of the type QJ -j-l have zero norm, giving 
a precise meaning to the'statement that the functions 

QJm = (r)'mHYj,_j' m = -j - 1, -j - 2,···, (3) 

"represent" the zero vector. 

THE SCALAR PRODUCT AND ITS 
PROPERTIES 

The double-valued spherical harmonics are defined 
iteratively as follows: 

YiJ = N ;(sin ())jeij'l', 

Yj,m-l = Nj;'J-Yjm , m = j, j - 1, ... , -j + 1, 

N jm = [(j + m)(j - m + 1)]i, (4) 

N __ 1 2· 4 ... 2j + 1 
j - 21T2 1· 3 ... 2j 

J+J-Yj ,_; = 0, (2) The constant N j was chosen so that 

and, secondly, Qj,-;-l is orthogonal to all Y jm so 
that, in the spirit of Dirac,2 Q;,-;-l is in some sense a 
"representation" of the zero vector. 

The second difficulty which arises is that the usual 
scalar product consisting of an integration over the 
unit sphere is not well defined for all of the Y jm due 
to existence of nonintegrable singularities at () = 0, 1T. 

This difficulty was only partially met in I by observing 
that a proper scalar product must exist3 and giving an 
outline of how such a scalar product might be found. 

The purpose of this paper is to explicitly display 
a scalar product which is well defined not only for the 
Yim , but also for QJ,-J-l and the additional functions 
obtained from it by further applications of the 
lowering operator J-. This scalar product has the 
desirable property of producing Hermitian generators 
Ja , thus insuring unitary representations for all half-

1 D. Pandres, Jr., J. Math. Phys. 6, 1098 (1965). 
• P. A. M. Dirac, Quantum Mechanics (Oxford University Press, 

New York, 1958), 4th ed., p. 20. 
S I. M. Gel'fand and Y. Ya Sapiro, Trans. Am. Math. Soc. No.2 

(1956). 

l211' dtp f'sin e deY:;(e, rp)Yj;(e, rp) = 1. (5) 

The complex vector space spanned by the Y jm defined 
above has already been denoted by V j • It is convenient 
also to designate the vector space spanned by the Qjm 
defined in Eq. (3) by W j , and by Vj the combined 
vector space 

(6) 

All of these vector spaces have a fixed angular 
momentum j. The scalar product will actually be 
defined for the larger space V defined by 

V = Vi U Vi U Vi U . . . . (7) 

The definition of the scalar product is as follows: 
Let'Y and 'Y' be any two functions in V; the scalar 
product of'Y and 'Y' denoted by ('Y, 'Y') is then 

('Y, 'Y') = 5011' de[ sin e 50
2lr 

drp'Y*(e, rp)'Y'(e, tp) - f(e)} 

(8) 

1401 
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where f(O) is a singular function of the form 

<10 <10 

f(O) = I am(sin o)-m + cos 0 I bm(sin o)-m, (9) 
m-l m=l 

~hosen so that the term in brackets in Eq. (8) becomes 
lOtegrable. Speaking loosely, one expands the odd 
and even part of the usual integrand 'Y*'¥' sin 0 into 
po,:"ers of sin 0, drops those terms in the expansion 
~hlCh would give divergent integrals, and then 
lOtegrates the remaining integrand over the sphere. 
This modification of the usual scalar product is 
reminiscent of the renormalization formalism for the 
removal of divergences in electrodynamics. The 
functional ('1", 'Y') satisfies the following identities 
necessary for a scalar product: 

('1", '¥) ~ 0, 
(c'Y, '1'') = c*('¥, 'Y,), 

('1', '1")* = ('1"', ,¥), 

('I" + 'Y', '1''') == ('I', '1''') + ('1"', '1'''), 

(10) 

for all '1', '1" , and 'I'" in P with c an arbitrary complex 
constant The last three of these identities follow in a 
straightforward manner from the definition of the 
scalar product in Eq. (8). However, the first relation 
stating that the scalar product is nonnegative, is not 
so easily proved. In fact, it is not even true if'Y is not 
restricted to lie in P (for example, take 'P = cot 0). 
We shall therefore postpone its proof until the scalar 
products of the basis functions of P are determined. 

To be precise, the bilinear functional ('1','1") 
should not be called a scalar {>roduct, since positive­
definiteness is usually taken as a necessary require­
ment.' For the same reason, the vector space Ptaken 
with the "scalar product" ('1", '1") is not precisely a 
Hilbert space. It is what mathematicians call a semi­
normed5 vector space. However, since these slight 
inadequacies will be cleared up presently by a further 
construction, we will retain the name "scalar product" 
for the bilinear functional. 

The scalar product ('1", '1") has the following two 
important properties: When 'I' and '1" are non­
singular, the scalar product reduces to a simple 
integral over the unit sphere; J+ and J- are mutual 
Hermitian ad joints 

(J+'¥, '1") = ('1',1-'1',) (ll) 

for all 'I' and '1" in P. This latter fact is proved in the 
Appendix. Armed with the Hermitian property of 
Eq. (11), we can prove a number of important facts. 

• P. R. Halmos,lntroduction to Hilbert Space (Chelsea Publishing 
Co., New York, 1957), p. 13. 

• A. E. Taylor, Introduction to Functional Analysis (John Wiley & 
Sons, Inc., New York, 1958), p. 143. 

For example, consider the scalar product of QI-I-l 
and Qrm': • 

(QS'm" QI.-i-l) 
= [(r)lm'I-I'y, ,J-y J I.-I , 1.-1 
== [(r)lm'H'-lyi ,._1', J+rYI'._I'J = 0, (12) 

when use is made of Eq. (2). This can be easily 
extended to the more general result 

(Qlm. Qrm') = 0, (13) 

so that each Qim is a nonzero function of P with zero 
norm, proving the nondefiniteness of the scalar 
product. Using the same technique, the following 
further identities may be derived: 

(Y1m • Yl'm') = lJlJ'~mm" 

(Y1m , QI'm') = O. 

(14) 

(15) 

The scalar pro~uct therefore has the necessary prop­
erty of produclOg orthonormal Yim (with the usual 
choice of constants .Nim), thus yielding the usual 
unitary representations of 8U(2) when the matrices 

(Yim , J"Y/m,) 

are formed. Also, Eqs. (13)-(15) immediately lead to 
the validity of the nonnegative condition in Eq. (10). 

According to Eqs. (13) and (15), the Qlm are 
orthogonal to all 'I' in P. This strongly suggests that 
all of the Qim are essentially zero. We shall now 
proceed to show in just what sense this is true and, 
at the same time, construct a Hilbert space with a 
strictly positive scalar product. 

We begin by defining an equivalence relation in P: 
Two functions 'I' and '1" in P will be called equiv­
alent if'Y - '1" is in W = Wi u W .. u .... 

Let I'¥} denote the set of all functions in P which 
are equivalent to '1', called the equivalence class of 'I' 
(the class could also be labeled by any other function 
equivalent to '1'). Consider the set of all equivalence 
classes in P, usually denoted by PI w. It is easy to see 
that r/w is in fact a vector space spanned by the 
vectors I Yim), which consists of all functions in P 
equivalent to Yim • A scalar product can be defined 
for the vector space of equivalence classes as follows: 
Let 11) and 12) be vectors in PI W with '1'1 and 'I'll two 
elements of the respective equivalence classes. The 
scalar product of II) and 12), denoted by (I 12), is 
defined by 

(I 12) = ('1'1' 'I'll)' (16) 

Equations (13)-(15) insure that the scalar product is 
independent of which representative elements '1'1 and 
'1'2 are chosen. The zero equivalence class 10) is pre­
cisely W, so that, again according to Eq. (13), ('I' 1'1') 
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vanishes if and only if \'1-") = \0), and the scalar 
product ('I-" I '¥') is strictly positive. The statement 
that W is the zero vector in the space of equivalence 
classes is the precise way of saying that all Q;m are 
essentially zero. 

The vector space 17/ W along with the scalar product 
('¥ 1'1-"') now constitute a Hilbert space 

H = 17/W, (17) 

which can clearly be decomposed into the subspaces 

H= Hi U Hi U"', 
where 

(18) 

(19) 

Each of the Hilbert spaces H j are (2j + I)-dimensional, 
spanned by the orthonormal basis I Y;m), forming 
the basis for irreducible unitary representations of 
SU(2) with half-odd integer angular momentum. 

Finally, we note that if one enlarges the space to 
include the usual single-valued spherical harmonics 
and modifies the scalar product defined in Eq. (8) 
by integrating rp from 0 to 47T, one obtains a single 
Hilbert space defined on the double sphere which 
carries all of the irreducible unitary representations 
of SU(2). 

APPENDIX 

In the main body of this paper, we gave no proof of 
Eq. (11), which states that the matrices representing 
J+ and J- are Hermitian adjoints of each other. Note 
first of all that it is sufficient to prove this equation 
when 'I-" and 0/' are a pair of basis functions Y;m or 
Q;m. Secondly, if m and m' are the Jz values of '¥ and 
'¥', respectively, Eq. (11) will be trivially satisfied if 
m' :;o!' m + I. Therefore, let us assume that m' = m + 
I. By examining the general forms for Y;m and Q;m, 
it is easy to show that'¥ will be a sum of terms of the 
form 

(AI) 

where C is a constant, A = 0, I, and n is a positive 
integer. Similarly, '¥' wiII be a sum of terms of the form 

<l>' = c'(cos O»).'(sin 0)2n'+m+1ei(m+1)<p. (A2) 

It is clearly sufficient to prove Eq. (11) with 'I-" and '¥' 
replaced by <l> and <l>', respectively. 

Denote the right and left side of Eq. (11) by Rand 
L, respectively. Then substituting <l> and <l>' into the 
defining Eq. (8) and using the standard forms for 
J+ and J- yields 

R = 2'7Tc*c'l" dO[A(O) ...: fR(O)], (A3) 

L = 27TC*c'l" de[8(e) - fLee)], (A4) 

where 

A(O) = _1 _ {2" drp<l>* r<l>' 
27TC*C' Jo 

= [A'(COS 0)',+,<'-1 - (2n' + 2m + 2) 

X (cos oy·+.I.'+1(sin 0)-2](sin O)N, (AS) 

8(0) = _1 _ {2" dq.{J+<l»*<l>' 
27TC*C' Jo 

= [-A(cos 0»)'+)"-1 + 2n(cos 0»).+'<'+1 

X (sin Or2](sin O)N, (A6) 

where N = 2n + 2n' + 2m + 3 is an even integer. 
In general, A + A' = 0, I, or 2. However, if A (0) and 
B(e) are odd functions of cos 0, Rand L will both 
vanish. Therefore, we may assume that A + A' = 1. 
A(O) and B(O) can then be written in the form 

A(O) = [(2n' + 2m + 3 - A) 

- (2n' + 2m + 2)(sin 0)-2](sin O)N, 

8(0) = [-(2n + A) + 2n(sin 6)-2](sin O)N. (A 7) 

There are now three separate cases to be considered. 
(a) When N ~ -2, it is necessary thatlR = A and 

fL = B, so that R = L = 0. 
(b) When N = 0, 

IR = -(2n' + 2m + 2)(sin 0)-2, 

fL = (2n + I)(sin 0)-2 (A8) 
and 

so that 

R = 27T2c*c'(2n' + 2m + 3 - A), 

L = -27T2c*c'(2n + A), 

R = L = 27T2c*c'(2n' + 2n + 2m + 3) 

= 27T2C*c'N = 0, 

and again R = L. 
(c) When N ~ 2,fR =IL = 0 and 

R - L = 27TC*C' I d6[N(sin O)N 

(A9) 

(AW) 

- (N - 1)(sin 6)N-2] = 0 (All) 

by direct computation. [Actually, for this last case when 
neither <l> of <l>' is sufficiently singular, Eq. (11) follows 
simply by integration by parts.] 

Thus, for all three cases, R = L, so that Eq. (II) is 
valid when '¥ and '¥' are replaced by <l> and <l>', 
respectively, which, as explained above, is sufficient to 
demonstrate the validity of Eq. (11) in general. 
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RenormaJized Feynman amplitudes are defined by a method of analytic continuation in subsidiary 
parameters. The results are shown to belong to the class of renormalized amplitudes defined by Boguliu­
bov, Parasiuk, and Hepp. 

1. INTRODUCTION 

In the perturbation-series expansion of the S 
matrix or the time-ordered vacuum expectation values 
in a Lagrangian field theory, there occur formal 
expressions of the form 

II ~~(Xil - Xl.)' (Ll) 
lEI: 

where L is the collection of lines of a certain Feynman 
graph G( VI' ... , Vn ; 1:), with vertices {Vi}, and Vi, 
and Vrl are the initial and final vertices of the lth line. 
~~ is given in p space by 

Li~(p) = iPI(p)(p2 - m; + iO)-l, (1.2) 

with Plp) a polynomial of degree 'z. In general, 
however, (1.1) is not well defined (even as a distri­
bution) because the convolutions in p space diverge. 
In the theory of renormalization, (1.1) is given a 
well-defined meaning by a variety of methods, 
among which that of Heppl is distinguished by its 
mathematical coherence. 

In this paper we apply to (1.1) a method of defining 
divergent quantities which was originated by Riesz2 

and has been used in various contexts by many 
authors.3 To define a formally divergent quantity I, 
these authors introduce a function I(A) , analytic in 
some region Q of the complex plane, and defined by 
an expression which is formally equal to I for A = Ao. 
I is then defined as the analytic continuation of I(A) 
from Q to A = Ao. In some cases I(A) has a pole at 
Ao; an acceptable definition of I may then be obtained 
as the constant term of the Laurent series of I(A) 
about Ao. 

To apply these techniques to (1.1) we find it neces-

* Supported by a National Science Foundation Graduate Fellow­
ship. 

1 K. Hepp, Commun. Math. Phys. 2, 301 (1966). See also N. N. 
Bogoliubov and O. S. Parasiuk, Acta Math. 97, 227 (\957); O. S. 
Parasiuk, Ukr. Math. J. 12,287 (1960). 

2 M. Riesz, Acta Math. 81, I, 1949. 
3 See, e.g., N. E. Fremberg, Proc. Roy. Soc. (London) AlSS, 18 

(1946); T. Gustafson, Arkiv Mat. Astron. Fysik 34A No.2 (1947); 
S. B. Nilsson, Arkiv Fysik 1, 369 (1950); G. Kallen, Arkiv Fysik 5, 
130 (1951); E. Karlson, Arkiv Fysik 7, 221 (1954); I. M. Gel'fand 
and G. E. Shilov, Generalized Functions, Vol. 1 (Academic Press 
Inc., New York, 1964), Chap. 3; and C. G. Bollini, J. J. Ciambiagi, 
and A. Gonzalez Dominguez, Nuovo Cimento 31, 550 (1964). 

sary to consider functions of several complex variables 
AI' ... , AL , one associated with each line of the 
Feynman graph. The main difficulty is the extension 
of the above treatment of poles to the more compli­
cated singularities which occur in several complex 
variables. Such an extension is given and a re­
normalized value of (1.1) is defined. It is shown that 
this definition is one of the class of renormalized 
values of (1.1) defined by Boguliubov, Parasiuk, and 
Hepp.1 

We remark that we are interested only in defining 
(1.1) as a tempered distribution in S'(R411). We 
restrict attention to the case of mt > 0, and without 
loss of generality assume that G(Vl ,'" , Vn ; I:) is 
connected. 

2. ANALYTIC PROPERTIES 

We generalize (1.2) by defining, for any complex 
Az ,

4 

lL(p) = Pz(p)etiUAI(p2 - m~ + iO)-"I, (2.1) 

and use Hepp's regularization to write, for Re Az > 0, 

~i. = lim lim ~i..€.r' 
£-0+ r-O+ 

where 

Liil.€,r(P) = PzCp)r(AI)-l 

(2.2) 

The distributions ~~l and il~l .•. r are entire_ functions 
of Az • Moreover, when E> 0 and, > 0, ilL •. r is in 
is in 0C(R4) (the space of rapidly decreasing distri­
butions), and its Fourier transform il~I.E.r is in 0 M(R4) 
(the space of polynomially bounded infinitely differ­
entiable functions).5 Thus we may define unam­
biguously 

bl1 ••••• h.~.rCVl' ... , Vn ; L) = II ilL •. r(x il - Xf .). 
lEI: 

(2.3) 

• See I. M. Gel'fand and G. E. Shilov, Ref. 3. Chap. 3, Sec. 2.4. 
This is a good basic reference for the properties of distributions 
depending analytically on a parameter. 

5 These spaces are discussed in L. Schwarts, Theorie des distri­
butions (Hermann & Cie., Paris, 1966), pp. 243-244. 
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In this section we investigate the analytic properties of 
(2.3) after the limit r -- 0+. For convenience we 
write (AI, .•. , AL) = A. 

We remark that our results in this section would not 
be changed if, in (2.1), we also generalized PI(P) to 
PI(AI ,p). Here PI(AI , p) is a covariant polynomial in P 
of degree rz, whose coefficients are entire functions of 
Al which satisfy Pl(l, p) = Pl(p). Consistent re­
normalization of a theory would require in addition 
that PI(A!, p) depend only on the particle associated 
with the lth line. Such a change in P! would result in a 
finite change in the renormalization constants. 

Theorem 1: Let G(Vu ... , Vn ; 1:.) be a connected 
Feynman graph, as above. Define N = L - n + 1 
to be the number of loops of G, and D ={A E teL I 
Re AI> M, 1= 1,' .. ,L}, where M = N(2 + Ifr!). 
For A E D, define 

b A,.(V1 , ••• , Vn ; L) = lim b A.€ • .(V1 , ••• , Vn ; L). (2.4) 
r-+O+ 

Then: (a) The limit (2.4) exists [in S'(R4n») and 
b A • .(V1 ,··· , Vn ; £.) is holomorphic in D. 

(b) bA,.(V1 , ••• , Vn ; L) may be analytically con­
tinued to a function meromorphic in CL. Ifwe use the 
same notation for the continued function, then 

b,jV1,' ", Vn ; L) IT r[IU'1 - M)]-1 (2.5) 
A leA 

is holomorphic in CL. Here ITA is taken over all 
subsets A of {I, ... , L}. 

We remark that a more detailed discussion of the 
singularities of b A •• is possible but is not needed in 
this paper. 

Proof: Let Pi be the momentum dual to X j • We may 
evaluate (2.3) in P space by attaching to each vertex 
Vi an external line directed into the diagram and 
carrying momentum Pi' and then applying the inte­
gration methods of Chisholm.6 That is, we assign 
paths through the diagram for the external momenta 
and choose loops and loop momenta kl' ... , kN' so 
that the lth line is assign.ed momentum 

N n 

ql = I aliki + Ib!;p;. 
i=l ;=1 

Then (2.3) becomes 

bA .• ,.(V1 , "', Vn ; L) 

(2.6) 

= o(i Pi) Jdk1 ••• dkN IT KL.r(ql)' (2.7) 
1 1=1 

6 J. S. R. Chisholm, Proc. Cambridge Phil. Soc. 48, 300 (1952). 
See, e.g., R. J. Eden, P. V. Landshoff, D. 1. Olive, and J. C. Polking­
h.orne, The Analytic S-Matrix (Cambridge University Press, Camb· 
ndge, England, 1966), pp. 31-34. 

If we interchange the k and rJ. integrations and use 
k i = -i(%Si)eik;S;\ 8/=0 in the factors p!(q/) , 
we may write (2.7) as a sum of terms of the form 

(const)o(I P;)A(P)J."" .. • J.OO IT [drJ.lrJ.~l-1r(A!)-I] 
r r 1 

X {Jdk1 '" dkNA'(-iVs)exp i[.~ Oijkik; 
t,3=1 

+ ~(2<Pi + S;)kj + "P + iE trJ. l ]} Is=o. (2.8) 

Here A and A' are monomials of degree ~ p = If r!, 
and 

L 

()it = I IXlalia l ;, (2.9a) 
1=1 

L n 

<Pi = I IrJ.1alibl;p;, (2.9b) 
!=1 ;=1 

L n L 

"P = I I 1X1bljb1kP;Pk - I IXlm~. (2.9c) 
1=1 ;,k=1 1=1 

When all IXI are positive, eii is positive-definite. Thus, 
if we now do the k integrations, the bracket in (2.8) 
becomes, up to a constant factor, 

(det e)-2A'( - iV s) exp i["P _1 . f (2rpj + Si) 
4 •• ,=1 

x (e-1)i12<pi + Si) + iE t ocz} 
Using e-I = eAdfdet e, where eAd is the transpose of 
the matrix of cofactors, performing the S derivatives, 
and setting S = 0, we may finally write 

b A •• ,iV1 , ••• , Vn ; L) 

= i o(I pj)J.oo . . ··foo IT [drJ.trJ.~!-lr(At)-I] 
m=O r r 1 

X Bm(p, rJ.)C(OC)-(m+2) exp i[D(oc, p)fC(rJ.) + iE I rJ. l ), 

(2.10) 

where B", is a polynomial, ceo:.) = det e, and 
D(IX, p) = det X, with 

en ... e1N <PI 

x= (2.11) 

The "ultraviolet divergences" occur in the limit 
r -- 0+ because eeoc) vanishes when certain a l -- O. 
We now investigate this behavior in a region 0 ~ 
0:. /1 ~ ••• ~ o:.I

L
; for simplicity, we consider 

0~r:J.l~a2···~(J..L' (2.12) 
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Within this region we introduce new variables 
11,"',IL , defined by ocl=ILIL-l"'II' so that 
(2.I2) becomes 

o ~ IL ~ 00, 

O~tl~1 if [=I,···,L-1. (2.13) 

Let Gl be the graph consisting of lines 1 through I with 
their vertices, and let Nl be the number of loops of Gl • 

Lemma 1: For oc in (2.12), 
L 

C(oc) = IT tfIE(tl , ... , tL-1)' (2. 14a) 
1 

L 

D(oc, p) = tL IT tf"'P(tl,"', tL_1 , p), (2.14b) 
1 

where E and F polynomials, and E does not vanish in 
(2.13). 

Proof' Since Nl = 0, N L = N, and (NIH - N I) is 
always 0 or 1, there exist integers 1 < 11 < ... < 
IN ~ L such that N I, = NU,-I) + 1. Thus we may 
choose loop variables so that the ith loop is contained 
in G1i , that is, so that ali = 0 unless I ~ Ii [see (2.6)]. 
From (2.9) and (2.11) we see that the ith row and 
column (l ~ i ~ N) of 0 and X contain a factor 
I L ' .. II;' and the (N + l)th row and column of D 
contain a factor t L' We remove these factors from the 
rows to produce new matrices 0' and X'; this gives 
(2.14) with E = det 0', F = det X'. 

To show that E does not vanish, we consider 
instead of 0' the matrix 0", obtained from 0 by re­
moving a factor (tL" . II;)! from the ith row and 
column of O. 0" is symmetric, and E = det 0". 
Suppose E(t) = 0 at some point t = 7' in (2.13). 
Then there exist numbers °1 ,'" , ON such that 
! 0iO;;(-r)Oj = 0, or 

L [N !J2 ! ! 0iali IT 7'1' = O. 
1=1 i=I ISI'<I, 

(2.15) 

Each term in the sum over I must vanish. Let 1= 
max {i I 0i =F O} and consider the term with I = II' 
0. = 0 for i > I, while a'Ii = 0 for i < I. Thus we 
must have 0rOIII = 0. But 0I =F 0, and the Ith loop 
must go through the 11th line, so alII =F O. This con­
tradiction proves the lemma. 

Now consider an integrand of (2.10) in the region 
(2.12) and change variables to t1 ,"', IL . The 
Jacobian of this change is IIft:-t, so that (2.10) 
becomes a sum of terms of the form 

b(! Pi) LX) dlL fdtL-1 .. ·fdtl 

L 
X IT [r(AI)-It~I',-(m+2)NI-I)]B;"(p, t)E(t)-(m+2) 

1 

X exp ilL [FIE + i€(1 + tL-l + ... )], (2.16) 

where PI = !:'=1AI" and B'". is a polynomial. The 
lower limits of the tL-I, ... , II integrations in (2.16) 
are complicated functions whose only relevant 
property is that they approach 0 when r -- 0+. For 
A E a, Re PI> (m + 2)N, so the integrand of (2.16) 
is absolutely integrable in all of the region (2.13). 
This justifies the limit r -- 0+ in a; the analyticity is 
clear. Thus b>",(Vl> ... , Vn ; C) for A En is a sum 
of terms of the form (2.16) with 0 as the lower limit 
on all integrals, and, in general, with PI = !t'e4. AI' 
for some A c {l, ... ,L}. 

We now prove part (b) of the theorem. Given a 
positive integer M', we may construct a continuation 
of (2.16) into the region 

aM' = {A EeL I Re AI> XM " 1= 1,"', L}, 

where 

{
M-M' 

Xi"'!' = ' 
(M - M')/ L, if M - M' < 0, 

if M - M' ~ 0, 

as follows. We do M' integrations by parts with respect 
to each of t1 ,"', tL-1> integrating the factor 
tf lll-(m+2)NI-I] (or the higher powers of t arising from 
this) and differentiating the rest. This is permissible 
for A EO; in each partial integration the integrated 
terms vanish as the lower limit. Finally, the tL inte­
gration may be done explicitly with the use of the 
formula 

(2.17) 

valid for Re P > 0, 1m K > 0. Thus b>,,.{Vl' "', Vn ; \:) 

may be written as a sum of terms of the form 

il il L' R(A) ... IT {dt;t;[PI-(m+2)N,+M'-I]}G(t', p, €)E(t')i 
o 0 1=1 

x [PIE + i€(1 + tL - 1 + ... )](J-l::f.t/). (2.18) 

Here {t~,··· ,If) is a subset of {II"'" tL-I} (the 
rest having been set equal to 1 during some partial 
integration), G is a polynomial, i and j are integers, 
and H(A) contains factors from (2.17) as well as 
factors (PI - k)-l arising from the partial integrations. 
Since [Re PI - (m + 2)NI + M'] > 0 for A E 0 111" 

(2.18) provides a continuation Ofb>.,.(V1 ,··· , Vn ; \:) 

to the region 0 111 ,; moreover, 

H(A) II r[! (AI - M)]-l 
AC:{I'" L) leA 

is an entire function of A. Since OM' increases to <CL 

as M' approaches infinity, part (b) of the theorem is 
proved. 
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3. RENORMALIZATION 

It would now be natural to define (LI) as 

lim bl .... I.E(Vl' ... , V,.; q; 
E~O 

however, Theorem I implies that b}'.E may have a 
complicated singularity at A = (1, ... , I). In one 
complex variable we could discard the singular part by 
using the constant term of the Laurent series. In this 
section we generalize this procedure to several 
variables. 

Definition: Let U c CL (L ~ 1) be an open 
neighborhood of (l,'" ,I). Let A L ( U) = {fiA) I 

1(").) TIAC{I.,,·,l,j[!/EA(A·! - 1)]'" is analytic in U for 
some integer m ~ O}, and let AL = UA/JU), the 
union taken over all neighborhoods U. Then a family 
of maps:F = {:F/JL=l' .'FL:AI, -- C, is a generalized 
ellalLiator [at (I,' .. , 1)] if the following conditions 
are satisfied for each L: 

(I) .'F I, is linear; 
(2) if fE .ilL is analytic at (I,"', I), then 

3'lf=f(I,"', 1); 
(3) ifj~l EAdU), for 

n = 0, I, ... ,g,,(A) = f.,(A) II.. [!tE.l (At - I)]m, 

is analytic in U, and g,. -- go uniformly on U, then 

.'F IJ;, -- .'F IJ~; 
(4) if II is a permutation of {I,"', L}, fEAL' 

and fa E A [, is defined by 

fa(Al' .•. , A1J = f(J..a(I) , ... , Aa(l.)' 

then :F1J" = .'F1J; 
(5) iff E AL depends only on AI" .. , AI/' where 

L' < L, then .'F /J = .'F If; 
(6) iffl ,j~ Ej~L' andj~ depends only on AI"" , A1/, 

j~ only on A 1/+1 , .•• ,AI" then ·'FI,(Jd~) =(·'FLj~) 
X (.'F lJ;). 

If f E AI,' we use Conditions (4) and (5) to write 
without ambiguity Tof = To d' = :F JJfor any L' ~ L. 
Conditions (1)-(5) are rather natural; the utility of 
(6) will be shown in Sec. 5. It is this condition which 
would be violated by setting Al = ... = AI, = A and 
defining Tof as the constant term of the Laurent series 
of f(A, A, •.. , A) at A = 1. 

Example: SupposefE AI.(U), and let U contain the 
poly disc IAt - II < R. Choose 0 < RI < ... < 
R I , < R, in such a way that Ri > !;=~ R j , and let 
C i be the contour Iz - II = Ri oriented counterclock­
wise. Define 

:Fli= - !-- dA .. , I 1 J' 
. L! a (27Ti)/, Call) I 

I 
/, 

X dALi(A)II(AI-I)-t, (3.1) 
(JaIL) 1 

where !" runs over all permutations II of {I, ...• L}. 
One easily checks that :F is well defined, independent 
of the choice of {RJ, and satisfies (1)-(6). 

We want to be able to apply a generalized evaluator 
to meromorphic distributions. Consider sllch a 
distribution: 

SeA) = S'(A)"cP"L)Lt,(A, - l)r"', 
where S'(A) is an analytic function of (AI' ...• A[) in 
some neighborhood U of (I, ... , 1), taking values in 
S'(Rn). Then the formula (.'F "S)(-y) = .'F I.(S('P») defines 
a linear functional.'F I.S on S(R"). Now S': U -- S'(R") 
is continuous [when S'(Rn) is given the usual weak 
topology], so that if K - U is compact, S'(K) is 
(weakly) compact in 8'(R"), and hence is strongly 
bounded.' That is, there is a constant C/\ and a norm 
II II on S(R") (one of the norms defining the topology) 
such that IS'(A)('P)I ~ C1{ II'PII for any A E K and 
any 'P E S(R"). So for any sequence {'Pi} of elements of 
8(Rtl), converging to· an element 'Po, the sequence 
{S'(A)('Pi)} converges uniformly for A E Kto S'(A)('Po). 
Then property (3) of .'F implies that .'FS as defined 
above is continuous. 

Definition: The renormalized value of (1.1) is 
defined to be 

b(Vl' ... , V,,; q = lim Tob)..<(Vl' ... , V,.; q. (3.2) 
£-+0+ 

The existence of the € -+ 0+ limit follows from the 
theorem we prove in Sec. 5: the agreement of this 
definition with that of Boguliubov, Parasiuk, and 
Hepp. ft may also be proved directly that: 

(a) limE->o t;)..E = t;). exists and is a meromorphic 
function of A with the same singularities as b . ). E' 

(b) b = .'Fb).. ' 
We remark that a change in the generalized evalu­

ator used in (3.2) is reflected in a finite change in the 
renormalization constants. 

4. BOGULIUBOV-PARASIUK-HEPP 
RENORMALIZA TION 

We now review the renormalization methods of 
Boguliubov, Parasiuk, and Hepp,1 and extend their 
results slightly. We follow the notation of Hepp. 

Definition: A graph G(V1 , ••• , V,,; I.:) is one-particle 
irreducible (OPf) if, for any IE rand 1.:' = I.: - {I}, 
G( VI' ... , V,,; C') is connected. Otherwise G is one­
particle reducible (OPR). A generalized vertex of G is a 
nonempty subset U = {V~ ... V:,.} of {VI'" Vn }. 

, I. M. Gel'fand and G. E. Schilow, Verallgemeinerte Funktionen 
/I (YEB Deutscher Verlad der Wissenschaften Berlin 1962) 
Chap. I. Sec. 5. ' • , 
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If UI ,···, U m are pairwise-disjoint generalized 
vertices, with U:I Ui = {V{, ... , V;}, the graph 
G( UI , ••• , Urn; C) is obtained from G( V{, ... , V;; L) 
by collapsing each generalized vertex Vi' and any 
lines which join two vertices in Vi' to a single point. 
The superficial divergence of V = {V;, ... , V;n} is 
defined by 

v(V;,"', V;") = L (rz + 2) - 4(m - 1), (4.1) 
COHn 

where Lcollll runs over all lines ofC connecting different 
vertices of {V{"'" V;"}. We do not distinguish 
between the vertex Vi and the generalized vertex {Vi}' 

Definition: Afinite renormalization is a map assign­
ing to each generalized vertex V = {V{, ... , V~,} a 

distribution i.( V{, ... , V;,,; [) [also written i.( V; L)] 
in ~' (R4111) such that 

i.(V~, ... , V;,,; L) 

= 0, for IPR G(V{, ... , V:,,; L), (4.2) 

{

I, for m = I, 

t5 (~ p;) Pip{, ... , p;,,), otherwise. 

Here P, is a covariant polynomial of degree ~ 
v( V{ ... V:,.), whose coefficients approach finite 
limits as E --+ 0, and which depends only on the struc­
ture of the graph G( V{ , ... , V;,,; L). 

Definition: Given a finite renormalization f" 
VI, ... , Vr pairwise-disjoint generalized vertices, 
define recursively for {V;, ... , V;,,} c {VI" .. , Vr }: 

XA",rCV{,··· V;";[) 

{
X'(V~; L), if m = I, 

= 0, for OPRG(V;,···,V:,,;[), 

-.A{,:ilA,(,r(V~"", V;,,; [), otherwise, 

:HA.'.rCV~,···, V:,,;[) 

(4.3a) 

(4.3b) 

(4.3c) 

(4.4) 

= :i{A,c,r( V{, ... , V;,,; L) + .tA",,·( V;, ... , V:,,; L). 

(4.5) 

Here L~' in (4.4) runs over all partitions of 
{U{, ... , U;,J into k(P) 2 2 disjoint subsets 

{U:;"'" Uj;(j)} 
and 11.'0I11I runs over those IE [ which connect 
different subsets of the partition. When 

G(V;,"', V:,,; I.:) 

is OPI, and 
m 

U V; = {V{, ... , V;}, 

then :i{ has in p space the form o(Li~l p;)F(p~, ... , p~), 
and .A{, is the operation of truncating the Taylor series 
of F about the origin at order v( V{, ... , V;) [.A{, = 0 
ifv(V{,···, V:) < 0]. 

In the case where each Vi is a single vertex v.i , we 
also define 

X~",,<V~,···, V;,,; L) 

{

I, if m = I, 

= 0, fo~ OPR G(V~, ... , V;,,; L), 

-.A{,:K~, • .r<V~, ... , V:n ; L) 

+X,(V;,···, V;,,;L), otherwise, 

:it~",.( V;, ... , V;,.; L) 
Id/') 

- ", IT~' (VI' ... V U'). [) IT ~z - £. XA,c,r jl' 'jrU)' Al,(,T' 
LJ j=1 ('Olill 

:R~,c,.( V~, ... , V;,.; C) 

(4.3a') 

(4.3b') 

( 4.3c') 

(4.4') 

= :j{~",r(V~' ... , V:,,; [) + X~,c,r(V~' ... , V:,,; L), 

(4.5') 

with 2~" IT,.tllIlI' and .A{, as above. The following 
lemma may be proved by straightforward manipula­
tion of these definitions. 

Lemma 2: With the above definitions, we have 

:~~,c".(V~,· .. , V:,,; I.:) = 2 :/{A",r(Ui', ... , V{':U'); [), 
l' 

X~,c,r(V~' ... , V;,,; L) = L XA,c,r( vi', ... , V~':U'); [), 
l' 

and hence 

.," (V' V' . ") - "'j' (vI'.. VI' . ") • \'A,l,r 1"'" tiP 1.- - k' l'A.l,r 1, " m(J)) , l- , 

I' 

where 21' runs over all partitions of {V{, ... , V;,J 
into m(P) generalized vertices {U J'}. 

Now Boguliubov, Parasiuk, and Hepp define the 
renormalized value of (1.1) to be 

lim lim :H~, ... ,I,{,r(Vl, ... , VII; [); (4.6) 
(-+01- r-tOt-

that is, they define a class of values of (1.1) which 
depend on the finite renormalization used. The main 
result of Hepp is the existence of the r ->- 0+ limit in 
(4.6); it may be generalized as follows. 

Theorem 2: Let 

ii' = {A E cL/~ I ReA.z)l - 1/2L, I = I,"', L}. 

Then 

:H~.«VI'···' VII; L) = lim:H~",r(VI"'" VII; [) (4.7) 
r--+O-/-

exists in W(R4t1) and is analytic for A E 11'. 



                                                                                                                                    

ANALYTIC RENORMALIZATION 1409 

Proof: Hepp actually proves the existence of 

Jim :R1 •••.• 1,£ •• (Vt , ••• , Vn ; £), 
,-0+ 

that is, the existence of (4.7) for A = (l, ... , I) when 
:R' is defined using zero finite renormalization. How­
ever, it is a trivial modification of his proof to show 
the existence and analyticity in [!' of 

lim 3h.<.,( UI , ••• , U.; C), 
'-0+ 

for any pairwise-disjoint generalized vertices 
Ul , ••. , Ur • The theorem then follows from Lemma 
2. 

5. EQUIVALENCE OF THE 
DEFINITIONS 

rn this section we show that our definition (3.2) 
of the renormalized amplitude agrees with the Bogu­
liubov definition (4.6), calculated using a certain 
finite renormalization, 

Definition: We write 

J[,(A) = IT r[! (A~ - M)] 
Ae{l .... Ll lEA 

[recall M = N(2 + * r t ) 1 
Let $(L, m) be the set of mappings cP: ([:L ---+ S' (R4m) 
with the form 

cp(A)(PI' ... , Pm) = !5 (il Pi) J L(A)f("A, PI' ... , Pm), 

where 
(5.1) 

(a) JEC OO (R2LHffl); 
(b) J is analytic in A for fixed p; 
(c) if D is a monomial in the p derivatives and 

K c ([:L a compact set, there are positive constants 
C1 and C2 such that 

I Df(A, PI, .. , , Pm)1 S CI(l + IIplI2)ca 

uniformly for A E K. 
For any integer v, define .A(,v: $(L, m) ---+ $(L, m) 

by 

[.A(,v( cp) ]("A)(Pl' . . . , Pm) 

= !5( ~ Pi) J L(A)F.("A, PI' ... , Pm), 

where cP is given by (5.1) and Fv is the Taylor series of 
J in p about the origin up to order v (.A(,v = 0 if 
v < 0). 

Lemma 3; Let:F be a generalized evaluator. Then 
:F: $(L, m) ---+ $(L, m), and :F commutes with .At, 
on $(L, m). v 

Proof; :F is defined on an element cP E $(L, m) by 
(:F cp)("P) = :F[cp("P)], for any "P E S(R4ffl). We claim 
that, if cp has the form (5.1), 

:Fcp(p) = 6(~ p;):F(J(A)f("A, p)]. (5.2) 

Note first that the difference quotient defining a p 
derivative of J converges uniformly in A (on compact 
sets), so that property (3) of:F implies that 

:F[J("A)f("A,p)] E C OO (R4m). 

Moreover, for "A E K,f("A,p) X (l + IIpIl2)-<C2+I) ---+ 0 
as IIpll---+ 00, so that (3) implies :F[J(A)f("A,p)] E 

o ill (R4m), that is, (5.2) is indeed in $(L, m) (as a 
constant function of A). Now 

cp(A)( "P) = lPi~O "P(p)J(A)f(A, p) tip, 

and this integral may be approximated uniformly in 
compact subsets of ([:L by Riemann sums. The 
linearity and continuity of :F then imply (5.2). The 
fact that .M.,v and :F commute follows again from 
the uniformity of the limit defining a p derivative. 

The results of Sec. 2 imply that 

b).,.(V{, ... , V:,,; L)'E $(L, m) 

for any {V~, ... , V:n }. Thus we may define 

X.(V~, ... , V;"; C) 

{

t, for m = 1, 

= : for ~PR G(V~: : ~ . , V;,,; 1.:), (5.3) 

,J .A(, b)..,( V 1> ••• , V m' 1.:), otherwise. 

Lemma 4:i,(V~,···, V:,,; L) as given by (5.3) is a 
finite renormalization. 

Proof: X, clearly has the correct form (4.2); property 

(4) guarantees that i, depends only on the structure of 
the graph G(V{,··· , V~,; 1.:). The existence of the 
€ ---+ 0+ limit follows from the explicit form of b).,< 
given in (2.1 8). 

Now we may define .I~.<,r( V~, •.. , V:,,; 1.:), 

and :K~",r(V{'" . , V:,,; I.:) by formulas (4.3')-(4.5'), 
using (5.3) as finite renormalization. We have already 
discussed the behavior of lim,-.o+ :H~",I" 
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Lemma 5: Let n be as in Theorem 1. Then 

X~"<V{"'" V;"; I:) =limX~",.(V~"", V;"; 1:), 
r .... O+ 

:R~,.(V;, ... , V;"; I:) = lim !R~'l,.(V;, ... , V;,.; q 
r .... O+ 

exist for A E n and may be analytically continued to 
([;L; they are in $(L, m). 

Proof' Similar to Theorem 1. We note in particular 
that x;.,.(V{, ... , V~; C) has the form 

(5.4) 

where (i) is a multi-index, 

m 4 
p'(i) = II IIp'?:. 

i=1 p=O 

andf(i)(A, f) E·-iL . 

Theorem 3: Let :R~,.,,(VI' ... , Vn ; I:) be defined 
using (5.3) as finite renormalization. Then 

.'F13,..lVI , •. " Vn ; C) = lim :R;,. ",I,.,r(J-i, ... , Vn ; 1:). 
r .... !l-'- (5.5) 

We remark that Hepp has shown that the f -+- 0 
limit of the right-hand side of (5.5) exists. This justi­
fies our definition (3.2) of 13( VI' ... , Vn ; 1:), and the 
f -+- 0 limit of (5.5) is just the equality of the two 
definitions of the renormalized amplitudes. 

Proof' We first show that, for m' > I, 

.1"X~,.(V~, ... , V;,..; I:) = O. (5.6) 

The statement is, of course, true (vacuously) for 
m' = 1; we assume it for all 1 .:::;; m' < m, and consider 
an OPI graph G( V{ , ... , V,;.; 1:). 

From (4.3C'), 

X~".lV~, ... , V;"; I:) 
f kiP) ) 

= - I~' II X~,.,r(vft, ... , Vr,(j); q II Ll1
f t P j=l conn 

+ X.(V~,···, V;"; C). (5.7) 

Consider a term from ~p in (5.7) in which r(j) > 1 
for some j, say j = 1 (note k(P) ~ 2, so we must have 
r(j) < m). From (5.4) this has the form in p space 

Wp(A, E, r) = Lfw(A, f, r){(6(L p)pw) * V}, (5.8) 
(i) 

where V is the Fourier transform of 

kiP) 

IT X~",lV~, ... ) II ~l. 
j=Z conn 

For A E n, we can let r -+- 0+ in (5.8). The bracketed 

term converges to an element in $(L, m), and 
iw(A,f,r) converges to i W (A,f)E.-1:L • Actually, 
however,fw(A, f) depends only on those A. z such that 
lth line joins two vertices of {Vt;., ... , Vi.(l)}, while 
the bracket in (5.8) depends on those A. z such that the 
lth line has at least one end point outside this set. 
Thus property (6) of .'F implies 

:F[ lim Wp ] = ~ [.'Ff(;)(A, f)J[.'F lim { }J. 
r-O+ Ci) r-O 

But by the induction assumption 

:FX~,.(Vt;., ... , vi.w; I:) = 0, 

so that :FJ;,i)(A, f) = 0 and hence 

:F[Iim Wp(A, f, r)] = O. 
r-O+ 

Now, using Lemma 3, 

:FX~"(VI' ... , Vm ; I:) 

(5.9) 

= -.A(,:F(~'[lim WpJ) + X'(VI"", Vm;l:), 
P r .... O+ 

(5.10) 

since property (2) of:F implies :F2 = :F. But by (5.9), 
all terms of ~p in (5.10) vanish except for that 
partition in which r(j) = 1 for all j. However, this 

term is exactly cancelled by i,( VI' ... , V m; 1:); this 
proves (5.6). 

Equation (4.5'), defining :R', may be written 

:R~, • ..cVI' ... , Vn ; C) 
kiP) 

= II ~L.l,r + ~" II X~.',r(Vft, ... , Vr,W; C) II Lll, 
C P j=1 conn 

(5.11) 

where ~~ is over all partitions of {VI' ... , Vn } with 
I .:::;; k(P) < n. For A E n, we let r -+- 0+ in (5. I 1) 
and then apply .'F to both sides. Equation (5.6) and 
another use of property (6) show that .'F annihilates 
the second term on the right-hand side. But the first 
term on this side is just 13)".( VI' ... , V n; q, so that 
(S.Il) becomes 

.'F:R~,.( Vl , ••• , Vn ; C) = .'F13A,.( VI' ... , Vn ; 1:). 

Theorem 2 and property (2) of:Y show that 

this completes the proof of the theorem. 
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A general definition of hidden-variable theories in terms of the dual structure of states and propositions 
is proposed. As a consequence of a theorem due to Zierler and Schlessinger, this definition implies a 
violation of the quantum ordering of propositions in the corresponding hidden-variable theory. This 
violation is shown explicitly for the theory of measurement due to Bohm and Bub. 

1. INTRODUCTION 

What is a hidden-variable theory of quantum 
mechanics? In this paper a simple answer is proposed 
in the form of a physically motivated definition. 
Some consequences of this definition are examined in 
relation to the investigations of Zierler and Schles­
singerl and in relation to a recent hidden -variable 
theory of measurement due to Bohm and Bub.2 

The early proof of von Neumann3 of the impossi­
bility of hidden-variable theories is now generally 
recognized not to be relevant to the discussion except 
as a starting point. The principal justification for the 
assumptions that von Neumann makes is that they 
reproduce the usual Hilbert-space structure of quan­
tum mechanics. His principal assumption, the linear 
additivity of eigenvalues, turns out not to be experi­
mentally verifiable in the framework of quantum 
mechanics. There is, therefore, the possibility of 
violating this postulate but still producing a theory 
with the same experimental predictions as quantum 
theory. One interest of this approach is to produce 
a physical theory of the measurement process.2 There 
is an excellent short discussion of von Neumann's 
theorem in the review article by Belf.4 

The approach adopted here is based on the lattice 
structure of the set of propositions (yes-no experi­
ments) in quantum theory. This method was intro­
duced by von Neumann and Birkhoff5 and has been 
developed by Jauch and Piron6- s and applied to the 
problem of hidden variables. In terms of this assumed 
lattice structure, a violation of the quantum ordering 
of propositions is proved to be a general feature of 
hidden-variable theories. This is shown explicitly for 

1 N. Zierler and M. Schlessinger, Duke Math. J. 32, 251 (1965). 
• D. Bohm and J. Bub, Rev. Mod. Phys. 38, 453, 470 (1966). 
3 J. von Neumann, Mathematical Foundations of Quantum 

Mechanics (Princeton University Press, Princeton, N.J., 1955). 
• J. S. Beli, Rev. Mod. Phys. 38, 447 (1966). 
S J. von Neumann and G. Birkhoff, Ann. Math. 37, 823 (1936). 
• C. Piron, Helv. Phys. Acta 37, 439 (1964). 
1 J. M. Jauch and C. Piron, Helv. Phys. Acta 36, 827 (1963). 
8 J. M. Jauch, Helv. Phys. Acta 37, 293 (1964). 

the theory of measurement proposed by Bohm and 
Bub. 

2. BOOLEAN EMBEDDINGS OF NONDISTRIB­
UTIVE LATTICES 

A few definitions must be introduced. A partially 
ordered set is a system X in which a binary relation 
x > y is defined which satisfies three postulates: 

(Reflexive) x> x, 
(Antisymmetric) x > y, y > x ~ x = y, 

(Transitive) x> y, Y > z ~ x> z. 

A lattice is a partially ordered set P such that any two 
elements have an "intersection" x fl y and a "union" 
x u y, with the usual properties relative to the partial 
order. 

It is useful to define special lattices satisfying addi­
tional assumptions: 

(i) Distributive lattice: 

a U (b fl c) = (a U b) fl (a U c), 

a fl (b U c) = (a fl b) U (a n c); 

(ii) Modular lattice: 

a < c ~ aU (b n c) = (a U b) n c; 

(iii) Weakly modular lattice: 

a < b ~ (a Ub') fl b = a. 

These three lattice types are those which arise in 
relation to usual physical theories. They can be used 
to give a convenient characterization of classical or 
quantum theories. Note that (i) ~ (ii) ~ (iii). 

There is a simple diagrammatic representation of 
the lattice structure. For example, the lattice of subsets 
of a set of three elements has the following representa­
tion (Fig. 1). The vertices are interpreted as the 
elements of the lattice and the joining lines give the 
partial order. This is a distributive lattice. Figure 2 
gives an example of a nonmodular lattice. This lattice 

1411 
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tions gives an effective framework in which to discuss 
hidden-variable theories. The dual structure is called 
the logic of the physical theory. 

12 In a general notation, the problem can be expressed 
FIG. 1. Distributive by the following diagram: 

lattice. 

is used as an example in the fundamental paper of 
Birkhoff and von Neumann.5 

Distributive lattices are the most familiar. They 
arise as lattices of subsets as in the first example. 
Modular lattices can be considered as lattices of 
closed linear subspaces of finite-dimensional Hilbert 
spaces. The corresponding lattices for infinite-di­
mensional Hilbert spaces are weakly modular. These 
are the structures that arise in connection with the 
physical theories considered in this paper. The basis 
of this investigation is that every physical theory has 
a corresponding calculus or lattice of propositions. 
The propositions correspond to those observables of 
the physical system which are associated with two 
possible values: yes or no, true or false, 1 or O. In 
quantum mechanics, these propositions correspond 
to projection operators, Hermitian operators with 
eigenvalues 1 and O. This makes obvious the identi­
fication of propositions with the closed linear sub­
spaces of Hilbert space. The vatious assumptions of 
distributivity, modularity, and weak modularity 
characterize not only the lattice of propositions of the 
physical theory but also the theory itself. 

The underlying problem in hidden-variable theories 
is to embed the usual quantum theory in a larger 
framework which has the characteristics of a classical 
theory. Lattices provide a natural mathematical 
language for this problem. 

Physical theories are characterized by the dual 
structure of states and propositions, as well as by the 
lattice structure. Quantum-mechanical states are 
defined as measures on the closed linear subspaces of 
Hilbert space and classical states are measures on the 
Borel subsets of phase space.9 The dualities are defined 
by the action of the states on the propositions mapping 
them to the unit interval of the real line. These are 
separating dualities in the sense that two propositions 
are identical if no state can be found to distinguish 
between them. Similarly, the states are separated by 
the duality. This dual structure of states and proposi-

• G. W. Mackey, The Mathematical Foundations of Quantum 
Mechanics (W. A. Benjamin Co., Inc., New York, 1963). 

S~S' 

P~P', 

where S(S') is the space of quantum (classical) states 
and PCP') is the lattice of quantum (classical) proposi­
tions. Sand P are dual spaces as are S' and P' with the 
structures defined above. The embedding is achieved 
by the two maps r:S-S' and a:P-P'. There is a 
relation between r and a given by the dualities. 

There is only one condition on the embedding that 
seems necessary from physical considerations. The 
classical theory which proposes to replace quantum 
theory must predict the s.ame expectation values as the 
quantum theory at least in those cases which are 
accessible to experiment. Embeddings which do not 
have this property have no relevance to the present 
discussion. 

Consider 

fE S, a EP-fT = r(f) E S', a(a) EP'. 

The condition is that f(a) = fT(a(a» or f = (r(f» 0 a. 
The following diagram is commutative: 

A typical question arises immediately. If a(P) does 
not span P', an extension of IT to all of P' must be 
defined. The simplest assumptions will be made on 
r and a, namely, the 1-1 property andl= (r(f» 0 a. 
for IE S. The first property is usually understood in 
the definition of an embedding. It is a requirement of 
nontriviality-different quantum states are mapped to 
different classical states. The definition of a hidden­
variable theory can now be given. 

An embedding of the quantum logic (S, P) into the 

Qvb 

FIG. 2. Nonmodular lattice. 

a 
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distributive logic (Sf, Pf) is a pair (-r, G) of 1-1 maps 

r:S-+Sf and G:p-+pf, 

such that expectation values are preserved, i.e., 
fE S-:::;,.f= (1'(f» 0 G. This will be called a Boolean 
embedding or a hidden-variable theory. The problem 
now is to establish the properties of these embeddings 
and to relate these properties to specific hidden­
variable systems. 

The rest of this section is devoted to a discussion of 
the work of Zierler and Schlessinger.1 They consider 
the problem of the construction of hidden-variable 
theories under an additional assumption. They assume 
that the quantum ordering of propositions is pre­
served in the embedding o:P -- P'. Now, the quantum 
ordering of propositions is defined in terms of the 
duality 

a < b ~ f(a) < feb) (VfE S). 

Therefore the assumption that Zierler and Schlessinger 
adopt is a very strong condition on l' and 0. They are 
able to prove that the embedding must be a trivial one. 

This result is a new proof of von Neumann's 
theorem. However, it is subject to the same objections. 
Their assumption (which is called the isotone property) 
is the following: 

f(a) <feb) (VfE S) 
-:::;,. 1'(f)(o(a» < 1'(f)(o(b» [V1'(f) E S']. 

This need not be true in general. There may be states 
in Sf which violate the second ordering. The isotone 
property is an assumption which severely limits the 
structure of S'. In fact, the assumption limits the 
embedding to the trivial case. 

It seems more profitable to consider the alternative 
d~fini~ion of embedding and to allow the possibility of 
VIOlatIOns of the quantum ordering of propositions. 
From the above argument, this is seen to be a general 
feature of hidden-variable theories. In Sec. 3 this is 
shown explicitly for the theory due to Bohm and 
Bub.2-

3. A HIDDEN-VARIABLE THEORY OF 
MEASUREMENT 

There have been numerous hidden-variable theories 
proposed, notably by Bohm and co-workers to 
illustrate shortcomings of quantum mechanics: to 
produce counter examples to various versions of 
von Neumann's theorem, and to suggest alternative 
developments. From the general considerations of 
Sec. 2, every such theory provides an example of a 
Boolean embedding. The recent theory of Bohm and 
Bub! gives a hidden-variable theory of measurement 
for a particle with spin without translational motion. 

For the spin-t particle, the states are given by a 
wavefunction represented as a vector in a two­
dimensional Hilbert space: 

1"1') = "1'1 IS1) + "I'2IS2), 1"1'112 + 1"1'212 = 1. 

To complete the description of the state, it dual 
Hilbert space is postulated: 

(;1 = ;1 (Sll + ;2 (S21, 1;112 + 1;212 = 1. 

T.hes.e are the hidden variables assumed to be randomly 
dlstnbuted on the hypersphere of unit radius. 

The measurement process is described by nonlinear 
equations of motion relating "I' and ;. These equations 
are such that the· initial values of the parameters 
determine the result of a measurement: 

It will be noticed from the equations of measurement 
that the phases of the wave functions do not enter the 
theory. Furthermore, the hidden variables have no 
clear physical interpretation or direct correspondence 
with well-known classical observables. 

. The .phase space of the classical theory is six­
dimenSIOnal, the Cartesian product of two three­
dimensional hyperspheres. The Hilbert space of the 
corresponding quantum theory is two-dimensional. 
The lattice of subspaces of a two-dimensional Hilbert 
space has the representation shown in Fig. 3. Here oc 
is an angle variable that parametrizes the one-dimen­
sional subspaces. This lattice is modular. The distri­
but~ve lattice of the hidden-variable theory is the 
lattice of Borel subsets of the six-dimensional phase 
space. This has many more degrees of freedom than 
the corresponding lattice parametrized by one angle 
variable. 

It is completely trivial to study the action of the 
embedding on the ordering of propositions in the two­
dimensional case. This follows from the observation 
that there is essentially only one order relation 

o < aa < I (O:S; oc < 217) 

FIG. 3. Modular lattice. 
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and this is preserved under the embedding 

0'(0) = 0 < O'(a,,) < 1= O'(I) (0 s;: IX < 21T). 

The theory for a particle of spin 1 (corresponding to 
a three-dimensional Hilbert space) provides the first 
ex~mple of the viol.ation of the quantum ordering. 
Thl~ IS shown very simply by the following argument. 
In the theory of Bohm and Bub, if the initial values of 
the variables are such that 

l'I'al 2 > 1'1'112 1'1'212 
l~al2 1~112' 1~212' 

the result of the measurement is spin-polarized in the 
3 direction in the Hilbert space. In the quantum 
theory, this measurement process corresponds to the 
projection operator Pl2 onto the 3 direction. If the 
two-dimensional subspace is rotated through an angle 
0, 

'I'~ = '1'1 cos () + '1'2 sin (), 

'I'~ = - '1'1 sin 0 + '1'2 cos (), 

'I'~ = 'l'a, 
~~ = El cos () - E2 sin (), 

~2 = ~1 sin () + ~2 cos 0, 

~~ = ~3' 

this gives the same projection operator in quantum 
mechanics, i.e., P 1'a' = P la • However, in the hidden­
variable theory, the two corresponding propositions 
are distinct. After embedding, the projection operator 
P I '2' corresponds to the subset of phase space given by 

l'I'al 2 > 1'1'1 + '1'2 tan ()12 1'1'1 tan () - '1'212 

l~al2 I~l - ~2 tan ()1 2 ' lEI tan () + ~212 . 
This is not, in general, the same subset of phase space. 
There is a dependence on (). For example, if tan () = I, 
there is a neighborhood (of positive measure) of the 
point l'I'sl2 = i. 1'1'112 = 1'P212 = 1, I Ell2 = I E212 = !. 
1~312 = i, which satisfies the first inequality but not 
the second. Therefore, the propositions P l2 and P I '2' 

are distinct in the hidden-variable theory. 
The violation of the quantum ordering of proposi­

tions is illustrated explicitly by the following example 
with tan () = 1. Four quantum propositions are 
introduced with the corresponding subsets of phase 
space after embedding: 

P23 , spin in I direction, 

{
1'P112 > 1'I'212} A {I'I'l12 > l'PaI

2
}. 

IEl12 IE212 IEll2 l;sl2' 
P 2'a, spin in I' direction, 

{
I'I'l + '1'212 > 1'1'1 - 'l'212} A {I'PI + 'P21

2 
> l'PsI2}. 

lEI - ~212 I~l + ~212 I~I - ;212 l;sI2' 

Pa , spin in 12 plane, 

{
I'I'SI> l'I'sl2} V {1'P212 > l'PaI2

}. 

1~112 l~al2 1~212 l~al2' 

PI '2" spin in 1'2' plane, 

{1'P1 + '1'21
2 > l'I'al

2
} V {I'I'1 - '1'21

2 > l'I'al l
} 

I~l - ~212 l~al2 I~l + ~212 1~312' 

In the quantum theory: 

P23 < F12 = F1'I" 
P 2'3 < F12 = PI'S" 

In the hidden-variable theory: 

P23 < P12 but P2a {: P1'2" 

P2'a < Pl'2' but PI'a <j::: Fa· 

For example, if I ~112 and 1'P112 are both nearly zero but 
with 

1'1'112 > 1'1'212 and 1'1'112 > l'Pal2 

1~112 1~212 1~112 l~al2 ' 

then verifying Pl '2' reduces to verifying 

1'1'212 l'I'sl2' 
1~212 > 1~312 • 

which need not be true. Therefore subsets of phase 
space of positive measure can be found satisfying P28 

but not Pl '2" 

There are other embeddings which could have been 
chosen for this theory. As an extreme case, consider 
embeddings which map the quantum-pure states to 
points of phase space. This choice clearly violates the 
quantum ordering of propositions. The violation 
occurs for every such choice of embedding. 

This is a general feature of hidden-variable theories 
(if the Hilbert space of the quantum theory has 
dimension greater than two). It arises as a result of 
the interaction between the measurement apparatus 
and the system under observation. For the theory of 
Bohm and Bub, this interaction has been shown 
explicitly by the noninvariance of the measurement 
process under change of coordinates. The violation 
of quantum ordering can also be considered as a result 
of the nonlinearity of the equations of measurement. 
This is illustrated by the following simple argument. 

Suppose that the equation of measurement, written 
d'l'/dt = L('P, E), is linear-invariant in the sense that it 
is invariant under linear coordinate transformations, 
i.e., d'l"/dt = L('I", f). The pure states of the quantum 
theory when embedded in the hidden-variable theory 
correspond to subsets of phase space with boundaries 
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L( "P, ~) = O. Consider again the three-dimensional 
case (although the result will be quite general). 
Suppose the three regions of phase space correspond­
ing to quantum-pure states are given by the labels AI, 
A2 , and As. Now, the assumption is that the bound­
aries of these regions given by L("P, ~) = 0 remain 
the same under coordinate transformations. This 
implies that the above regions are the same after 
coordinate transformations 

Therefore there is no violation of the quantum 
ordering of propositions and the hidden-variable 
theory is equivalent to the quantum theory. This 
result shows the relation of nonlinearity to the violation 
of quantum ordering. 
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Tensor distributions of several four-vector variables which transform according to a finite representation 
of the Lorentz group are considered. We give a canonical classification of all possible forms of such 
?bjec~s; this is used to show that, in the releva?-t cases, it is s~fficient ~o regularize them with respect to the 
mvanants that may be formed out of the vanables to obtam analytIc functions. We apply this result to 
Wightman functions, showing a result similar to a theorem proved in position space by Borchers under 
different assumptions. 

1. INTRODUCTION 

The fundamental role played in field theory by 
tensor distributions of several four-vector variables 
makes it very interesting to consider the general 
features of these objects. The fact that such distri­
butions possess definite transformation properties 
under the Lorentz group puts severe restrictions on 
their possible form; thus, for instance, it seems natural 
(and this has been widely used) that one may project 
them onto invariant ones. The last are a special 
case of the former, and it is also interesting to 
inquire whether the statement that they really only 
depend on the invariants formed with their arguments 
is true. To put forth an example, given TfJ(x, y), the 
question is posed whether one can expand it as 
xfJt! + Y/2' ti invariant, and whether it is true that 
ti = t i (X

2,y2, X· y). That this is in fact the case for 
analytic functions has been shown by several people!; 

• This paper was supported in part by the National Science 
Foundation. 

t Present address: CERN European Organization for Nuclear 
Research, 1211 Geneva 23 Switzerland. 

1 K. Hepp, Helv. Phys. Acta 37, 55 (1964); 36, 355 (1963); D. N. 
Williams, UCRL-1113 (1963) (unpublished); G. C. Fox, Cavendish 
Laboratory Preprint (unpublished) (1966); D. Hall and A. S. Wight­
man, Kg\. Dansk. Vid. Selsk. Matt.-Fys. Medd., 31, No.5. (1957). 

but one may expect some trouble for distributions as 
the existence of counterexamples such as, e.g., 
ofJb(x + (Xy), any (x, indicates. One is thus led to the 
problem of giving a characterization of the "well 
behaved" as well as a description of the "pathological" 
ones, i.e., to a classification of tensor distributions. 
For invariant distributions of one variable this has 
been done by Methee2 who proved that if T(x) is 
invariant, then 

T(x) = t(x2) + [polynomial (ofJo)]b(x), 

and his analysis has been partially extended to more 
variables by several peoplel - S (in special cases). In 
the present article we give a generalization of these 
results, presenting a complete classification of all 
tensor (not necessarily invariant) distributions in 
several variables. 

Related problems are relevant in different contexts. 
Thus, Borchers3 has shown (using support properties 
and translational invariance) that the Wightman 
functions in position space need only be tested in the 

2 P. Met~ee, Comm. Math. Helv. 28, 225 (1954); 32,153 (1957); 
c. R. ParIs, 240, 1179 (1955); L. Gilrding and J. L. Lions, 
Nuovo Cimento Supp\. 14, 9, (1959). 

3 H. J. Borchers, Nuovo Cimento 33, 1600 (1964). 
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timelike directions, proving that 

f dxocp(xo)A(x) = (cp(xo), A(x» 

is differentiable infinitely many times in spacelike 
directions. As a result of our analysis it follows that 
Lorentz covariance alone is sufficient to ensure a 
similar result for Wightman functions in momentum 
space. 

In Secs. 2-4 we describe the mathematical tools that 
are needed later; some results, previous to the analysis 
itself and concerning chiefly the description of in­
variant variables, are presented in Secs. 2 and 3, while 
in Sec. 5 we deal with tensor distributions. In this 
context, we show that (apart from certain patho­
logical cases) tensor distributions need only be tested 
in the invariants to get infinitely differentiable (and 
even analytic) functions. A canonical representation 
of the pathological cases is described in Sec. 6, thus 
obtaining a general classification of all tensor distri­
butions, which is used to give (Sec. 7) some applica­
tions; we conclude with some remarks and comments, 
in Sec. 7, as well as in the appendices where a few 
auxiliary questions are discussed. 

Finally, we remark that, although we use loose 
language, our results are mathematically rigorous; 
they also possess the advantage of using intrinsic 
methods, so that they are straightforwardly extendable 
to more general situations. 

2. LITTLE GROUPS, ORBITS, AND 
CURVILINEAR COORDINATES 

Let C. be a connected Lie group with parameters 
e1 , •.• , e

l
, and let its continuous representation 

v(l) -+ Av(l) in the linear space M(l) of dimension 
n + 1 be given. We denote with the same letter the 
element A in C. and its representer, since no confusion 
may arise. We assume the representation to be irre­
ducible, form the direct sum of N spaces identical to 
M(l) M(I) ... M(N) and define a new representa­
tion 'acting' on E = M(1) EEl ... EEl M(N) by setting 

A: v = vO ) EEl ... EEl v(N) - Av = AV(I) EEl ... EEl Av(N), 

(1) 
which we still denote with the same letter.4 

If v is a vector in E, we define the little group5 'illv 
as the subgroup of all r in C. such that rv = v; it is 
clear that, if the r n are in 'ill v' and r n -+ r, also 

• This may be thought of as a representation reducible into N 
equivalent representations acting on th~ Mil). The case of the ~III 
being unequivalent could also be considered, but our constructIOn 
suffices for applications. . 

5 E. P. Wigner, Ann. Math. 40, No. I (~939); F. J. Yndura!~, 
Nuovo Cimento 45, 239 (1966); E. SalustI and F. J. Ynduram 
(unpublished.) 

(r nV - v) -+ (rv - v) = 0, so that 'illv is closed in C. 
and therefore is a Lie subgroup of C. (Ref. 6, Chap. 
IV, Secs. IV and V); we take er+l , ... , e1 to be its 
coordinates. 

Together with the little group, we will consider the 
orbit R(v); it is defined as the set of all elements of the 
form Av, where A ranges over 1.:. We now have our 
first theorem. 

Theorem 2.1: The homogeneous space c.j'illv is an 
analytic manifold, isomorphic to R(v). R(v) may be 
parametrized with the parameter el , ••• , e;; it then 
becomes an analytic manifold, analytically embedded 
into E. In other words, i(v' is in R(v) and its Cartesian 
coordinates are v~(l); then these depend analytically 
and nonsingularly on the curvilinear ones el , ... , e

r 
and vice versa. 

Proof· The analyticity and construction of the 
isomorphism c.j'UJ v ~ R( v) are shown in Ref. 7 (p. 111, 
Theorem 32). Now, 'illv being closed, the projection 
I.: -+ I.:j'illv is analytic (Ref. 6, pp. 109-111; Ref. 8, 
p. 43); since any representation of a Lie group is ana­
lytic,6 we have the analytic chain C. -+ representation 
of C. in E -+ c.j'illv ~ R(v). Q.E.D. 

As to the introduction of coordinates in R(v), let L 
(Wv) be the Lie algebra of C. ('illv). If MI ... Ml are 
the generators of L, Mr+l ... M z those of W, then 
the mapping 

(2) 

maps (analytically) a neighborhood of c.j'illv onto a 
neighborhood of v in R(v) (Ref. 7, p. 113, Lemma 
4.1). This is the desired (local) parametrization of 
R(v). The action of C. on the coordinates e1 ,· •• , er 

is then the natural one, viz., if v' has coordinates 
t' ••• t' and v" has til ••• til and if v" = Av', 
~1' '~r' ~1' '~r' 
we define 

A(e~,···, e~) = (e~,···, e~); (3) 

it may be shown that this action is analytic (Ref. 8, 
pp. 42ff; see, alternatively, Refs. 6 and 7). These 
induced nonlinear "representations" have been con­
sidered in physics in connection with quite different 
problems. 9 Although we do not use this, we note that 

6 c. Chevalley, Lie Groups, Vol. I (Princeton Math. Series, 
Princeton, 1946). 

7 S. Helgason, Differential Geometry and Symmetric Spaces 
(Academic Press Inc., New York, 1962). 

8 S. Kobayashi and K. Nomizu, Foundations of Differential 
Geometry (Interscience Pub!. Inc., New York, 1963). 

• L. Michel, in Axiomatic Field Theory, Brandeis Lectures 1965 
(Gordon and Breach, Science Pub!" Inc., New York, 1966); 
S. Wenberg, Phys. Rev. Letters 18, 188 (1967). 



                                                                                                                                    

LORENTZ COVARIANT DISTRIBUTIONS 1417 

R(v) is, in some cases, even a Riemann symmetric 
manifold.7,s 

Two analytic manifolds are locally isomorphic 
whenever they have the same dimension; it is then 
natural to split E as the union of disjoint sets Er such 
that if v is in Er , dimR (v) = r. If dim Er = ar , then 
Er/R is an analytic manifold of dimension aT - r; 
locally, 

Er = (Er/R) X R. 

Denoting by Pr to ErIR, this shows that we may 
introduce analytical coordinates Pi"'" Par-r in 
Pr , and the P are invariant under [ (see Refs. 5-8; an 
explicit construction of the P is given in Sec. 4 and 
Appendix A). Collecting the results, we have the 
following theorem. 

Theorem 2.2: For every point v in Er there exists a 
neighborhood V(v) of v in Er and a corresponding 
neighborhood (that we may take to be cylindric) 
V]' X VR' in Pr X R such that if v is in En V has 
curvilinear coordinates (p, ~) in Pr X R, the relation 
between the Cartesian and curvilinear coordinates is 
analytic and the Jacobian J(v~l); P, ~) is analytic and 
nonsingular over V(v), V]' X VR' The action of A 
in [ on the ~ is as in Eq. (3), and the P are unchanged. 

Explicit examples are found in Sec. 4. 

3. CURVILINEAR COVARIANT COORDINATES 

Consider the Minkowski space Mn+m with n space 
and m time coordinates. The connected part of the 
group of linear transformations of M n+m that leave 
invariant the metric 

g = diag (+ 1 . ':'. + l' -1 . '!. -1) 
JlV """ 

where vll ' Wv are the (Cartesian) coordinates of v, w, 
is called the (n + m) Lorentz group5 and denoted 
by [;:'. The space E is defined by taking the direct sum 
of N Minkowski spaces Mn+m: 

E-M (f).lf·(f)M - n+m n+m o 

If we are given N' Minkowski vectors v([) and we 
select a set of linearly independent ones v'(["1, I" = 
1, ... ,Nil ~ n + m - 1, we know (Hall and Wight­
man, Ref. 1) that the invariants that may be formed 
out of the v(l) are functions of the invariants of 
the v'(l'). Moreover, these invariants are simply the 
scalar products v'(l") . v'(J") = PrJ"' In view of that, 
we always assume N' < n + m and, consequently, 
N < n + m. The general case (that may be treated 
along similar lines) is left for the moment (in all the 

following we take the physical case n = 3, m = I; the 
generalization for arbitrary n, m is straightforward). 

In virtue of the discussions of Sec. 2, the first step for 
studying objects T(v) defined on E is to reexpress 
them in terms of canonical coordinates P, ~. For this 
we have to classify the little groups 

This has already been done (Ref. 5; see also Appendix 
B) and, in regard to their dimensionality (which is the 
result that is relevant here in view of the analysis of 
Sec. 2 and the fact that dim R = dim [/'ill = dim [ -
dim 'ill) the answer is: 

Theorem 3.1. 
Case (1), N = 1. (i) If v Tf 0, dim 'ill" = 3 and 

dimR(v) = 3. (ii) Ifv = 0, then 'ill" = q, dim 'illv = 3, 
and dim R(v) = O. 

Case (2), N = 2. (i) If v(l) and V(2) are linearly inde­
pendent, dim 'ill" = 1 and dim R(v) = 5. (ii) If they 
are parallel, but v Tf 0, dim 'ill" = 3 and dim R(v) = 
3. (iii) If v = 0, then 'ill" = [!, dim 'illv = 6, and 
dim R(v) = O. Here R(O) = {OJ. 

Case (3), N = 3. (i) If the three v(l), V(2), and V(2) are 
linearly independent, 'ill" = 1 and dim R(v) = 
dim q = 6. (ii) If two are linearly independent, 
dim 'ill" = 1 and dim R(v) = 5. (iii) If all are multiples 
of a nonzero vector, dim 'ill" = 3 and dim R(v) = 3. 
(iv) If v = 0 and 'ill" = q, dim 'ill" = 6 and 
dim R(v) = 0; in fact, R(O) = {O}. 

We may then form the corresponding En r = 
dim R(v), as in Sec. 2; applying Theorem 2.2, we get 
our next theorem. 

Theorem 3.2: In situation (3i) of Theorem 3.1 we 
have the coordinates ~l" •• , ~6 and the Pl'" . , P6 
that may be taken to be the PIJ = V(I) • v(J). In (2i) 
of Theorem 3.1, the coordinates are ~l' ••• , ~5 and 
Pi' ... , P3 that again may be taken to be the PIJ' In 
situation Oi) of Theorem 3.1, the parameters are 
~i' ••• , ~3 and P = v . v. 

The "singular" situations are moredifficulttohandle. 
The simplest of the singular cases are the last of each 
case, i.e., (Iii), (2iii), and (3iv) of Theorem 3.1, 
since R(O) reduces to a point. The invariant coordi­
nates (the ~ do not exist here!) are simply the coordi­
nates of v = O. In the remaining cases, we relabel 
the components vm of v in such a manner that the 
last vectors V(A+l), ••• , V(N) are expressible as linear 
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combinations of the first, which are taken to be in­
dependent; i.e., 

A 
VCA+Bl = ~ ex~+B)VCA'). 

A'=1 

We may then show, by direct checking, that the follow­
ing is true. 

Theorem 3.3: In situation (3ii) of Theorem 3.1, 
the coordinates are ~l' ••• , ~5 and the p's are formed 
b h (A') (A") A' A" 1 2 d (3) Y t e P A'A" = V • V ; , =" an ex A' , 

A' = 1, 2. This gives a total of five PI' ... , Ps, and 
dim Es = 10. In (3iii), we have ~I"", ~3; PI = 
vW . V (1) , P2 = exi2) , and P3 = exi3). Here dim E3 = 
6. Finally, in situation (2ii), the parameters are 
t ••• t and P - v(l) • v(l) P = ex(2) Moreover ~1 , , tia 1 - '2 1· , 

dim E3 = 5. 

Note that the analysis is not yet complete since we 
still have to specify Er in E. For this, let the case be N; 
form the matrix .A{,N 

.A{,N= 

We remark that the number of linearly independent 
vectors is given by the rank of .A{,N' A straightforward 
application of matrix calculus then gives the following 
theorem. 

Theorem 3.4: The missing "invariant parameters" 
that specify Er in E are: in situation (3ii) of Theorem 
3 1 d(3) = 0 d(3) = 0 where the d(a) are any two 

. , 1 '2 ' 

different (3 x 3) minors of .A{,a; in (3iii), di2) = ... = 
d~2) = 0, where the d(2) are any six different (2 x 2) 

. . (2") h d(2) minors of .A{,3' In SItuatIOn II, we ave I = 
d~2) = d~2) = 0, and the d(2) are any three different 
(2 x 2) minors of .A{,2' 

We remark that the Er are invariant sets, and if 
r' > r", then Er " is of null measure with respect to 
Er , and lies on its boundary. 

Definition: We denote by ER the set of maximal 
dimension among the Er • For 3 (respectively, 2,1) 
vectors, R = 6 (respectively, 5, 3). Note that 
dim Eu = dim E. Moreover, Ell is open in E. 

4. DISTRmUTIONS AND FUNCTION SPACES 

Let U be an open set in the reai finite-dimensional 
vector space E; let F be a topological linear space, and 

let F' be its dual.10 We define the followingIO- 13 : 

C!'(U), the space of n-times differentiable functions 
in U with values in F; 

C!:(U), the space of analytic functions in U with 
values in F; 

SF(U), the space of functions in C!;,(U) of fast 
decrease; < 

S!:(U), the intersection of C!(U) and SF(U); 
S'F(U), the space of tempered distributions with 

values in F. 

If we do not write the superscript, it should be under­
stood that F is the field of complex numbers. Let 
AF(U) denote any of these objects; then,13 X belongs 
to AF(U) if, for every e in F', (e, X) belongs to A(U). 
Now we have the following lemmas. 

Lemma 4.1: If, under the change of variables 
v -+ (3, the image of Uv is Up, and if the Jacobian 
J(v; (3) is analytic, bounded, and nonsingular, XCv) 
belongs to AF( Uv) whenever X(v({3» belongs to AF(Up). 

Lemma 4.2: If dim V < 00, if T(p, ~) is in 

S'V(Up x Up), 

and if, for every "P(p) in S(Up)' 

f dp"P(p)T(p, ~) = ("PT)(~) (4) 

IS m C~(Ug), then T(p, ~) is in C~@s'(Up)(Ug), and 
whenever cp(p) is in S(U

1
,), the convolution product 

(cp*T)(p, t) = f dp'cp(p - p')T(p',~) (5) 

is in C~(Up x U~) . 

Lemma 4.3: Tn(p, ~) in C~(Up x U~) converges in 
C~xs'(UP)(Ug) if, for any "P(p) in S(Up)' ("PT)($) con­
verges in C~ (U~). The same is true with the substitu­
tions 

S'(Up) ~ C",(U§), "P E S(Up) ~ "P E C~(U§). (6) 

Proof: The first lemma is proved by directly checking 
the definitions; as for the last two, they are straight­
forward consequences of standard distribution 
theorylL13; they may also be found (with slight alter­
ations) in Ref. 3. 

10 G. Kothe, Topologische Lineare Ruume (Springer-Verlag, Berlin, 
1960). . . 

11 L. Schwartz, Theorie des distributions (Hermann & Cle., Pans, 
1950), Vols. I, and II. . . 

12 J. M. Gel'fand et al., Les distributions (Dunod Cle., Pans, 1967), 
Vols. I-V. 

13 L. Schwartz, J. Anal. Math. (Jerusalem) 4, 88 (1954). 
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Finally, we present two more standard results of 
distribution theory. 

Lemma 4.4: If the Ui form a basis of E, i.e., if the 
union of the Ui covers E, and if AF is either C~ or 
S'F, then X is in AF(E) wherever the restriction of 
X to Ui belongs to AF(U;) [Schwartz's "principe du 
recollement des morceaux," (Ref. 11, Vol. I, Chap.l, 
Sec. 3)]. 

Lemma 4.5: If T is in SV(U), and if T obeys an 
elliptic symmetric differential equation with analytic 
coefficients on U, then T is in C~(U) (Ref. 12, Vol. 
III, Chap. IV, Sec. 8). 

Definition: If the group I: acts on E, i.e., 

A: VEE -+ Av E E, A E 1:, (7) 

and if XCv) is in AV(E) and verified, 

X(Av) = D(A)X(v), (8) 

where D(A) is the matrix of a representation of C in 
V, then X is called a tensorial A object (tensorial 
analytic function, tensorial distribution, etc.), and 
the space of such X's will be denoted by AD(E) 
[rather than AV(E); clearly AD(E) is a subspace of 
AV(E)]. 

5. TENSOR DISTRmUTlONS: GENERAL 
PROPERTIES 

Let T(v) be a tensor distribution over E. If v is in 
E R' and since E R is open in E, then there exists a 
neighborhood Uv of v contained in E R ; the restriction 
of T to Uv is in S'D(Uv)' We perform the change to 
curvilinear coordinates and, if Up x U'§ is the image 
of Uv in these coordinates, then T(v(p, m = T(p, ~) 
is in S'D(Up x U~) (Theorem 2.2 and Lemma 4.1). 
By virtue of the definitions (Sec. 4), for every "P(p) in 
S(Ui), 

(9) 

(The only fact that needs some discussion is the 
conservation of the tensor character of T. But this is 
obvious if we notice that the p are invariant.) Now, if 
we recall the way C acts in the ~ [Sec. 2, Eq. (3)], it 
follows that, in a neighborhood U~ of ~, the ("P, T)(~) 
satisfy an elliptic differential equation with analytic 
coefficients (see Appendix C for the explicit construc­
tion of this equation) so that Lemma 4.5 tells us that 
the restriction of (tp, T)(~) to U;" is in C~(U;"). But 
C acts effectively in R, that is, any ~" in Ug may be 
obtained as A~' with ~' in U;" . Combining this with 
the tensor character of ("P, T), i.e., with the formula 

("P, T)a") = (tp, T)(An = D(A)(tp, T)(n, 

and with the linearity of the spaces Coo, we obtain 
that the differentiability of (tp, T) may be extended to 
all of U~, i.e., that ("P, T)(~) is in C~(Ug), so that 
Lemma 4.2 tells us that whenever cp(p) is in S(Up)' 

(cp*T)(p, ~) E C~(Up X Ug). 

But then we may use Lemma 4.1 and Theorem 2.2 
to perform back the change of variables and obtain 

(cp*T)(~) = f dp' cp(p' - p)T(v) E C~(U;;). (10) 

Now, the Uv form a covering of ER , and thus Lemma 
4.4 applies. We have therefore proved our main 
theorem, which is stated below. 

Theorem 5.1 (Main Theorem): If T(v) is in S'D(E) 
and cp(p(v» is in S(PR ), then (cp, T)(v) and (cp*T)(v) 
are infinitely differentiable in ER , in the remaining 
variables (the first), and in all the variables (the last). 
Moreover, they keep the same tensor character as T. 
This is mathematically expressed by formula (10) 
(for the last), replacing Uv by ER • 

Corollary 5.1: If we extend T to complex values of 
v by means of the complexified C group 1:0 by setting 

T(Aov) = D(Ac)T(v), 

Ao in 1:°, then we may replace the requirement "cp is 
in S(PR )" by "cp is in Sw(PR )" to get "analyticity" 
instead of "infinite differentiability" in Theorem 5.1. 
This follows from the fact that the D(Ac) depend 
analytically on the parameters of Ao and from Lemma 
4.1. 

Corollary 5.2: The invariance of the p is decisive in 
all above arguments. However, once Theorem 5.1 
and Corollary 5.1 are proved, we may perform a new 
change of variables p -+ T and still keep the properties 
of differentiability and analyticity (but no longer the 
tensor character!), whenever the change of variables 
is admissible (Lemma 4.1 applies). Thus, e.g., if 
N = 1 (Sec. 3), we may average T(v) along any time­
like direction, i.e., in V t (the component of v along 
any timelike axis that may, in particular, be vo, i.e., the 
time axis). 

From our subsequent analysis (Sec. 6) it follows 
that if we define TO' as the restriction of T to ER , 

then TO' may be "continuously" extended to all of 
E (by "continuity" across the frontier of ER ; recall 
the definition at the end of Sec. 3); let us call TO such 
an extension. We then may define 

(11) 
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Td is the "discontinuous" part of T and has support 
in E - E R' By iterating this process, we would arrive 
at a decomposition 

T(v) = TO(v) + I Tr(v), (12) 
r<R 

where Tr has support in the union of Er , with r' < r 
and is "continuous" across the boundary of Ef • In 
any case, from (11) it follows that if we subtract at 
any T its discontinuous part, we obtain a "regular" 
TO. 

6. CLASSIFICATION OF TENSOR DISTRmUTIONS 

If, in Corollary 5.1, we take ~(p) -+ fl(p), we see 
that the problem of classifying tensor distribution 
may be reduced to the classification of tensor analytic 
functions. This has been solved quite generally, 1 and 
we simply state the results; for definiteness, we give 
them explicitly in the case T = TI'(vOl , V(2), v(S). We 
now return to the situations of Theorem 3.1,l4 

Situation (3i): 
3 

T:?(v(1), V(2), V(3) = 2 v~j)tiv([), v(J), (13) 
1=1 

and the tI are invariant distributions. Thus, the usual 
decomposition is valid on E R' 

As for the Tr, we have to consider distributions with 
support on the surface Er • Their general form is well 
known (cf., e.g., Refs. 11 and 12) and we only have to 
apply the general theory. We do it in increasing order 
of difficulty. 

Situation (3ii): Eo is the point vOl = V(2) = v(3) = 0, 
so that ~ is of the form 

T O(v(1) V(2) V(3) 
I' ' , 

= ± plO) ~ fl 4(v(l)fl4(v(2)fl4(v(3), (14) 
1=1 ov~I) 

where the PI are polynomials in the d'Alembertian 
D = I gl'v0l'0v' 

Situation (3Ui): Taking into account the results of 
Sec. 3, Theorem 3.4, we may represent T! as 

T3(d(2). !X(2) !X(S), vOl) 
II. 1 , 1 , l' , 

and the fact that T3 has support in E3 is exhibited by 
decomposing it as 

PC~:l2)) fl1(d~21) ... fl1(d~2)T~(S)(!X, v(l). 

14 We will only consider proper vectors; otherwise, terms of the 
form £;I"TPV"V~V;, where £ is the Levi-Civita symbol, should appear. 
We thank Professor O. Steinmann for this remark. 

It is not difficult, although cumbersome, to find the 
transformation properties of T3. We leave this to the 
reader and work explicitly only the case p == 1. 
The fled) are then invariant, and T;3 is still a vector. 
The final result is then 

T!( v(l), V(2), V(3) 

= bl(d~2) ... fll(d~2)V~I)t(!X~2" IX~S), v(1) . V(2), (15) 

and t is again invariant. We remark that 1X~1) may be 
rewritten as v([) . v (I) Iv(l) . vW (if vOl is lightlike, we 
define the quotient by a limiting procedure), so that 
t(lX, V(2) . vOl) = t'(v(I) . v(J); this is true whenever 
neither of the v is zero and t is continuous across the 
light cone. 

Situation (3iv): The analysis is similar to the former 
situation, and the result is likewise: 

I', J' ::s;; 2, (16) 

and here again we may reexpress the IX'S in terms of the 
invariants v(I) . v(J) whenever the v(I) =;6 O. 

If T satisfies suitable support properties, we may set 
still stronger results. Thus, if, e.g., T vanishes unless 
v(J) = 0 or v(!) • v(I) > 0, the condition di 2 ) = ... = 
dJ2) = 0 may be reexpressed as [we take the situation 
(3iii), for example] 

[V(2) . V(1)]2 = [V(2) . vC2l][v(l) . v(l)], 

[V(3) . V(1)]2 = [V(3) . V(3)][VO) . vOl], 

i.e., in terms of the invariants plJ. We are thus 
allowed to separate the part of t in (15) that is 
"continuous" across IX = 0 and the part with support 
in IX = O. The first can be rewritten in terms of the 
invariants in a form analogous to the second member 
of Eq. (13); the second is, by virture of arguments 
familiar by now, of the type 

Pl(O(3) O~3) b4(v(3)t1(PIJ) + P2(O(3)V(l)tlplJ) 

or the similar one containing the product fl 4(v(a)fl4(v(2) 
and the same with an arbitrary permutation of the 
superscripts 1, 2, 3 (since we have to consider all 
possible labelings). 

Quite generally, the following general result may be 
easily obtained by putting together all these conditions. 

Theorem 6. I .. If the support of T is contained in the 
union of the open cones vW • v([) > 0 and the origins 
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V(2) = 0, and TIl(v(1), ..• , vLV) is in S'D(E), then Tfl 

may be canonically decomposed as 

T (v(1) ... V(N) 
fl ' , 

= L {f [ L PI',s(O(1),···, 0(1) 

S(l,2,3) I~O 1 SI' SN 

X ~[') II b4(v([')t II ,,v(PAB) 
CIVil 1'=1 

+ L P[",S(O(l),.", O(]) 
[SrSs 

II '4 ([') ([") ( ]} X I'~l (j (V Vfl tIIn,s PAB) , (17) 

where LS(1,2,3) is extended to all permutations of 
(1, 2, 3) and the term I = 0 in the sum L~o is to be 
interpreted as causing the corresponding o(v(O), 
Po(O(O), CI/ov(O) to disappear, i.e., it gives the reg­
ularpart [Eq. (13)] of T. PAB=V(A)'v(B),A,B= 

1,"', N. 

Corollary 6.1: The above theorem extends the 
result of Theorem 5.1 from ER to the set E' consisting 
of v's such that neither of the vm (I = 1, ... , N) 
vanishes. 

Remark: We have taken the case of a vector distri­
bution as an example. The general tensor distri­
bution Ti may be expressed, mutatis mutandi, in the 
same manner; one only has to change the vectors 
a/avr, Vfl by the corresponding tensor functions (Refs. 
1 and 15) 7T;(CI/Clvfl) 7T i (V fl ). We also note that the t may 
be found from the T in a canonical manner with the 
standard procedures (see, e.g., Ref. 1). 

7. SOME APPLICATIONS AND COMMENTS 

If W N+l(V(l), ••• , v(N) are the Wightman functions 
in momentum space and, after having separated the 
translation invariance,16 they have the suitable support 
properties and are tensor distributions. Our analysis 
applies to them, and consequently the results of 
Theorems 5.1, 6.1, and Corollary 6.1 hold. Thus, e.g., 
we obtain that the regular part of W need only be 
spread out in the invariants PIJ' This is to be com­
pared with a similar result obtained by Borchers3 for 
x space; our results extend his to momentum space if 
we get rid of the singular part W d of W. This is easily 
done in, e.g., a theory of massive particles where 

15 K. Hepp, Ann. Math. 152, 149 (1963). 
18 R. Streater and A. S. Wightman, TCP, Spin, and Statistics and 

All That (W. A. Benjamin, Inc., New York, 1964); R. Jost, The 
General Theory of Quantized Fields (Am. Math. Soc. Publ., Provi­
dence, R.I., 1963). 

W d is simply the contribution from the vacuum. Note 
that no analyticity properties have been used in 
obtaining these results. 

Similar comments could be made concerning 
scattering amplitudes. We do not, however, give the 
pertinent analysis here. 

Finally, a few more questions are considered. 

1. Discrete transformations. Space reversal does 
not add anything new to what has been said, but this 
is not the case for time reversal (Po ---+ -Po)' The 
manifold of tensor distributions may be split in­
variantly into even and odd distributions with respect 
to time reversal,dependingon T(-vo, v) = ±T(vo, v). 
For the (+) choice, the analysis remains unchanged; 
if the (-) sign holds, then sgn voT is even. We may 
thus write any T as 

T = yeven + (sgn vo)T'even. 

These considerations are well known (see, e.g., 
Garding and Lions, Ref. 2). 

2. Distributions of the invariants. To complete the 
description of Sec. 6, one has to give a description of 
the spaces of the t's, i.e:, of the spaces of distributions 
of the invariants. This has been done by several 
people and we refer to the corresponding literature 
(Garding and Lions,2 Hepp,I.l7 etc.). 
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APPENDIX A 

We give an explicit construction of the p, ~. Let v 
be a point in Er and consider R(v). Let U be a 
neighborhood of v in Er • If we denote by R-L the plane 
orthogonal to R(v) at D, by virtue of the continuity of 
the R, we may suppose that U is small enough to 
guarantee that if v' ¥- v" are in the intersection of U 
and R-L, then R(v') ¥- R(v"); then, if P' are the 
coordinates of points in R-L, to every value of these 
there corresponds one single R(v'(p'» so that we have 
a parametric family of surfaces R p " We may then 
take the system of orthogonal trajectories of the R

p
" 

and obtain a curvilinear system of coordinates. [This 

17 K. Hepp, He1v. Phys. Acta 37,639 (1964). 
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construction is classical; see, for instance, Ref. 18; the 
~'s are the coordinates of R, the p those of the orthog­
onal family. In the concrete situation it is not difficult 
to show the p's explicitly (Theorems 3.1-3.3, Sec. 3).J 
Alternative group-theoretical constructions may also 
be easily given.s 

APPENDIX B 

We give, for completeness, the Jist of the different 
little groups. A detailed discussion with proofs may be 
found in Ref. 5. 

(1) Three linearly independent vectors: 

(2) Two linearly independent vectors: (a) The plane 
V(l)V(2) is spacelike; then 'UJ"l1lv(2) = q. (b) The plane 
V(1)V(2) is tangent to the light cone; then 'UJ"(lI,,r2.= 
lil , where li1 effects dilations along the tangent to the 
light cone. (c) The plane V(l)V(2) cuts the light cone; 
then 'UJ"m,,(2) = O2 , 

(3) One nonzero vector. (a) Spacelike: 'UJ" = r.~. 
(b) Lightlike: 'UJ" = [;2 (Euclidean group in two 
dimensions). (c) Timelike: 'UJ" = Os. 

(4) v == 0; then, 'UJo = r.i. 
APPENDIX C 

Let us show that if T(v(I),· .. ,v(N» is a tensor 
distribution, then <,IpT) obeys an elliptic-symmetric 
(e-s, for short) differential equation in the $. First of 
all, we remark that if the Mpy are the usual genera.tors 
of the Lorentz group q, then; by going over to 
infinitesimal transformations, it follows that if T is a 
tensorial object [Definition, Sec. 4, formulas (7) and 
(8)], then 

~ {vm ~ _ vm ~}T(V(2) ... v(N» 
k p ::l {ll v::l (ll " 

1=1 UVy uVp 

= dD(M
pv

)T(v(1), ... , v(N», (CI) 

where dD is the representation of Li induced6
•7 by the 

18 L. P. Eisenhart, Differential Geometry of Curves and Surfaces 
(reprinted by Dover Publ.,Inc., N.Y. 1909). 

representation D of C~. We want to prove that, in 
terms of the $, Eq. (CI) becomes e-s for <1Jl, T); it is 
clear that, since the p and ~ are independent, it is 
sufficient to show this for T as a function of ~. Let 
fj be a fixed point in E, 'UJ,; its little group, and 
M 1 , ••• , M .. the generators ofCM'UJv (Sec. 2); then the 
dependence of T in the ~ is given by 

T(v) == T(', ~l"", ~ .. } 

= T(', exp ($lMl + ... + M .. $ .. )v,) (C2) 

and the action of the A on the ~ is as in formula (3), 
Sec. 2, i.e., 

A(17l>" ., 17z) = exp (* 17iMi) :T(. exp t $;M;) 
~ T(. [exp f17iMiJ[exp * $;MiJ). 

For small ~, 17, and for 17. = ~iirJ, 

[eXP17M;{exp * $iMiJ 

(C3) 

=:::: exp [~lMl + ... + ($; + rJ)M i + ... + ~rMrJ, 
so that, near ~ = 0, Eq. (C3) gives 

o 
- T(-,~) = dD(Mj)T(', ~). (C4) 
o~; 

In general, the equation is of the form 

o 
LOC;i(~);- T(', $) = dD(M;)T(" ~), any i, (C5) 
i U$i 

and the rl.ji are analytic functions with rI.;,(O) = ~ii' 
Equation (C4) is clearly elliptic [i.e., Eq. (C5) is 
elliptic at ~ = 0]; by virtue of the analyticity of the rI., 
Eq. (C5) is also elliptic in a neighborhood of the point 
~ = O. Q.E.D. 

Let us remark that this argument contains as par­
ticular examples the ones currently used l ; thus, e.g., 
the proof of Methee2 is a specialization of ours for 
the simple case N = 1 and T scalar, i.e., dD(M) == O. 
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We prove that the free and total (renormalized) Hamiltonians exist as essentially self-adjoint operators 
in the relativistic Lee model without cutoff. Nevertheless, their domains of definition only have the zero 
vector in common and thus the interaction Hamiltonian is meaningless ("Haag's theorem"). 

In a previous paperl [hereafter referred to as (I)], 
it has been shown that, by using a limit procedure, it 
is possible to define a total Hamiltonian H for the 
relativistic Lee model even in the limit of point 
coupling (no cutoff). The properties of this Hamilton­
ian are further analyzed in the present note, where we 
are able to prove the following: (1) The total Hamil­
tonian H, as defined in the domain introduced in (1) 
[Eq. (4.5)], which we henceforth denote by !l, is an 
essentially self-adjoint operator. It governs the 
dynamics of the model; in particular, it possesses the 
correct spectral properties. (This last statement was 
proved in Ref. 2, by constructing a SchrOdinger 
equation.) (2) If!lo is the maximal domain of definition 
of the free (renormalized) Hamiltonian Ho, then !lo 
and !l only have the null vector in common. As a 
consequence, the interaction Hamiltonian Hint == 

H - Ho becomes meaningless. These results, of 
course, complete and substantiate those of (I); in 
particular, they explain why the Meller operators are 
nonexistent, thus showing that the relativistic Lee 
model "satisfies" the theorem of Haag3 and confirms 
(in a sense) the conjecture of Van Hove.4 

1. We recallS that !l consists of vectors Ix) of the 
form 

Ix) = J d3p <l>(p) V! 10) + J d3q d3k 

X {'Y(q, k) _ ).g(q + k, k)<l>(q + k) }N: a: 10). 
EN(q) + W k - Ev(q + k) 

For them, the action of H is defined as 

H Ix> = lim H' Ix>, 
'->1 

where [cf., (I), Eqs. (2.l), (2.2), (2.3), and (2.4)] 

H' = Ho + J d3p bE~(p)V!Vp + ). J d3p d3k {[8Ev(p)EN(P - k)wkr!f(p, k)V!Np_kak + H.c.}, 

Ho = J d3p Ev(p)V!Vp + J d3
p EN(P)N;Np + J d3k wkaZa k , 

bE~(p) = 1I.j2J d
3
kf(p, k)2 . 

([EN(P - k) + Wk - Ev(p)][8Ev(p)EN(P - k)wkJ} 

The result, as is easy to check, is the last equation in (I), viz., 

H Ix> =Jd3p[Ev(P)<l>(P) + ).Jd3k 'Y(p - k, k) tJ V; 10) +Jd3q d3k 
(8Ev(p)E",(p - k)wk) 

X {(EN(q) + wk]'Y(q, k) - ).Ev(q + k)<I>(q + k) }N: aZ 10). (1) 
[E",(q) + Wi - Ev(q + k)][8Ev(q + k)EN(q)Wk]~ 

We will presently show that, so defined, H is essen­
tially self-adjoint in !l. For this, since H is symmetric, 
it is sufficient6 to prove that the only solution for 
H* I~) = ±i I~) is the trivial one, 10 = 0; i.e., we 
have to check that if 

G, HX) = ±i<~, HX), for all Ix) in !l, 

• Research supported in part by the National Science Foundation. 
t Supported in part by Comisaria de Proteccion Escolar (Spain). 
t Address from January, 1968: Theoretical Division, CERN, 

Geneva 23, Switzerland. 
'F. J. Ynduniin, J. Math. Phys. 7,1133 (1966). 
• F. J. Ynduniin, Anales Real Soc. Espan. Fis. Quim. (Madrid) 

62, A 317 (1966). 

then 10 = O. Computing explicitly, we get that, if 

3 R. Haag, Kgl. Dansk. Vid. Selsk. Mat.-Fys. Medd. 29, No. 12 
(1955). We use quotation marks for the word "satisfies" because 
Haag's theorem is a relativistic local theorem, whereas the Lee 
model is not. 

• L. Van Hove, Physica 18,145 (1952); 22,343 (1956). 
• We use consistently the notation of (I), which also coincides 

with the standard notation. 
• See, e.g., N. I. Achieser and I. M. Glasmann, Theorie deT 

Linearen Operatoren in Hilbertraum (Akademie-Verlag, Berlin, 
1954). 
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then we should have 

I d3p ~(p) Ev(p)<D(p) 

+ AI d3p d3k ~(p)q(p, k)'f"(p - k, k) + I d3q d3k 

X {i7(q, k)[EN(q) + wk]'f"(q, k) 

_ Ai7(q, k)Ev(q + k)g(q + k, k)<D(q + k)} 

EN(q) + Wk - Ev(q + k) 

= ±i{I d
3
p Up)<D(p) + I d3

q d3k[i7(q, k)'f"(q, k) 

_ A g(q + k, k)i7(q, k)<D(q + k)]}, 
EN(q) + Wk - Ev(q + k) 

g(p, k) = [8Ev(p)EN(P - k)Wk]-t. (2) 

From this, it already follows that both ~ and r; must be 
different from zero or vanish at the same time. Since 
(2) must hold for all <D and 'f", we may take'f" == 0 
and <D in the manifold orthogonal to the function 

'fJ'(p) =I d
3
k'fJ(p - k, k)Ev(p)g(p, k), 

[EN(P - k) + Wk - Ev(q)] 

from which Eq. (2) gives that ~ must be parallel to 
'fJ'/[Ev 1= i], i.e., 

~(p) = c1'fJ'(p) (3a) 
[Ev(p) 1= i] 

Analogously, if <D == 0 and 'f" is orthogonal to 
fCq, k) = Hq + k)g(q + k, k), then we get 

(3b) 

From Eqs. (3) we conclude that either C1C2 = 0 or, 
on the support of ~ and 'fJ, 

Ev(p) 1= i = C1C2Ev(p)Id3k Ig(p, k)1
2 

• 

EN(P - k) + W k 1= I 

= Cl c2Ev(p) x 00. 

But this last equation only is satisfied if p = 00, so 
that 10 must vanish. Q.E.D. 

2. We will show that Hint = H - Ho is not 
defined by proving that, for any Ix) in :n, Ho Ix) lies 
outside of the Hilbert space of (normalizable) super­
positions of states with V and NO particles. This 
result is obtained by direct computation: 

Ho Ix) = IXI) + IX2) + IX3)' 

IXI) = I d3p Ev(p)<D(p)V; 10) 

+ I d3q d3k[EN(q) + Wk]'f"(q, k)N: a: 10), 

IX2) = -A I d3q d3k 

X Ev(q + k)g(q + k, k)<D(q + k) N: a: 10), 
EN(q) + Wk - Ev(q + k) 

IX3) = -A I d3q d3k g(q + k, k)<D(q + k)N: a: 10). 

It is easy to check that IXI) and IX2) are normalizable. 
However, 

(Xal X3) = J d3q d3k Ig(q + k, k)<D(q + k)12 = 00, 

whatever <D may be. Hence H Ix) is outside the Hilbert 
space. Q.E.D. 
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A covariant second-order wave equation, free of subsidiary conditions, is deduced from the familiar 
linear relativistic wave equation for a free particle of arbitrary spin by use of the representation-invariant 
Lie algebra of 0(4,1). The correspondence principle is used to interpret the physical content of this 
generalized equation, which explicitly admits zitterbewegung and implies an inverse spin dependence for 
the rest energy. Without further assumption this generalized second-order equation is equivalent to the 
Klein-Gordon equation for the particular Lie algebras of the Dirac and Duffin-Kemmer rings. For 
higher spins the imposition of a subsidiary condition, understood via the Bargmann-Wigner analysis, 
extends the equivalence with the Klein-Gordon equation and explicitly displays the above mass 
spectrum. 

I. INTRODUCTION 

The linear relativistic wave equation 

Ur"P", + K)"P = 0, (1) 

where K is a constant parameter related to the rest 
mass P", = -inolJ , and the four-matrix operators 
r JJ. satisfy the representation-invariant Lie algebra 
of the de Sitter group 0(4, 1),1 i.e., 

and 
(rI'V' rq) = rJJ.~Vq - rV~l'q, 

which together imply 

Cr",v, rpq) 

(2) 

(3) 

= -crlJpbVq + rVqoiJp - riJqbvp - rvpbl'u)' (4) 

constitutes an accepted description of a free particle 
with arbitrary spin. There is, however, some discussion 
in the literature on the completeness of this description 
without demanding that "P, a solution of (1), also be a 
solution of the Klein-Gordon (KG) equation.2 This 
demand generally necessitates the introduction of 
subsidiary conditions, which can cause inconsistencies 
for the usual inclusion of electromagnetic interactions. 
It is partly to the question of subsidiary conditions 
that we address ourselves here, although interactions 
are not explicitly considered in this first paper. 

We adopt the point of view that (1) does indeed 
constitute a complete description of a free-spinning 
particle and show that this does not preclude the 
existence of a second-order wave equation. In fact, 

.. This work supported in part by the Office of Naval Research. 
t Permanent address: Queens College of the City University of 

New York, Flushing, N.Y. 
1 Literature on the algebra of 0(4. I) is extensive. For the notation 

adopt~d here and an exhaustive reference list, see H. C. Corben, 
Class,ca,l and Quantum Theories of Spinning Particles (Holden Day 
Publishmg Co., San Francisco, 1968), Sec. 13. 

o P. A. M. Dirac, Proc. Roy. Soc. (London) AISS 447 (1936)' 
M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A173, 211 (1939); 
H. J. Bhabha, Rev. Mod. Phys. 17, 200 (1945); Harish-Chandra 
Phys. Rev. 71, 793 (1947). ' 

the well-known Lie algebra of 0(4, 1), based on Eqs. 
(2) and (3), permits us to deduce a general, representa­
tion-invariant, second-order wave equation without 
resorting to the use of subsidiary conditions. This 
equation is developed in Sec. II. The remainder of this 
paper is then devoted to analysis of the properties of 
this equation. 

It is first shown that the covariant Hamiltonian 
operator defined by this general second-order equation 
has as its correspondence limit a form of the already 
studied classical Hamiltonian for a free-spinning 
particle.3 The solutions of the admitted Poisson­
bracket equations of motion are known to predict 
helical trajectories, the superimposed oscillatory 
motion corresponding to zitterbewegung. These 
solutions are also known to yield a rest energy which 
decreases as the observed spin increases.4 Thus com­
parison with classical theory indicates that in this 
general form the second-order wave equation displays 
an energy and angular momentum which are not 
divided into separately conserved orbital and intrinsic 
spin contributions and that the coupling gives rise to 
an implicit mass spectrum. 

Finally, we examine the equivalence of this general 
second-order wave equation and the KG equation. 
The Lie algebra of the Dirac and Duffin-Kemmer 

• 5 ffi rmgs su ces to reduce our second-order equation to 
the familiar KG equation for these particular repre­
sentations. Generally, however, for higher spins it is 
necessary to postulate a subsidiary condition in order 
to arrive at an equation of the KG type. To under­
stand the nature of the subsidiary condition for the 
finite-dimensional representations, our second-order 
wave equation is first recast into the language of 

8 H. C. Corben, see Ref. 1, Sec. 7; K. Rafanelli, Phys. Rev. 5, 
lS~, 1420 (1967); K. Rafanelli. Nuovo Cimento S2A,342 (1967). 

H. C. Corben, see Ref. 1, Sec. 8; K. Rafanelli J. Math. Phys. 
8, 1440 (1967). ' 

• N. Kemmer, Proc. Roy. Soc. (London) A173.91 (1939); E. M. 
Corson, Introduction to Tensors, Spinors, and Relativistic Wave 
Equations (Hafner Publishing Co., New York, 1953), Sec. 39. 
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Kramers, Belinfante, and Lubanski (KBL).6 In this 
form imposing the subsidiary condition is equivalent 
to assuming the Bargmann-Wigner (BW) equations.7 

With this assumption our second-order equation 
reduces to an equation of the KG type (orbital and 
spin contributions separately conserved), with the 
previously implicit mass spectrum now explicitly 
displayed. 

II. GENERALIZED SECOND-ORDER EQUATION 

Adopting the usual procedure for constructing a 
second-order equation,S we multiply (1) on the left by 
(-ir,.p,. + K), yielding 

(5) 
Then with 

r,.r. = Hr,.r. + r.r,.) + Hr,.r. - r.r,.) (6) 

we note that, since (P,., Pv) = 0, the antisymmetric 
part of (6) does not contribute to (5). 

Introducing the four-vector 

(7) 

the following representation-invariant identity is easily 
obtained, using (2) and (3): 

(r"r. + rVr,.) 
= 2r "r "b". - (r "ar av + r var a,,) + 2(X" , r .). 

(8) 

This last relation (8) is not to be considered as a 
subsidiary condition, since it follows directly from the 
Lie algebra of 0(4, 1). Since 

q = -irllvr"v + r,.rll 
is a Casimir operator of 0(4, 1), and 

cf = -!r,.vr,.v 

(9) 

(10) 

is a Casimir operator of the homogeneous Lorentz 
group 8L(2, C), it follows that r a r " = q - Cf 
separately commutes with all the elements of 0(4, 1) 
only for those representations for which X,. = 0 
(e.g., the finite-dimensional Dirac ring, and the 
infinite-dimensional Majorana representation). 4.9 How­
ever, it is worth noting at this point that 

(r"r" , r,.v) = 0 
for all representations. 

(11) 

• H. A. Kramers, F. J. Belinfante, and J. K. Lubanski, Physica 
8, 597 (1941). 

7 V. Bargmann and E. P. Wigner, Peoc. Natl. Acad. Sci. 34, 211 
(1948). 

8 M. E. Rose, "Relativistic Electron Theory" (John Wiley & Sons, 
Inc., New York, 1961), Sec. 22. 

• E. Majorana, Nuovo Cimento 9, 335 (1932). 

With relations (6) and (8) we may write the second­
order wave equation (5) as 

{r"r"p,.p,. - (rp"r"v)ppp. 

+ (X,., r.)ppp. + K2}¥, = O. (12) 

Equation (12) constitutes the representation-invariant 
second-order equation, free of subsidiary conditions, 
implied by (1) and the Lie algebra of 0(4, 1). An 
analysis of some properties of this equation is taken 
up in the next two sections. 

m. THE CORRESPONDENCE PRINCIPLE 

In order to interpret the physical content of Eq. 
(12), we turn to the relation between the quantum 
and classical theory of spinning particles. To facilitate 
this discussion we first examine the representation­
invariant relation between velocity and momentum 
operators implied by (1). 

If we multiply (1) on the left by -ir,. and use (8), 
then, for K F 0, 

- (r""r". + rv"r",.)p. + r,..pv }¥" (13) 

This relation is not to be considered a subsidiary 
condition on ¥" since again it follows directly from the 
Lie algebra of 0(4, 1). If (13) is multiplied by P,., then 
comparison shows that (1) and (12) are equivalent 
statements, the latter arising when the velocity oper­
ator ir,., which appears explicitly in (1), is replaced 
by its functional dependence on momentum. Thus, 
as is customary, if we consider the wave equation (1) 
to define the covariant Hamiltonian operator 

(14) 

then (12) defines the Hamiltonian operator re­
expressed quadratically in the momentum as 

H' = rar"p,.p,. - (r,.ar",.)P,.p. 
+ (X,., r.)p,.p. + K2. (15) 

The classical Hamiltonian Hcl corresponding to 
(15) may be obtained from 

Hel = (H') = J ipH'¥'d4x. (16) 

If we write out the third term of (15) explicitly, using 
(2) and (7), then 

«X", r.)p,.p.) 

= ! J ip{2r"r.,.r"r. - r"r .. r"rv - rpr.rar,,}ppp.¥,. 
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which vanishes when use is made of Eq. (1), the 
adjoint equation -i(P/p)rp + Kip = 0, and surface 
terms are neglected. Then, with (9), (10), and (16), 

Hcl = f ip{(q - Cf)pppp 

+ 2 cfcrp"r"v)pppv + K2}1p = 0. (17) 
(r«pr«p) 

With the bilinear associationslO 

Vp = <irp), spv = <-ihrpv), (18) 

the classical Hamiltonian predicted by (12) is 

where 

Hcl = aPpPp + 2b sp"s"vPpPv + K2 = 0, (19) 
s«ps«P 

a = C~ - cf, b = cf. (20) 
Similarly, the above procedure may be used to obtain 
the relation between the classical variables corre­
sponding to (13): 

_ P + 2b sp"s"vP 
v KVp- a p 

s«ps«p 
(21) 

For the special choice b = a, (19) and (21) define 
the Hamiltonian formulation of the classical-rela­
tivistic pure gyroscope. This classical theory and its 
relation to the quantum theory of spinning particles 
has been studied elsewhere.3 •4 The classical theory 
predicted by (12) then is a generalization of the pure 
gyroscope with the supplementary condition spvvv = 
o now replaced by 

spvvv = (~) s"vP v' (22) 

where 'fj = a-b. The Poisson-bracket equations of 
motions admitted by (19) are nevertheless identical to 
those of the pure gyroscope, because of (11). The 
solutions to these equations are known to predict 
helical trajectories, and the superimposed circular 
motion corresponds to the classical equivalent of 
zitterbewegung. 3

•4 Further, it has been shown that the 
energy in the "momentum-rest" frame varies inversely 
with the magnitude of the observed spin.3 •4 

This analysis provides us with an interpretation of 
the dynamical content of the generalized second-order 
wave Eq. (12). It indeed describes a free-spinning 
particle, but in terms of variables from which the 
zitterbewegung or, equivalently, the coupling of 
positive and negative energy states has not been 
removed.l1 In other words, the energy and angular 
momentum are not generally divided into separately 

,0 K. Rafanelli and R. Schiller, Phys. Rev. 135, B279 (1964). 
11 See Ref. 8, Sec. 18. 

conserved orbital and intrinsic spin contributions. 
The question of equivalence to a covariantly uncoupled 
description is taken up next. 

IV. RELATION TO THE KG EQUATION 

Transposing the mass term, (12) becomes 

{r"r"p"p/l + K2}1p 

= {(rJl"rv,,)pppv - (X", r v}PJlPv}1p. (23) 

If we use (2), (3), and (7), the right-hand side of (23) 
may be written as 

Hr"r"rprv + rJlrVr"r" + 2r"rpr vr" 
- 2rpr"rvr" - 2r"rpr"rv)PJlPv1p· 

So that after some lengthy but straightforward algebra, 
based on (2), (3), and (5), Eq. (23) becomes 

{r"r"p/lp/l + K2(1 + r"T,,)}1p 

= {r"rpr.r" - 2r"rpr"rv}pppv1p. (24) 

Equation (24) is still a representation-invariant 
statement, free of subsidiary conditions. It is not 
difficult to see that further attempts to simplify the 
right-hand side of (24), R(24) , based on representation­
invariant algebra, yield empty identities. In fact, 
unless 

(25) 

where f is some constant or some function of r "r" , 
an equation at all resembling the KG equation is not 
recovered. 

If we turn to particular representations of 0(4, 1), 
then, for the cases of spin i and spin (0, 1), (25) is a 
direct consequence of the Lie algebra of the Dirac and 
Duffin-Kemmer rings. This is verified as follows. 

A. The Dirac Ring: For this case, in our notationl 

rp = iyp, rprv + rvrp = ibpv> r"r" =1. (26) 

Thus R(24) = -2K2, and Eq. (24) becomes 

{PJlPJl + (2K)2}1p = 0, (27) 

and since by (26) we must have moc = 2K for the 
rest mass, (27) is the correct KG equation. 

B. The Duffin-Kemmer Ring: For this case, in our 
notationL5 

r/l = p", rprprv = rvrprp = rpbvp + rvbpp, 
P,,1p = r pr"p/l1p. 

(28) 
Thus R(24) = K21p, and Eq. (24) becomes 

r"r,,{pppp + K2}1p = 0, (29) 

which, non trivially , yields the correct KG equation 
with moc = K. 



                                                                                                                                    

1428 KENNETH RAFANELLI 

Thus, for the above two cases, (25) is an identity in 
virtue of the Lie algebra characterizing the representa­
tions. For more general cases, (25) must be assumed 
and hence becomes a subsidiary condition. To justify 
this condition and evaluate f for arbitrary spin, we 
use as a tool the construction due to KBL6 for the 
finite-dimensional representations. The wavefunction 
1jJ is considered to be a four-spinor of rank N = 2s, 
where s is the spin, and in our notation 

(30) 

The Y matrices satisfy 

y~ye = y~y~; (l -:;f k)} 
y~y~ + y:y~ = 2b/lv; (each I) 

(31) 

Using (30), our general second-order wave equation 
(12) becomes 

t~yY:Y~(P/lP/l + K2)} + K2 

1 ~ ( k iii 2 k i I i)p p} - 0 (32) 
- Dfi.tl Y"Y/lYvY" - Y"Y/lY"Yv /l v 1jJ - . 

Again lengthy but straightforward algebra, now based 
on (31) and (5), allows simplification of (32) to 

{K2 + !k~?:Y~P/lP/l}1jJ 
N 

.1 ~ { k I I I k I}P P = 4 £.. Y"Y"Y"Yv - Y/lYv /l v1jJ· 
k,l=l 

(33) 

Although (33) is not representation-invariant, 
because of the completely reducible construction (30), 
it is nevertheless free of subsidiary conditions. As one 
might expect, further attempts to simplify (33), 
relying solely on (31) and (5), lead to empty identities. 
Thus, in order to arrive at an equation resembling the 
KG equation, we must assume something about the 
right· hand side of (33) [except for N = 1, in which 
case (27) is recovered]. Now, however, thanks to the 
BW analysis,7 the choice is a natural one. If, in 
addition to (I), the BW equations are obeyed, i.e., 

iy~P/l1jJ = -aK1jJ, (34) 

where aK is the rest mass, then (33) becomes 

{K2 + r"r"PIl P/l}1jJ = {-(aK)2r "r" + ~2 (aK)2}1jJ, 

(35) 

and we have returned to our original notation for 
q - Cf. Consistency between (30) and (34) requires 
a = 2/ N. Finally, we have 

(36) 

Since the curly bracket is separately zero in virtue of 
(30) and (34) alone, we see that for the finite-di­
mensional representations our general second-order 
wave equation (12) reduces to a KG equation, 
provided the BW equations are assumed. The reduc­
tion explicitly displays the spin dependence of the rest 
mass, since 

2K K 
moe = - =-, 

N s 
(37) 

which is in accord with Bhabha's conclusions,2 and 
corresponds to the classical spin dependence.4 

It should also be noted that while the BW analysis 
applies only to the finite-dimensional representations, 
Eq. (36) correctly gives the well-known mass-spectrum 
characteristic of the infinite-dimensional Majorana 
representation if N = 2s + 1 and s is allowed to 
be 0, t, 1, .... 

V. CONCLUSION 

We have used the Lie algebra of 0(4, 1) to construct 
a representation-invariant second-order wave equa­
tion, free of subsidiary conditions, from the linear rela­
tivistic wave equation for a free particle of arbitrary 
spin. Both the first-order (linear) and second-order 
wave equations define the same Hamiltonian operator. 
The corresponding classical Hamiltonian describes a 
free-spinning particle in terms of variables possessing 
zitterbewegung and predicting a certain mass spec­
trum. In general, to obtain equivalence with a second­
order equation free of zitterbewegung, it is necessary 
to impose a subsidiary condition. The condition is 
equivalent to assuming the BW equations and results 
in the explicit display of the same mass spectrum 
implicitly predicted by the general form of the 
equation. The spectrum exhibits an expected accu­
mulation point at zero mass. 
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The ensemble exp [-y Tr (H - Ho)'l, where the eigenvalues An of Ho are given by some distribution 
f(A), is investigated. In particular, the limits of large and small y for the orthogonal case are considered. 
Formal expressions are obtained for various distributions of the eigenvalues in the two limits. The 
approximation developed in the large-y limit is also applied to the thermodynamics of an incompletely 
specified system. Further, it is shown that this approximation is easily extended to include the unitary 
and symplectic ensembles. 

1. INTRODUCTION 

In a previous paperl we investigated the effect of 
biasing a Gaussian ensemble of random matrices with 
a given matrix Ho. In particular, we calculated the 
nearest-neighbor spacing distribution for the orthogo­
nal ensemble given by 

P(H, Ho, y) = 'YJ exp [-y Tr (H - Ho)2], (1) 

'tJ(y) = (Y/7T)N/2(2Y/7T),V(N-I)/\ (2) 

in the large- and small-y limits. There it was assumed 
that the eigenvalues An of Ho were known explicitly. 
Here we generalize our discussion to the case when 
the eigenvalues are not known exactly, but are instead 
specified by a given probability distribution. 

We shall again restrict our discussion to limiting 
cases. In the small-y limit we shall calculate a formal 
expression for the nth-order spacing distribution. In 
the large-y limit we shall calculate formal expressions 
for the joint eigenvalue distribution and the single 
eigenvalue distribution. In addition, the approximation 
methods developed for the large-y limit will be applied 
to the thermodynamics of an incompletely specified 
system. In particular, the free energy of such a system 
will be expressed in terms of the free energy of the 
known Hamiltonian Ho. 

2. SMALL-y LIMIT 

Given that the joint distribution for the unper­
turbed eigenvalues An is 1(,1), the joint matrix-element 
distribution p(H, y) for the perturbed system is 

p(H, y) = f f(A)P(H, Ho, y) dA, (3) 

* Some of this material is based on portions of a thesis of one of 
the authors (J. F. M.) presented to Wayne State University in partial 
fulfillment of the requirements of the Ph.D. degree. 

t Supported in part by a Faculty Research Fellowship, Wayne 
State University. 

t Present address: Department of Mathematics, University of 
Windsor, Ontario, Canada. 

1 J. F. McDonald and L. D. Favro, 1. Math. Phys. 9, 1114 (1968). 
This paper will be referred to as MF. 

where dA = TItl dAi • In the previous paper (MF) 
we found that, for fixed values of the An' the nth­
order spacing distribution p(n)(s, Ho, y) could be 
written to second order as 

p(n)(s, Ho, y) 

f"'J [exp (-y Tr m)] p~n)(S, y) + 0 { 
2y Tr H2 

(IV - l)(IV + 2) 

x [p~n)(s, y) - 2y'tJ :y (p~n)(s, Y)/'tJ)]}, (4) 

where p~n)(s, y) is the nth-order distribution for 
an unbiased Gaussian distribution. It appeared that 
this series expansion in powers of y would converge 
rapidly if 

(5) 

where So is an average spacing associated with the 
particular set of An under consideration. The difference 
between that case and the present one is that Eq. (3) 
contains the additional integrations over the An so that 
p<n)(s, y) can be written as 

p(n)(s, y) = ff(A)p(n)(s, Ho, y) dA. (6) 

Assuming that 1(,1) is such that the condition given by 
(5) is satisfied for any set of An with appreciable 
probability, we can insert our expansion for 
p(n)(s, H o , y) into Eq. (6). To second order it follows 
from (4) that 

p(n)(S, y) ~ A(y)p(n)(S, y) _ 2y oA(y) 
o (IV _ l)(IV - 2) oy 

x {p~n)(s, y) - 2y'tJ :y [p~n)(s, y)/'tJ]}, (7) 

where 

A(y) = f f(A)[exp (- y Tr H~)] dA. (8) 

Thus, in the small-y limit, the spacing distributions 
again approach the corresponding results for an 
unbiased Gaussian distribution. 

1429 
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3. GENERAL EXPANSION FOR THE MATRIX­
ELEMENT DISTRIBUTION IN THE 

LARGE-y LIMIT 

In the small-y limit we calculated the various 
spacing distributions by interchanging the order of 
integrations, the An integrations being performed last. 
Thus, we simply used our results for a fixed value of 
the An' multiplied by 1(.1.), and carried out the An 
integrations. In the large-y limit this approach is not 
as fruitful. This is because the conditions on the An 
spectrum, for the validity of the approximations used 
in the fixed-A case, impose conditions on/(A) such that 
we obtain nothing really new. In particular,/(A) must 
be such that each An is much more sharply peaked 
about some value, say en' than the En and the rotation 
parameters (i.e., the parameters which determine the 
matrix which diagonalizes H) are about their peak 
values. Thus we find it necessary to use an alternative 
approximation for the integration over the rotation 
parameters. 

The approximation we will use involves a cluster­
type expansion, analogous to those used, for example, 
in the theory of imperfect gases.2 In general, the 
technique of making a cluster expansion consists of 
adding and subtracting terms in such a way as to 
obtain a (supposedly convergent) series expansion. 
That is, given some function of a set of variables Xi' 

i = 1, ... , N, say hex), which is of the form 

N 

hex) = II/;(xi), (9) 
;=1 

and, given that each hex;) is in some sense approxi­
mated by g;(xi), then hex) can be expressed as 

where 
(11) 

This can be rewritten as 

where II~ is the product with the term i = j missing. 
Thus, hex) has been expressed as a power series in the 
I;, which are by assumption small. 

We wish to apply this approach to the function 

P(H, Ho, y) = [IT F(H;; - Ai' Y)][rr F(Hik , 2Y)] , 
.=1 J>k 

(13) 

2 See, for example, J. E. Mayer and M. G. Mayer, Statistical 
Mechanics (J. Wiley & Sons, Inc., New York, 1959), Chap. 13, 
p.277. 

where 
F(x, OC) = (OC/1T)! exp (-ocx2). (14) 

Note that we have chosen to use the representation in 
which Ho is diagonal. Since 

lim F(x, oc) = !5(x), (15) 
0<_00 

we make the expansion 

P(H, Ho, y) 

= [ If !5(Hii - Ai)] [n !5(Hk!)] 

+ ~ lii[ir !5(H;; - A;)] [II !5(Hk!)] 
i; k>! 

+ [II !5(Hii - Ai)] ~ lmn[fi !5(Hk!)] + ... , 
z m>n 1:>l 

(16) 

where II~, is the product with the term corresponding 
to k = m and I = n missing, and where the following 
definitions have been used: 

and 
(18) 

To first order this expansion can be rewritten as 

P(H, Ho, y) '" !5(H - Ho) + t {L: [!5(H - Ho)],.,=", 

X F(x - Ai' y) dx - !5(H - Ho)} 

+ ~ { roo [!5(H - HO)]Hmn=(Hmn-"') 
m>n J-oo 

where 

X F(x, 2y) dx - !5(H - Ho)}, (19) 

!5(H - Ho) = [If !5(Hi; - A;)][n ~(Hk!)l (20) 

Note that we have inserted additional delta functions 
and integrations. This is to facilitate the transforma­
tion of variables from the matrix elements to the 
eigenvalues. Some applications of this expansion are 
given in the next two sections. 

4. EXPANSION FOR THE JOINT -EIGENVALUE 
AND SINGLE-EIGENVALUE DISTRIBUTIONS 

FOR THE LARGE-y LIMIT 

To obtain an expansion for the joint-eigenvalue 
distribution from the expansion developed in the last 
section, we change variables from the H;;'s to the 
eigenvalues En and some rotation parameters 1>;. If 
Hii and Hli are two Hamiltonian matrices in the same 
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representation, then 

= [If (Ei - E;)] [ 1l b(~j - ~j)J/ J(~:i: ~:j) dH, 

(21) 

where the Ei and E; are ordered the same way, and 
the limits on the ~j and ~; have been chosen so that the 
entire Hij and H;j spaces are covered only once.3 

Using this result to change variables in Eq. (19), 
averaging over the rotation parameters, and sym­
metrizing with respect to the labeling of the En' one 
obtains the unordered joint-eigenvalue distribution 
for a particular set of An' The result of these calcu­
lations is 

P(En , A, 1') '" 1- 2 [bee - A) 
N! p 

+ t {L: F(x - Aj , y)[b(E - .1.)]).1=:1: dx - beE - A)} 

+ 2 {fooF(X, 2y)[b(E - A)L .. =Qnm: - beE - A)}], 
m>n rf.) Am=Qnm 

(22) 

where 2p is the sum over all permutations of the label­
ing of the En: 

b(E - A) = II ~(E, - Ai) (23) 

and 

Note that for this correction term it has been neces­
sary to diagonalize a 2 x 2 matrix. Successive terms 
involve diagonalization of matrices of higher dimen­
sion (i.e., the next correction requires that 3 x 3 and 
2 x 2 matrices be diagonalized, etc.). The x integra­
tions in the second and third terms can now be 
explicitly carried out. However, depending on the form 
of 1(.1.), it may be convenient in particular cases to 
retain the x integrations in the third term. Thus we 
shall retain that integration. Performing the An 
integrations and also the x integrations in the second 
term, for the joint eigenvalue distribution peer> y) we 

3 That is, on the right-hand side we have omitted peaks of the 
distribution function which correspond to trivial interchanges of the 
labels on the eigenvalues. Also, it should be noted that if there are 
degenerate levels, delta functions on the <PI' which correspond to 
rotations in degenerate subspaces, will not occur in this expression 
since all rotations in such a subspace are equivalent. These delta 
functions are to be replaced by constants such that the integration 
over all the angles still yields unity. 

obtain 

p(Er' 1') = IdA peEr' A, y)f.(A) 

r-.I f.(Er) + 2 (F lEr) - fiEr)] 
j 

+ l 2 [F miEr) - f.(Er)], (25) 
m*n 

where 
1 

f.(Er) = N! ~ f(Er), (26) 

F;(Er) = L:F(AI - E j , y)U.(Er )]E'=).l dAI, (27) 

and 

Fmn(Er) = III dx dAI dA2F(x, 2Y)U.(Er)]~::=!12 
-00 

x b(Em - Q12)b(En - Qt2)' (28) 

Note that l[F mn(Er) + Fnm(Er») is the joint eigenvalue 
distribution corresponding to the ensemble 

mn 
P mn(H) = J.(Hi,)F(H mn' 21') IT b(Hij), (29) 

;>j 
where m > n. 

The result of integrating Eq. (25) over all but one of 
the En can be written as 

peE, y) '" P~(E) + [PI(E, y) - P~(E») 

+ (N - 1)[p2(E, y) - P';(E»), (30) 

where P~(AI' ... , An) is the joint distribution of the 
first n eigenvalues of Ho: 

P~(AI' ... , An) = L: dAn+1 •• ·L:dANf.(A), (31) 

PI(E,y) = L:F(U, y)P~(E + u) du, (32) 

P2(E, y) = t III F(x, 2y)[~(E - Qi2) + ~(E - Qt2)] 
-00 

X P~(A'I' .1.2) dx dAI dA2, (33) 

and where the remaining eigenvalue has been simply 
denoted as E. One can explicitly perform one more 
integration in (33) without explicit knowledge of 
P~. However, depending on P~, there may be some 
preferred order of integration, so that we shall leave 
P2(E) in this form. It should be noted that P2(E) is the 
single eigenvalue distribution for the two-dimensional 
ensemble 

P(H) = F(H12' 2y)P~(Hl1' H22)' (34) 

Thus, if the distributions P~(AJ and P~(Al' 1.2) are 
known, the single-eigenvalue distribution can be 
calculated to first order from (30), (31), and (33). 
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In an analogous fashion one can calculate a formal 
expression for the nearest-neighbor spacing distri­
bution. The expression is rather complicated and wiII 
not be given here. 

The expressions given above for the corrections to 
p(Er' y) and peE, y) (also those for the spacing 
distribution) may, in general, be difficult to evaluate 
exactly. One could, of course, resort to numerical 
calculations to evaluate the required integrals. 
However, it may also be possible, depending on 
I(A), to obtain an asymptotic expansion in powers of 
y-l for the required integrals. As an example consider 
the orthogonal Gaussian distribution for which 

where c is a normalization constant which is inde­
pendent of IJ(. The exact joint-eigenvalue distribution 
for the biased ensemble can be calculated exactly in 
this case by performing the required integrations in 
the matrix element space. The result is 

peEr' y) = C1](IJ(')(~ lEi - Ejl) exp (-IJ(' Z E~), (36) 

where IJ(' = IJ(Y/(IJ( + y). We can use this exact ex­
pression for peE, y) to investigate the validity of our 
cluster-type approximation. 

If we now insert (35) into (27) and (28) and use 
Laplace's method4 to obtain asymptotic expansions 
(to order Ijy) of the integrals, we get 

FiEr) '" f(Er)[1 - !!:... - :!: 2 E
j + ~ 

2y Yl*iE j - E z 2y 

x Z 1 + (1..2 EZ], (37) 
i>k (E; - Ez)(E j - Ek ) y ] 
l¢j 

F mn(Er) '" f(Er)()(En - Em) 

X [2 + ~ _1. Z (Ek - En)(Ek - Em)]. (38) 
y 2YHm,n 

It is now easily seen that 

Z [F;(Er) - f(Er)],..." f(Er)[-IJ(N2/2y + (oc2/y) 2 E~] 
j D~ 

and 

! z [F mn(Er) - f(Er)] '" f(E.)(J.N(N - 1)/4y, (40) 
m¢n 

so that 

peEr' y) '" f(Er)[1 - N(N + 1)lJ(j4y + 1J(2(2 E~)/y). 
(41) 

4 N. G. de Bruijn, Asymptotic Methods in Analysis (North­
Holland Pub!. Co., Amsterdam, 1961), p. 60. 

That this is indeed the correct expansion can be seen 
by expanding the exact expression (36) directly in 
powers of y-1• It should be noted that the N-dependent 
term in this series arises from the binomial expansion 
of the normalization constant in (36). If one wishes to 
take the limit of this expression as N --- 00, this term 
must be reabsorbed into the normalization. 

In everything we have done above it was assumed 
that the joint distribution for the unperturbed eigen­
values was given. Alternatively, one might consider the 
joint distribution for the matrix elements of the 
unperturbed system I(Bo) to be given. Assuming a 
random perturbation to this distribution (here we 
consider only a Gaussian perturbation of half-width 
y-i), the perturbed joint eigenvalue distribution is 

(42) 

where 1] is the normalization constant. At this point 
one can make a cluster expansion similar to (16) with 
the exponential factor in this expression. However, 
the explicit calculation of terms in that expansion is 
made more difficult by the fact that Bo is not diagonal. 

5. THERMODYNAMICS OF AN INCOMPLETELY 
SPECIFIED SYSTEM 

Another application of our expansion for PCB, Ho, y), 
which was derived in Sec. 3, is to the statistical 
thermodynamics of an incompletely specified system. 
The formalism of the theory of an incompletely 
specified system is given by Mazo,5 and an expansion 
given by Leff. 6 Here we give only a brief outline of the 
general formalism. 

If the exact Hamiltonian of a thermodynamic 
system is unknown, one can still obtain information 
about the system by considering an ensemble of 
Hamiltonians of which the Hamiltonian of interest is 
a member. The ensemble should be consistent with 
whatever knowledge one has concerning the Hamil­
tonian. For example, alI members of the ensemble 
might be assumed to have the same volume V and 
temperature T. 

Each system in the ensemble is assumed to be 
describable by ordinary statistical mechanics-that 
is, by an ensemble of the possible states of that system. 
Thus, we have the so-called dual ensemble formalism. 
In the following we shaH denote averages over the 
states of a given system by a single horizontal bar and 
averages over the ensemble of different Hamiltonians 
by the brackets < ). We shall consider only the 
canonical ensemble of states. 

5 R. M. Mazo, J. Chern. Phys. 39,1224 (1963). 
• H. S. Leff, J. Chern. Phys. 41,596 (1964). 
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The thermodynamic behavior of a system is given 
by performing the dual averaging process to thermo­
dynamic variables. That is, if X is a thermodynamic 
variable, we must calculate (X'), where the statistical­
mechanical average must be done before the average 
over systems. 

Generally, the quantities of interest are functions of 
the logarithm of the partition function, and we 
restrict ourselves to one of these, namely, the free 
energy. Leff6 has shown that the free energy for such 
systems involves the average of the logarithm of the 
partition function, not the logarithm of the average 
of the partition function. 

We shall calculate an expansion for the free energy 
F, using the expansion for P(H, Ho, y) derived 
previously. That is, we shall calculate an expansion for 

F = -fJ-1ff(}.) dA f P(H, Ho, y) In (Tr e-Pll ) dH 

(43) 

in the large-y limit, where 13 = (kT)-l and k is 
Boltzmann's constant. Further, we shall restrict 
ourselves to fixed H o, i.e., 

(44) 

where the e; are fixed. 
If the expansion for P(H, Ho, y) given by Eq. (19) 

is used, it follows that 

-fJF = In zg + t {L:F(X, y) In [zg + exp (-fJx) 

where 

and 

- exp (-fJe j )] dx - In Zg} 

+ - I F(x, 2y) In [Zo - exp (-fJe n,) I {JCf~ 
2 m* n -if) 

- exp (-(Ie,,) + exp (-fJe~",) 

+ exp (-fJe~",)] - In Zg}, (45) 

zg = Tr [exp (-fJHo)] (46) 

If the levels ell have the type of structure considered 
in MF (i.e., the spacings of the levels are either 
small or large compared with l/y-~), one can obtain 
an asymptotic expansion for the integrals involved in 
Eq. (47) in powers of y-1. This can be accomplished 
by noting that the integrals involved are of the form 
J~'lo f(x)e-,(x-.r(l)i dx, where rx » l. Thus, if we expand 
f(x) about Xo in a power series and integrate term by 
term, we obtain a series in powers of rx-1• Applying 

this method to Eq. (45), we obtain 

-fJF "-' In zg + [f32/4y][1 - Z~Il/(Zg)2] 

+ (fJ2/8yZg) L oenem exp (-fJem) 
m",n 

- [fJ/8yZg] L (1 - oeneJ 
m*n 

x {exp [-fJ(en + em)]}j(em - en), (48) 

which can be rewritten as 

-fJF ,...., In zg + [fJ2J8y][1 - 2Z~P/(Zg)2] 

+ (fJ2/8yZg) f Zg"'Zg(l-X) dx. (49) 

Hence, given the partition function of Ho, zg as a 
function of temperature, the free energy of the system 
can be calculated from Eq. (49). Note that we need to 
know Zo for a whole range of temperatures in order to 
evaluate F at a given temperature. This expansion is 
valid only if 132 « y (i.e., kT» y-!). 

6. APPLICATION OF THE LARGE­
y APPROXIMATION TO THE 
UNITARY AND SYMPLECTIC 

ENSEMBLES 

The approximation method developed in the large­
y limit for the orthogonal ensemble given by Eq. (1) 
is easily extended to the corresponding unitary and 
symplectic ensembles. In particular, if we consider 
the ensembles 

PilCH, H 0' y) = rJp exp [-y Tr (H - Ho)2], (50) 

rJp = (y/'rr)x/2(2Y/7T)flXLY-1l/4 (51) 

(where 13 = 1, 2, or 4 corresponding to orthogonal, 
unitary, or symplectic cases, respectively), the joint 
eigenvalue distribution, for a particular set of An given 
by (22), is modified only in that the term arising from 
the off-diagonal matrix elements (i.e., the term with 
I", > n) is multiplied by the factor fJ· 

The distribution f(A) can correspond to any of the 
three cases. The value of fJ is, of course, determined by 
the symmetry properties of H - Ho. Thus, the large-y 
approximation can be used for any of the three cases 
as well as for various mixtures. For example, suppose 
we consider P2(H, Ho, y) and assume that f(A) 
corresponds to an orthogonal ensemble. This corre­
sponds to an othogonal ensemble (time-reversal 
invariant) with a random perturbation H - Ho, which 
is unitary (not time-reversal invariant). Hence the 
method developed is applicable to many interesting 
problems. 
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7. SUMMARY 

In this paper we considered an orthogonal Gaussian 
ensemble of random matrices biased by a random 
matrix Ho, whose eigenvalues An are given by a distri­
bution I{),,). The limiting cases of large and small y 
were considered. 

The results for the small-y limit were found to 
approach those for an unbiased Gaussian distri­
bution regardless of the form of I(),,). On the other 
hand, the large-y limit results were found to approach 
the corresponding results for I{A). In each limit a 
perturbation method was developed and a first-order 

correction calculated. In the small-y limit we considered 
the nth-order spacing distribution, while in the large­
y limit we considered the single-eigenvalue and 
nearest-neighbor spacing distribution, as well as the 
application of the approximation to the thermo­
dynamics of an incompletely specified system. 

It was also pointed out that the methods developed 
for the large-y limit are easily intended to include the 
unitary and symplectic cases. Thus, many interesting 
problems (such as mixtures of various ensembles) 
can be investigated using the formalism which was 
developed. 
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This paper is the third in a series analyzing identities for special functions which can be derived from 
a study of the local representations of the Euclidean group in 3-space. Here identities are derived which 
relate Gegenbauer polynomials, Whittaker functions, Jacobi polynomials, and Bessel functions. Among 
the results are generalizations of the addition theorems for solid-spherical harmonics and a group­
theoretic interpretation of the Maxwell theory of poles. 

INTRODUCTION 

This paper is the third in a series analyzing the 
special function theory related to T6 , the complex 
Euclidean group in 3-space. In the first two papers1.2 
(which we shall refer to as I and II, respectively) it was 
shown that important identities relating Bessel 
functions, Gegenbauer polynomials, Whittaker func­
tions, and Jacobi polynomials could be derived in a 
straightforward manner from the study of certain 
local irreducible representations of T6 • After a brief 
review of terminology (Sec. 1), this paper proceeds 
as follows: In Sees. 2--4 we study classes of local 
reducible representations of Ts. These representations, 
closely related to the solution of Laplace's equation in 
spherical coordinates, lead to identities for Gegen­
bauer polynomials, which are generalizations of the 
addition theorems for solid-spherical harmonics.3•4 

Also, the Maxwell pole theory for spherical harmonics 
appears as a byproduct of the analysis. Section 5 is 

1 W. Miller, J. Math. Phys. 9, 1162 (1968). 
• W. Miller, J. Math. Phys. 9, 1175 (1968). 
• R. A. Sack, J. Math. Phys. 5, 252 (1964). 
• Y. N. Chiu, J. Math. Phys. 5, 283 (1964). 

devoted to an examination of a class of irreducible 
representations closely related to the type F factoriza­
tions of Infeld and Hull.s These representations yield 
new identities for the Whittaker functions. Finally, 
in Sec. 6 we apply a technique developed by Weisner6 
and use T6 to derive identities for special functions 
which are not directly related to the local representa­
tions of Te• 

As usual with this kind of work, most of the special 
function identities that we derive are well known. 
Our primary interest is in systematically deriving and 
elucidating the group-theoretic meaning of these 
identities rather than in deriving new identities. 

The special functions studied in this paper ordinarily 
arise in one of two ways: as matrix elements corre­
sponding to a local representation of Te, or as basis 
vectors in a model of such a representation. Once the 
matrix elements have been computed, they remain 
valid for any model of the representation which occurs 
in modern physical theories. 

s L. Infeld and T. Hull, Rev. Mod. Phys. 23, 21 (1951). 
6 L. Weisner, Pacific J. Math. 5, 1033 (1955). 
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7. SUMMARY 
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1. THE LIE ALGEBRA 1>6 

The 6-dimensional complex Lie algebra l>s is 
defined by the commutation relations 

[J3, J±) = ±J±, [3+, J-) = 2J3, 

[J3, ~±) = [~3, J±] = ±~±, 
[3+, ~+] = [3-, ~-] = [J3, ~3] = 0, 

[J+, ~-) = [~+, J-) = 2~3, 

[~3, ~±) = [~+, ~-] = O. (Ll) 

The 6-parameter complex Lie group Ts consists of 

elements {w, g}, w = (a., fJ, y) E C3
, g = (~ ~) E 

SL(2), ad - be = 1 with group multiplication 

{w, g}{w/, g/} = {w + gw/, gg/}, (1.2) 

gw = (a 2a. - b2fJ + aby, -c2a. + d2 fJ - cdy, 

X 2aca. - 2bdfJ + (bc + ad)y). (1.3) 

l>6 is the Lie algebra of Ts and a neighborhood of 
o E l>s can be mapped diffeomorphically onto a 
neighborhood of the identity {O, e} E Ts (e is the 2 X 2 
identity matrix) by means of the relation 

{w, g} = exp (a.~+ + fJ~- + y~3) exp (-b/dJ+) 

X exp (-cdJ-) exp (-21n dJ3), (1.4) 

where "exp" is the exponential map. 
If V is a complex abstract vector space and p is a 

representation of l>6 by linear operators on V, we set 
p(~±) = P±, p(~3) = P3, p(J±) = J±, p(J3) = P. The 
linear operators P±, P3, J±, J3 satisfy commutation 
relations analogous to (Ll), where now [A, B) = 
AB - BA for linear operators A, B on V. The invari­
ant operators 

p. P = -p+p- - papa, p. J 

= -HP+J- + P-J+) - p3p 

have the property 

[P . P, p(a.)] = [p. J, p(a.)] = 0 

for all oc E l>s. 

2. SOME REDUCIBLE REPRESENTATIONS 

We examine the following two classes of reducible 
representations of l>s on a complex vector space 
V: R+(uo) and j+. 

A. R+(uo) 

Here Uo is a complex number of such that ° ~ 
Re Uo < 1 and 2uo is not an integer. There is a count­
able basis {j~U)} for V such that m = u, u - 1, 
u - 2, ... , and u = Uo, Uo ± 1, Uo ± 2, .. '. The 

action of the infinitesimal operators on the basis 
vectors is given by 

J3f<;':) = mf!::), J± f<;:;) = (-u ± m)f~~I' 
(2.1) 

p 3'!(U) = __ I_ f (u+l), 

m 2u + 1 m 

P+j(U) = __ I_ f (u+l) 

m 2u + 1 m+l' 

P-j(u) = ~f(U+l) 
m 2u + 1 m-l' 

(2.2) 

P • Pf<;':) == 0, p. Jf<;':) == O. (2.3) 

B. j+ 

There is a countable basis {f~)} for V such that 
m = u, u - 1,'" , -u + 1, -u; U = 0,1,2, .. ·. 
The action of the infinitesimal operators on the basis 
vectors is given by (2.1)-(2.3). [If a vector f~u) on the 
right-hand side of one of the expressions (2.1)-(2.3) 
does not belong to the representation space, we set 
this vector equal to zero.] 

It is left to the reader to verify that R+(uo) and j+ 
do define reducible representations ofl>s. In fact these 
representations are degenerate cases of the irreducible 
representations R3(w, 0, uo) and j4(W, 0), constructed 
in II, obtained formally by choosing a new basis 
f~u) = wUf~u) and passing to the limit as w ~ 0. 
Corresponding to a fixed value of u, the vectors 
{f~u)} form a basis for an irreducible representation 
of the subalgebra sl(2) ofl>6' Each such representation 
induced by j+ has dimension 2u + 1 and is denoted by 
D(2u), while each representation induced by R+(uo) 
is infinite-dimensional and is denoted by Ju. A 
detailed analysis of the representations D(2u) and Ju 
is given by Miller.7 

In accordance with the procedure developed in J 
and II, we search for models of these abstract repre­
sentations p such that the infinitesimal operators 
p(a.), a. E l>6' are linear-differential operators in n 
complex variables. The basis vectors {f~u)} are then 
certain functions in these variables :lnd the relations 
(2.1 )-(2.3) are differential equ"tions and recursion 
relations for the "special" functions {f~u)}. Further­
more, each of our Lie algebra representations of l>6 
can be extended to a local Lie group representation 
of Ts. Such a local representation is defined by linear 
operators T(h), h E Ts, acting on V such that T(h) 
TCh') = TChh') for h, hI in a sufficiently small neigh­
borhood of the identity. Due to this group property of 
the T operators, the matrix elements of these operators 
with respect to the basis {f<;':)} will satisfy a series of 
addition theorems. 

7 W. Miller, Lie Theory and Special Functions (Academic Press 
Inc., New York, 1968). 
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3. MODELS OF THE REPRESENTATIONS 

To begin we look for all models of the representa­
tion R+(uo) in n = I, 2, or 3 complex variables. 
According to Ref. 7, no model exists for n = 1. 
For 11 = 2, there is exactly one model (a special case of 
the type F operators) : 

r = -z ~ + u o , J- = Z2 ~ - zt ~ - UoZ, 
az az at 

J+ = -a _ ~ i + lIo , P- = -izt, 
az z at z 

P+ = 1:. £ p 3 = -21 t. 
2 z ' 

(3.1) 

Here z, / are complex variables and Uo is a fixed 
complex constant. The constant t has been chosen 
for convenience in the computations to follow. 
Clearly the operators (3.1) satisfy the commutation 
relations (1.1). Furthermore, p. P == 0, p. J == O. 
The basis vectors fr.::)(z, t) for this model of R+(uo) 
are defined up to a multiplicative constant by expres­
sions (2.1) and (2.2) and may be chosen as follows: 

f<;:) = r(u + t)Zkt ", 

k = /(0 - m = Uo - u, Uo - u + 1, 

1I0 - U + 2, .. '. (3.2) 

The possihle values of uo, u, m depend on the repre­
sentation R+(uo) and are listed in Sec. 2. 

Since the operators (3.1) satisfy the commutation 
relations of b 6 , they induce a local-multiplier repre­
sentation of T6 by operators T(h), hE T6 , acting on the 
space of analytic functions in 2 complex variables. 
The operators T(h) can easily be computed from stand­
ard results in local Lie theory. We list only the results. 

Clearly T(h) = T(w, g) = T(w, e)T(O, g), where 
h = {w, g} is defined by (1.3). Iff is an analytic func­
tion defined in a neighborhood of the point (z, t) E ¢2, 
(/ ¥- 0), then 

[T(w, e)f](z, t) = exp [H; - (3z + y)Jf(z, t), 

w = (~, (3, y), (3.3) 

[T(O, g)J](z, t) 

( 
b)-UO = (a + ez)"O d + ~ 

X f[dZ + b ,t(a + eZ)(d + ~)~, 
ez + a z IJ 

g = e ~) E SL(2), ad - be = 1. (3.4) 

As the reader can verify, these operators satisfy the 
property 

T(hh')f = T(h)[T(h')fJ (3.5) 

whenever both sides of the expression are well de­
fined. 

The matrix elements {v, nl w,g lu, m} of our model 
are defined by 

T(w, g)fr.::) = z z {v, nl w, g lu, m}f<;>, (3.6) 
v n 

where v is summed over the values uo, Uo ± I, 
Uo ± 2, .. " and n over the values 0, v - I, v-
2, .. '. It is clear that the functions (3.2) form an 
analytic basis for the representation space in the 
sense of Ref. 7, Chap. 2. Therefore, the matrix 
elements (3.6) are uniquely determined by the Lie­
algebra relations (2.1) and (2.2), and are independent 
of our model. 

Substituting (3.2) and (3.4) into (3.6), we find 

( 
b)u-m 00 

(a + ezt+
m 

d + ~ = k~O{U, U - kl 0, g lu, m}z\ 

(3.7) 

or 

{v, nl 0, g lu, m} 

= 

du-na,,+mbn-m(u - m)! 

(u - n)! 

X F(n - u, -m - u; n - m + 1; be/ad) a 
f(n - m + 1) v.u 

du-mau+nem-nf(u + m + 1) 

r(u + n + 1) 

X F(m - u, -n - u; m - n + 1; be/ad) a 
rem - n + 1) V,u' 

(3.8) 

where g = (~ ~) E SL(2), ad - be = 1. Clearly, these 
matrix elements are defined only in a suitably small 
neighborhood of e. Substituting (3.3) into (3.6), we 
find 

{v, nl w, e lu, m} 
r(u + t)( _(3)m-n(y)v-u+n-m 

2V
-

U(v - u)!f(v + t) 
( _~bfy2)a 

X Z--------~--~-----------
a a!(m - n + a)!(v - u + n - m - 2a)! 

if v - u ~ 0, 

= 0 otherwise. (3.9) 

Here the sum is taken over all integral values of a 
such that the summand is defined. 

By construction the matrix elements satisfy the 
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addition theorem 

{v, nl w + gw', gg' lu, m} 
00 00 

= 2 2 {v, nl w, g lu + 1, u + 1 - k} 
1=-00 k~-O 

X {u + I, U + 1- kl w', g' lu, m}, (3.10) 

valid for g, g' in a suitably small neighborhood of 
e E SL(2). 

Now that we have computed the matrix elements 
of R+(uo), we look for a model of this representation 
in three complex variables. There is only one such 
model: 

3 0 + 0 
J =t

ot
' J =-t oz ' 

J- = t-1(1 - Z2)'£" - 2zt ~), oz ot 
p3 = z.£.. + (1 - Z2) ~ _ zt.E.., 

or r oz r ot 

P+ = t(.E.. _~.E.. _ ~~), 
Or r OZ rot 

p- = t-1 ((1 _ Z2).£.. _ z(l - Z2) .£.. + (Z2 + 1) t~) 
or r OZ r ot 

(3.11) 
(the Model B operators constructed in I). The basis 
vectors /;':1) [r, z, t] for this model are determined up 
to a multiplicative constant by relations (2.1)-(2.3) 
and may be chosen as follows: 

j;!~d lr, z, t] 
(r/2)-n-1(u - m)' I 

= . rem + 1)C",-'-2(7)(2 )m 
1'(-u +D.,}2 2 tt-1Il ~ t . (3.12) 

[Note: The relation p. J == 0 is satisfied identi­
cally by the operators (3.11), while the requirement 
P . Pj,~d = 0 is closely related to Laplace's equation 
in spherical coordinates.] In fact, substitution of (3.11) 
and (3.12) into (2.1) and (2.2) leads to the following 
identities for the Gegenbauer polynomials C~(z): 

!£C"()-2' AI-l('7 "Z - A.Cn_ 1 _), 
dz 

[0 - Z2).E... - 2ZA + zJc~(z) 
dz 

= (n + I)(n + 2Jc - 1) C"-l(Z) (2.1') 
2(1 - A) "H' 

[ (Z2 - l)!£ + (211 + II + })zJc~(Z) 
dz 

= (n + l)C~+1(z), 
[ z.E... + (2..1 + ll)zJc~(Z) = 2ACH\z) dz n , 

2(1 - A{ -(2Jc + n)z2 + (n + 1) + z(1 - Z2) :Jc~(Z) 
= (n + 1)(n + 2)C~+~(z), (2.2') 

valid for 2A E ¢ not an integer and II = 0, 1, 2, .... 
Using the type F operators and the basis vectors 

(3.2), we find 

j (ll) = r(u + i) (2p3),,-m{(ml. (3.13) 
'" rem + t) J '" 

Clearly, this relation must hold for any model of the 
representations R+(uo) or p. In terms of the operators 
(3.11) and basis functions (3.12) it reads 

k!r-H,-tC~(z) 

= (z.£.. + (l - Z2) .£.. _ ~ (A - t»)"cr-).-~), 
or r OZ r 

k = 0, 1,2,···. 

Using the type F operators, the reader can easily 
derive other similar identities for the Gegenbauer 
polynomials. The study of identities of this form 
constitutes the Maxwell theory of poles.s 

The differential operators (3.11) which define 
model B can be used to construct a local representa­
tion of Ts by operators T(h), h E Ts, acting on the 
space of analytic functions in 3 complex variables. 
The operators T(h) have been computed in I: 

[T(O, g)j](r, z, t) 

=j(r, z(l + 2bc) + abt + Cd(Z2 ~ 1), 

a 2t + 2acz + c2 (Z2 ~ 1)), 
g = (: ~) E SL(2), (3.14) 

[T(w, e)j](r, z, t) 

= j(rQ, (z + y/r)Q-l, (t + 2fJ/r)Q-l), 

Q = [1 + 2fI(1 - Z2) + 2a(t + 2fJ) + y2 + 2YZ]I, 
rt r r r2 r 

w=(a,fJ,y)· (3.15) 

Here f is defined and analytic in some neighborhood 
of the point (r, z, t) E ¢3. We have the group multipli­
cation property 

T(hh')f = T(h) [T(h')j] 

whenever both sides of this expression are well 
defined as analytic functions of r, z, and t. 

It is easy to verify that the basis functionsf~u) [r, z, t], 
~q. (3.12), form an analytic basis for the representa­
tion space V. Therefore, we immediately have the 
identity 

[T(w, g)j~)][,., z, tJ 
= L 2 {v, nl w, g lu, m}j~)l[r, z, t], (3.16) 

v n 

.8 A. ErdeJyi, W. Magnus, F. Oberhettinger, and F. Tricomi, 
Higher Transcendental Functions (McGraw-Hili Book Company 
New York, 1953), Vol. 2, Chap. 11. ' 
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where the operators T(w, g) are given by (3.14), 
(3.15); the matrix elements are given by (3.8), (3.9). 
We examine some special cases of this identity. 

If w = 0, (3.16) reduces to 

k !r(u - k + t) (X2)k CU-k+! 
r(2u - k + 1) 2 k 

X [Z2 - Z - 1 + 2z - 1 + ~J 
X x 2 

X (1 + 2xz + X 2(Z2 - l))u-k 

= f IW(u - 1 + t)(~)l 
l~oI'(2u - 1 + 1) 2 

X F(-k, -2u + I; 1- k + 1; 1 - x) C"-l+i(z) 
r(l- k + 1) I' 

12xz + X
2(Z2 - 1)1 < 1, k = 0,1,2,"', (3.17) 

which was already derived in 1. If g = e, (1. = (J = 0, 
we obtain 

[1 + 2yz + y2]-;'-k/2C:[(Z + 1')( I + 2yz + y2r1/2] 

= L(_y)l C:+l(z), 12yz + 1'21 < 1, (3.18) 00 (I + k) 
I~O 1 

which, when k = 0, simplifies to the well-known 
generating function 

00 

[1 + 2yz + 1'2]-;' = L (-y),C:(z). 
I~O 

If g = e, (1. = I' = 0, we obtain 

[I + f3(1 - Z2)]-;'-k/2 

X C~[z(l + f3(1 - Z2»-1/ 2](1 + {J»).-1/2 

= ~ (R/4)' (k + 21)! 1'0. - l) C A;-.: (z) 
1-:0 /' k!l! rCA) I" _I , 

k = 0, 1,2,"', I{J(I - z2)1, I{JI < I. (3.19) 

Finally, ifg = e, (J = I' = 0, (3.16) reduces to 

[1 + a]-;'-kI2C~[z( 1 + a)-1/2] 

= ~ (-(1.), rcA + /) Ci: 1'(.:) 
l~ I! rCA) l. ' 

k=0,1,2,"', 1(1.1<1. (3.20) 

If we restrict ourselves to consideration of the 
representation i 1-, we can be somewhat more specific. 
First of all, the matrix element 

{u, 1111 w, e 10, O} = {u, 11117., fl, 1'; e 10,0] 

can be computed by making use of the identity 

{u, ml ab~, -cd~, (l + 2bc)~; e 10, O} 

= {u, ml 0, g lu, O}{u, 010, 0, ~; e 10, O}, (3.21) 

where g E SL(2). In terms of the new variables [7. = 
{Jb~, {3 = -cd~, I' = (1 + 2bc)~, p2 = 1'2 + 47./1 = ~2] 

the matrix elements on the right-hand side of (3.21) 
are 

{ I ° I O} - r(lml + Vu!(~)lml <lml+m)/2 u, m ,g u, -! (1. 
7T (u + 1m!)! p 

X (- (J)<I ml-m)/2cL~I;;.t(y/ p), 

{u,OI 0, 0, ~,eIO,O} = -. (~)U ret) 
2 u!I'(u+t) 

Hence 

{u, ml a, {3, 1'; e 10, O} 

_ r(lml + t) (P)U (4)lml 
(u + 1m!)! r(u + t) 2 p 

X (1.<l ml+m)/2( - (J)<lml-m)/2cL~I;;.t(y/ p). (3.22) 

Note that this matrix element is a polynomial function 
of a, {J, 1', and p2. Thus, even though our derivation 
was valid only if p2 ~ 0, (3.22) is also correct in the 
limit as p --+ O. 

Applying the identity 

T(a, {J, 1'; e)f~O)[r, z, t] 
00 U 

= L L {u,m I (1., (3, 1'; e 10, O}f~d[r, z, t] 
,,~O m=-u 

to the Model B operators and simplifying, we obtain 

[I + 2f3(1 - Z2) + 2(1. + p2 + 2yzr~ 
= f i r(lml +~)r(m + t)(u - m)! 21'ni+m 

,,~O m~-u 7T(U + 1m!)! 
X (2(1.)<l m l+m)/2( _2{J)<lml-m)/2pu-lml 

I I I 

x C,,~lt,i(Y/p)C:;'~,~(z). (3.23) 

Just as in I we can use the Clebsch-Gordan coeffi­
cients C(·; .,.) to compute the general matrix 
element {t', III (1., {J, 1'; e lu, m}. The result is 

{v, III (1., {J, 1'; e lu, m} 

= L [7T(1I - /11)' (u + m)! 
s (v - 11)!(V + 11)! 

I 

x (v - u + S + 11 - /11)! (v - u + s + m - IJ)!J 

X C(u, 0; v - u + s, 0 I v, 0) 

X C(lI, Ill; v - U + s, II - m' v, /1) 

X {v - u + S, /1 - III I (1., {J, 1'; e 10, O}, (3.24) 

where s ranges over the finite set of nonnegative 
integer values for which the summand is defined. 
The computation of identities for Gegenbauer 
polynomials using these matrix elements is left to the 
reader. 

4. MORE REDUClBLE REPRESENTATIONS 

Tn analogy with the procedure in Secs. 2 and 3, we 
shall briefly analyze the following two new classes of 
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reducible representations of 136 on V: R-(uo) , ° ~ 
Re Uo < 1, 2uo not an integer; and t-. 

A. JrVto), 0 :$; Re Uo < 1, 2uo not an integer 

There is a countable basis {f~)} for V such that 
m = u, u - 1, u - 2,' . " and u = Uo, Uo ± 1, 
u()± 2,···. 

There is a countable basis {f~)} for V such that 
m = u,u - 1,"', -u + 1, -uandu = 0, 1,2,···. 

For each representation the action of the infinites­
imal operators on the basis vectors is given by 

J3f:) = mf:), J±f:) = (-u ± m)f:ll' (4.1) 

p 3'j(u) = (u + m)(u - m)f(U-l) 
m 2u + 1 m' 

P+j(u) = -(u - m)(u - m - 1)f(U-1) (4.2) 
m 2u + 1 m+l , 

P-j(u) = (u + m)(u + m - 1)f(U-1I 
m 2u + 1 m-1 , 

p. Pf~~) == 0, p. Jf:) == 0. (4.3) 

[If a vector f~) on the right-hand side of one of the 
expressions (4.1)-(4.3) does not belong to the repre­
sentation space, we set this vector equal to zero.] 

The representations R-(uo) and t- are degenerate 
cases of the irreducible representations R3(W, 0, uo) 
and i t(w, 0) constructed in n, obtained formally by 
choosing a new basis I'';'u) = w-up,;:) and going to the 
limit as w -+- 0. Corresponding to each fixed value of 
u, the vectors {[;"U)} form a basis for an irreducible 
representation of the subalgebra sl(2) of 136 , The 
finite-dimensional representations D(2u) are induced 
by t-, while the infinite-dimensional representations 
tu are induced by R-(uo)' 

According to our usual procedure, we search for 
models of these representations and compute their 
matrix elements. Unfortunately, R-(uo) and t- have 
no models in two complex variables. However, the 
structure of the abstract recursion relations (4.1 )-(4.3) 
is simple enough that we can compute the matrix 
elements of R-(uo) and t- directly from the abstract 
relations. We then apply our results to a model in 
three complex variables, which does exist. 

The matrix elements can be defined formally by 

T(w, g)f:) = exp (ocP+ + flY- + yp3) exp (-b/dj+) 

x exp (-cdJ-) exp (-21n dJ3)f<'::) 

= L {v, nJ w, g Ju, m}f~), 
v.n 

w = (IX, fl, y), g = (; !) E SL(2). 

The values assumed by the variables u, v, m, n depend 

on which of the representations R-(uo) or t- we are 
studying. For the present we treat both representations 
simultaneously. 

Since relations (4.1) and (2.1) are identical, it 
follows immediately that the matrix elements 

{v, nJ 0, g Ju, m} 

are given by Eq. (3.8). Furthermore, a simple induction 
argument based on (4.2) yields the results 

{v, nJ 0,0, y;e Ju, m} 

_ (y)U-V rev + !) r(u + m + 1) (u - m)! r5m •n 

2 r( u + ~) r( v + m + 1) (v - m)! (u - v)! 
if u - v ~ 0, 

= ° if v - u > 0, (4.4) 

{v, nJoc, 0, 0; e Ju, m} 

(
_oc)U-V rev + !) (u - m)! r5m,n-u+v 

= '2 r(u + !)(2v - u - m)! (u - v)! 
if u - v ~ 0, 

= ° if v - u > 0, (4.5) 

{v, nJ 0, fl, 0; e Ju, m} 

_ (fl)U-V rev + ~-) r(u + m + 1) r5m•n- 1I+V 

2 r(u + !) r(2v - u + m + l)(u - v)! 
if u - v ~ 0, 

= ° if v - u > 0. (4.6) 
The expression for the general matrix element 
{v, nJ w; e Ju, m} of the representation R-(uo) is 
rather complicated and we need not take the time to 
derive it. Similarly, we do not derive an expression 
for the most general matrix element of t-, although 
this is not so complicated.4 

The Model B operators (3.11) can be used to 
construct models of R-(uo) and t- in three complex 
variables. In fact, relations (4.1)-(4.3) will be satisfied, 
provided that we choose the basis vectors as follows: 

f(u)[r z t] = (!.)" (u - m)! rem + t) Cm+!(z)(2t)1n 
m , , 2 J2 r(u + I) "-m , 

(4.7) 
where the possible values of the variables u, mare 
determined by the representation space to which the 
basis vectors belong. To see the equivalence between 
our models and certain recursion relations for 
Gegenbauer polynomials, we substitute (4.7) into (4.2): 

[(1 - Z2) :z + kzJC~(z) = (k + 2..1 - t)C~_b), 

[z :z - kJC~(z) = 2AC~~~(z), 

2(A - 1>[ -z(1 - Z2) :z - z2k + (k + 2A - l)Jc~(Z) 
= (k + 2A - 1)(k + 2A - 2)C~-\z). (4.8) 
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As was shown in Sec. 3, the differential operators 
(3.11) define a local representation of T6 by operators 
T(w, g), Eqs. (3.14), and (3.15). Furthermore, it is 
easy to see that the functions (4.7) form an analytic 
basis for such a representation. Thus the matrix 
elements defined by 

T(w, g)f~) = I {v, nl w, g lu, m}f~) (4.9) 
v,n 

are identical with those computed earlier in this 
section. In addition, we have the identity 

{v, nl w + gw'; gg' lu, m} 

= i i {v, nl w, g lu + I, u + 1 - k} 
1=-00 k=O 

X {u + I, u + 1- kl w', g' lu, m}, (4.10) 

valid for g, g' in a suitably small neighborhood of e. 
The following special cases of (4.9) are of interest: 
If g = e, ()( = fJ = 0, this identity becomes 

[1 + y2 + 2YZ]kI2C~«Z + y)[l + y2 + 2YZ]-1/2) 

= l~yZeA + lk - I)C~_Z<Z); (4.11) 

if g = e and fJ = y = 0, one obtains 

(I - ()()kI2C~(z(1 _ ()()-1/2) 

= !()(z(A + l-l)C~~Jz(Z); (4.12) 
1=0 1 

if g = e, and ()( = Y = 0, there follows 

[1 + fJ(l - z2)]kI2(1 + fJi-1/2C~(z[1 + fJ(1 - Z2)t1l2) 

= r(2A + k) ~ (~)l rcA - I) Ci.-Z(z), 
rcA) 1-=0 4 I! r(2A + k - 21) k 

IfJl < 1. (4.13) 

5. A CLASS OF IRREDUCIBLE 
REPRESENTATIONS 

We now turn our attention to a new class of 
irreducible representations of b 6 listed in Ref. 7: 

R~a, tio), s ¢ 0, ° S Re Uo < 1, 2uo not an integer. 

There is a countable basis {f~t)} for the representa­
tion space V such that In = U, U - 1, u - 2, ... , 
and u = Uo, Uo ± 1, Uo ± 2,···. The action of the 
infinitesimal operators on the basis vectors is given by 

J3f~,~) = mf~~), J±j~,~) = (-u ± m)j~~1' (5.l) 

P:Y(u) _ -s .(u+l) + sm {(tI) 

m - (2u + 1)(u + 1)J In u(u + 1) m 

+ '(11 + m)(u - m) {(U-l) (5.2) 
(2u + l)u . m , 

P+j(U) = -, fU+1) _ ,(u - m) j(u) 

m (2u + l)(u + 1) m+1 u(u + 1) m+l 

_ s(u + m)(u - m - 1) r(u-1) (5 3) 
(2u + l)u J m+1 , . 

P-j(u) = , j(U+1) _ ,(u + m) j(u) 

m (2u + l)(u + 1) m-1 u(u + 1) m-l 

+ ,eu + m)(u + m - l)j(u-1) (5.4) 
(2u + l)u m-1 , 

p . Pj~~) = 0, p. Jj~) = -'j~). (5.5) 

[The representations R~(', uo) can be obtained formally 
from the representations R3 (w, q, uo) by setting q = 
-,/w and passing to the limit as w ->- 0.] 

R~(~, uo) has no models in two complex variables. 
However, in three variables the type F operators7 

provide a model: 

J =t-, =t z-±t-1=-, 3 a J± ±1 (a a Z) 
at oz at 2 

p 3 = 2~Z-1, p± = ±2~t±lZ-\ ~ E t. (5.6) 

As is easy to verify, these operators satisfy the 
commutation relations of b 6 • Furthermore, 

p.p=O, p.J=-,. 
Corresponding to this model, the basis vectors are 
determined up to a multiplicative constant by relations 
(5.1)-(5.4) and may be given by 

( 1)-u 
j (u)(z t) = --=--- M _ _ l(Z)[m 
m' r( _ 2u) m, U2 

r( ~2U) M-m,-u-~( -z)t
m

, (5.7) 

where the functions 

Mx.iz) = e-zI2zl'+1I21F1ct + fl - X; 1 + 2fl; z) 

are Whittaker functions. 9 In fact, expressions (5.1) 
are equivalent to the recursion relations 

( z ~ ± m 1= ':') Mm,l'(z) = (fl + t ± m)Mm+1.iz), 
dz 2 

(5.8) 

while expressions (5.2)-(5.4) are equivalent to the 
relations 

z- l M m,iz) 

= M (z) + m M (z) 
m,1'-1 2(fl + t)(fl - t) m,l' 

+ (m - fl - t)(m + fl + t) M (7) 
4fl(fl + t) m.l'+1 ~ , 

(5.9) 

9 W. Magnus, F. Oberhettinger. and R. Soni, Formulas and 
Theorems for the Special Functions of Mathematical Physics 
(Springer-Verlag, Berlin, 1966), 3rd ed. 
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(m + ft + l) M ( ) 
= M",+l,/I_1(z) + 2( + 1)( 1) ",+1,/1 Z 

fl 2 /1,-2 

(111 + fl + t)(m + fJ, + n M (Z) + 4 (1) ",+1,11+1 , 
fJ,fJ,+-:!. 

(5.10) 

(m - fJ,-D 
= -Mm _ I,II_l(Z) + 2( 1)( 1) M"'_I,iZ ) 

fJ, +2 fJ, - '2. 

(/11 - fJ, - l)(m - fl -~) M 
- 4fJ,(fJ, + l) m-1,/I+l(Z), 

(5.11) 

We now prove some auxiliary lemmas which will 
enable us to extend the representation R~(~, uo) of b s 
to a local representation of Ts. In the following, all 
operators and basis vectors are assumed to satisfy 
relations (5.1 )-(5.5). 

Lemma 1: 

(p3Y,!:.") = (2~)kld r(2u + I) 

~ (-1t(2u + 2n + 1) j(u+n) 
X ~ it , 

n~O n!(k - n)!r(2u + 11 + k + 2) 

k = 0, 1,2," '. 

Proof" Expression (5.2) and induction on k. 

Corollary 1: 

e+z/2(zrU- k 

_ ~ (k) r(2u + 211 + 2) M (~ 
- ,,'-::0 n r(2u + n + k + 2) 1£,-1£-n-l/2':') 

k = 0, 1, 2,'" . 
By definition, 

Mu.-u-k-l/2(Z) = eZ/2z-U-klF1(-k; -2u - 2k; -z). 

From this equation and Corollary 1, it is an easy 
computation to obtain the identity 

z'MU._1£_k_!(Z) 

_k~ (k + S) r(2u - 2s + 211 - 2r + 2) 

,,~o n r( -s + 2u - 2r + 11 + k + 2) 

X 3F2(-k, -s - k + n, 

+s - 2u - n - k + 2r - 1; 

-2u - 2k, -s - k; l)M1£-s-r,-u+s+r-n-!(z), 

k, s, ±r = 0, 1,2, .. " (5.12) 

expressing the function z'Mu._u_k_!(z) as a linear 
combination of Whittaker functions Mu+s.-u-s-n-!(z). 
[Compare this expansion with Eq. (3.2) of II.] 

Let k be a nonnegative integer. 

Lemma 2: 

(P3)'j~,:d = U~~+k(nlC - 7 + k) 

Lemma 3: 

X __ r~(2_m--,-+_2_1_+,--2),-- r( -2m - 21) 

r(u + m + k + I + 2) r( -2u) 

X aF2(m - u, -k + m - u + 1, 

-u - m - k + 1 - 1; 

-2u, -k + m - u; l)(_l)u-m+~~:."+!). 

(p+)kf~~<l = uim 
(2~l(U - m) 

l~max(u-m-2k,0) 1 

r(2m + 2k + 21 + 2) X --~--~--~--~~ 
r(u + m + 2k + 1 + 2) 

X r( -2m - 2k - 21) (2k)! 

r( - u - m - 1) (m - u + 2k + I)! 
X (_1)u-m+k+1~~f+n. 

Lemma 4: 

(P-lf<;;) 

= U-r2k r(2m - 2k + 21 + 2) 
l=u-m r(u + m + 1+2) 

X r(-2m + 2k - 21) r(-2m + 2k - I) 

r( - u - m) r( - u - m + 2k - I) 

X (2k)! (_1),,-m-1 (2Dkj<m-k+n 
(u-m+2k-I)!(l-u+m)! m-k' 

Proof" For our model these results can be obtained 
easily from expression (5.12). Since the lemmas are 
valid for the model, they must be true for the abstract 
representation R~(uo, O. 

According to Schafke10 (Chap. 8), the functions 
(5.7) form an analytic basis for R~(uo, ~). Thus, this 
Lie-algebra representation can be extended to a local 
group representation of Ts. The matrix elements 
{u, n Iw, gl u, m} can be defined by formulas analogous 
to (4.9) and satisfy the addition theorems (4.10). 
In particular, the matrix elements are completely 
determined by Lie algebra relations (5.1)-(5.4). We 
now compute the most important of these matrix 
elements. 

Since Eqs. (5.1) and (2.1) are formally identical, 
the matrix elements {u, nl 0, g lu, m} are given by (3.8). 

10 F. W. Schafke, Einfuhrung in die Theorie der Spezie//en 
Funktion der Mathematischen Physik (Springer-Verlag Berlin 
1963). ' , 
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The elements of the form {v, n I w, e I u, m} can be 
computed directly from Lemmas 2--4. In particular, 

{v, nl 0, 0, y; e lu, m} 

= ~m,n L (2{y)k(U - m + k) 
k k! v - m 

x r(2v + 2)r( -2v) 
r(u + v + k + 2)r(-2u) 

x aF2(m - u, -k + v - u, -k + v - u 

-2m - 1; -2u, -k + m - u; 1)(-1)"-". 
(5.13) 

If m = u, this simplifies to 

{v, nl 0, 0, y; e lu, u} 

= ~ (2v + 1)r(2u + 1)(-1)"-" I (/g-Y\ 
",n (v _ u) !(2,y),,+1 2v+1 V y"" 

if v - u ~ 0, 

=0 if u - v > 0. (5.14) 

Here liz) is a modified Bessel function.9 (5.13) and 
(5.14) are entire functions of 'y: 

{v, nl ex, 0, 0; e lu, m} 

= (2exDn-m (U - m) 
(n - m)! v - n 

r(2v + 2)r(-2v)(2n - 2m)! (_1)"-" 
X --~~~~~~~----~~~----

r(u + v + n - m + 2) 
X r( -u - v + n - m)(v - u + n - m)! 

if n - m ~ lu - vi, 
= 0 otherwise; (5.15) 

{v, nl 0, p, 0; e lu, m} 

(_2p,)m-n r(2v + 2) 

(m - n)! r(u + v + m - n + 2) 

X ___ r~(_-_2-"-v)_r.!-( -_v_-_n-,-) __ 
r( -u - m)r( -u - v + m - n) 

(2m - 2n)! (_1)11-" X . 
(u - v + m - n)! (v - u + m - n)! 

if m - n ~ lu - vi, 
= 0 otherwise. (5.16) 

The operators T(w, g) defining the multiplier 
representation induced by the Lie derivatives (5.6) 
take the form 

[T(ex, p, y; e)f](z, t) 

= exp [~(ext - Pt-1 + y)] 'f(z, t), (5.17) 

[T(O, g)f](z, t) = exp [~(~ - _e_)] 
2 d + bt at + e, 

f( zt at + e) 
X (at + e)(d + bt) , d + bt ' 

le/atl < 1, Ibt/dl < 1, 

g = (: !) E SL(2). (5.18) 

By construction, the basis functions of our model 
must satisfy the identity 

[T(w, g)f~)](z, t) = L {v, nl w, g lu, m}f~)(z, t). 
v,n (5.19) 

We examine some special cases of this identity. If 
w = 0, (5.19) simplifies to 

exp [~C !t bt - at : e) ] 

X (1 + :tf (1 + JTm(1 + be)-m 

X Mm.-m-k-l(at + e;;d + bt») 

= I d1akbk- 1 k! F( -1, -2m - k; k - 1+ t; be/ad) 
1=0 I! r(k - 1 + 1) 

X M m+k-I,-m-k-l( Z )f-I
, 

ad - be = 1, le/atl < 1, Ibtfdl < 1. (5.20) 

If b = 0, (5.20) reduces to 

e-(ZC/211(l+clM (_Z_)(1 + c)m 
m,-m-k-1/2 1 + e 

= i (2m + k) M m-I.-m-k-1/2(Z)CI
, 

1=0 1 

lei < 1, k = 0, 1,2, .. '. (5.21) 

In particular, if k = 0, this last expression yields the 
generating function 

z-m exp (z(1 - C») (1 + c)2m 
2(1 + c) 

= ! Mm_I,_m_l(z)C. 00 (2m) 1 

'=0 I 

If C = 0, Eq. (5.20) reduces to 

exp [ zb J(1 + b)-mMm,-m-k-l(-1 z b) 
2(1 + b) + 

= ! Mm+l,_m_k_l(z)b, Ibl < 1. (5.22) k (k) 1 

1=0 I 

Another interesting special case of (5.19) can be 
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obtained by setting g = e, (1.. = P = 0, and u = m: 

(
a Z) ~ r(2u + 21 + 2) -u-!I (2 !) exp - + - = k a 2u+2l+1 a 
z 2 1~0 I! 

X zUMU._U_I_!(z). (5.23) 

6. WEISNER'S METHOD 

In this section we will be concerned exclusively 
with the differential operators (3.11) which provide a 
realization of b s in three variables. So far, these 
operators have been used to construct identities for 
special functions which are simultaneous eigen­
functions of 13, C1 0, and p. P. Furthermore, our 
identities have been ~alid only for group elements in a 
sufficiently small neighborhood of {O. e}. However, 
we can follow a method introduced by Weisner6 and 
use the operators (3.11) to derive identities for special 
functions in which the above restrictions are lifted. 
We make the following observations. If fer, z, 1) is a 
solution of the equation p. Pf = -w2j', i.e., 

[~ + ~ ~ _ £ ~ _ ~ ~ + (1 - Z2) o~ 
or2 r Or r2 ot2 r20t r2 OZ2 

2zt 02 
2z 0 2J - -- - -- + w fer, z, t) = 0, (6.1) 

r2 otoz r2 oz 

then the function T(w, g)j; formally defined by Eqs. 
(3.14) and (3.15), is also a solution of (6.1). This 
remark is true whenever the formal expression for 
T(w,g)fcan be interpreted as an analytic function in 
(r, z, t) and is a consequence of the fact that the 
differential operators (3.11) commute with p. P. 
In addition, iff is a solution of the equation 

Lf = (x11+ + x 21- + xa13 

+ Y1 P+ + YzP- + Yapa)f = Af 

for complex constants Xi' Yi' A, then T(w, g)f = l' 
is a solution of an equation of the same form L'f' = 
A1'where L' = T(w,g)LT-l(W,g), i.e., 

xl = a2xl - b2x2 + abxa, 

x~ = -C
2X1 + d2x2 -- c dxa, 

x~ = 2acx1 - 2b dX 2 + (I + 2bc)xa, 

Y~ = a2Y1 - b2yz + abYa 

+ (1..[ -acx1 + 2b dx z - (l + 2bc)xa] 

+ y[a 2x1 - bZx2 + abx3]' 

y~ = -CzJll + d2Y2 - C d)'a 

+ p[2acx1 - 2b dx z + (l + 2bc)X3] 

+ Y[C2X1 - d2x2 + C dx 3], 

y~ = 2acYl - 2b dYz + (I + 2bc)Ya 
+ (1..[-2C 2X1 + 2d2x2 - 2c dx3] 

+ fJ[ -2a2x1 + 2b2
x2 - 2abxa]· 

(6.2) 

As an application of these remarks, consider a 
simultaneous eigenfunction of the commuting opera­
tors P • P, pa, 13: 

p. P f= -f, P3f= Af,13f= mj, A, m E C. (6.3) 

A straightforward computation shows that the 
solutions of (6.3) are of the form 

fer, z, t) = [t(Z2 - 1)!(A2 - 1)!]m 

X eATZI±m(r(z2 - 1)!(A2 - I)!). 

Choosing the 1m solution, we note the validity of the 
expansion 

fer, z, t) = r-!f aiA)Im+k+!(r)C;:+!(z)tm, (6.4) 
k~O 

giving f as a sum of simultaneous eigenfunctions of 
the operators p. P, C1 •0 , 13.10 It remains only to 
compute ak(A). Since f is symmetric in z and A, 
ak(A) = bkc~n+!(A). Furthermore, if A = 1, then 

fer, z, t) = (~r l'(:T~ I) , 
which has the well-known expansion 

2 k~O r (!..)m erz = I (~)! r(m + t)(m + k + t) 
X I m+k+!(r)C;:'+~(z) 

(see I, Corollary 7, or Ref. 9). This last expansion 
enables us to compute the coefficients ale (A) with the 
result 

[(Z2 - 1)(A2 - 1)]-mIVAZI",(r[(z2 - 1)(A2 - I)]~) 

22m+1 00 k' ( -t k + 1) 
= --, [rem +DtL . m· 2 

(277r)2 k~O r(2m + k + 1) 

X Im+k+~(r)c~n+!(z)c~n+!(A) (6.5) 

convergent for all z, A E ¢. 
Similarly, it is easy to show that 

j(r, z, t) = ( t t)meAZTlm[Ar(Z2 _ Oi] 
A(Z2 _ 1)2 

is a solution of the equations 

P • Pj = 0, PJ = Aj, IJ = mj. (6.6) 

There exists an expansion of the form 
(1) t 

j(r, z, t) = ,Lale(A)rm+kC;:+2(z)t"', (6.7) 
k=O 

expressing j as a sum of simultaneous eigenfunctions 
of p. P, C1 . 0 , and 13. The constants ak(A) can be 
evaluated by setting z = 1 on both sides of Eq. (6.7). 
The result is 

l'(m -I- 1)[r(z2 - 1)~]-merzIm[r(z2 - I)i] 

= I r(2m + I) Cj'?'+!(z)rle, (6.8) 
Ic~O r(2m + k + I) . 

convergent for al\ r, z E f/;.9 
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As a final example we consider 

her, z, t) = r-!Iu+!(r)C~-k+!(z)tU-k, U E t, 
2u not an integer, k = 0, 1, 2, .... h is a solution of 
the simultaneous equations 

P • Ph = -h, C1.Jz = u(u + l)h, J3h = (u - k)h. 

(6.9) 
Note that the function 

( 
(1 2) )(-U+Ic-i)/2 

h' = T(O, t, 0; e)h = r2 + -t z r 

( 2)! 
x Iu+![ (r2 + 1 -t z r) ]C~-k+! 

X [rz (r2 + (t -t z2)rr!] (1 + rtt-k, 

° < It I < Ir-II, (6.10) 

can be expanded in a Laurent series in t. Thus, the 
following expansion is valid: 

00 00 

h'(r, z, t) = 2 2 an.sS! r(n + t) 
n=-oo s=max([-2n].O) 

X r-~1n+s+!(r)C~+l(z)(2tt. (6.11) 

We now determine the constants an •s ' According to 
expression (6.2), h' = T(O, t, 0; e)h satisfies the 
equation (J3 + tP-)h' = (u - k)h!. This implies the 
recursion relation 

-a 2( k) n+I.s-2 
U - - n an •s = (2n + 2s _ 1) 

+ (2n + S + 1)(2n + S + 2) 

(2n + 2s + 3) 

X an+1•s (6.12) 

for the coefficients an •s ' On the other hand, if z = 1, 
(6.11) reduces to a power series in t: 

h'(r, 1, t) = eu 
; k) r-u+k-!I u+i(r)(l + rtt-k

, 

Irtl < 1. (6.13) 

By comparing (6.13) with the well-known expansion 

(
r)-U+I' 
"2 I u+!(r) 

= ~ r(k + I + t)r( -u + k + I)(k + 21 + 1) 

1=0 l! r( -u + k)r(u + 1 +~) 

X Ik+2l+!(r), k = 0, 1,2,"', 

[see I, Eq. (5.10), or Ref. 9, p. 129], we find 

a s = (2)-u+:+2n(2U - k) (-u + n + k + 1 - 1) 
n. ('IT? k 1 

X reu - k + oren + k + I + t) 
r( u - k - n + 1)r( u + I +D 
(n + k + 21 + -!) X -'---'------'--'---"'--'-

(2n + k + 21)! 

if s = k + 2/,_ k, 1 = 0, 1, 2, ... , 

=0 ifs:;6k+21, k,I=0,1,2, .. ·. (6.14) 

Thus, we have computed an •s for n ~ 0. However, 
formulas (6.14) make sense for all integers n such that 
2n + s ~ 0, and they satisfy the recursion relations 
(6.12) even when n is negative. Therefore, formulas 
(6.14), defined for all integers n and nonnegative 
integers s such that 21Z + s ~ 0, are the solution to 
our problem: 

k! reu - k + t)(r2 + (1 - z2)r)(-u+k-!)/2 Iu 1[(r2 + (1 - z2)r)~]C~-k+t[rz(r2 + (1 - z2)r)~-J(1 + rt)"-k 
r(2u - k + 1) t H t t 

1 

= f ~ 8-U+k+n(-U + n + k + 1- l)r(n + k + 1 + t)r(n + t)(k + ;I)! (n + k + 21 + t)r-2 
n=-oo z=max([-n-k/2].O) S (2n + k + 21)! r(u + I + 2)r(U - k - n + 1) 

X I n +k+2l+t(r)C;::z(z)tn
, ° < It I < Ir-\ U E C/, 2u not an integer, k = 0,1,2, .... 

The above examples should suffice to indicate the scope of Weisner's approach-though many other 
results could be obtained using the same method. 
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Natural Boundary and Initial Conditions from a Modification 
of Hamilton's Principle 

H. F. TIERsTEN* 

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 

(Received 29 November 1967) 

In a Hamiltonian variational formulation of a field theory, certain boundary conditions arise naturally 
whereas others arise as constraints on the admissible variations, and no initial conditions arise naturally. 
When the Hamiltonian formulation is used to obtain approximate solutions to boundary-value problems, 
the approximating functions need not satisfy the natural conditions but must satisfy the constraint 
conditions. Although, in many instances, it is desirable for the approximating functions to satisfy the 
constraint-and even the natural-conditions, in other instances it is imperative that the approximating 
functions do not satisfy certain constraint conditions. A procedure is introduced for transforming 
Hamilton's principle so that the initial conditions and all conditions at boundaries and internal surfaces 
of discontinuity arise naturally and no constraint conditions are required. The transformation is effected 
by modifying the principle slightly, using Lagrange multipliers in the classical manner, and adding an 
appropriate initial-value term to the Lagrangian. A particularly useful approximation technique is 
applied to a problem with an internal surface of discontinuity, and it is shown that the transformed 
principle can be used whereas the usual form of Hamilton's principle cannot. It is noted that the trans­
formed principle has an important advantage over the method of least squares. 

1. INTRODUCTION 

The calculus of variations has proven to be a 
useful tool for obtaining approximate solutions to 
boundary-value problems for which exact solutions 
cannot be found. There are in existence a wide 
varietyl-3 of techniques for actually making the 
approximation, all of which lie within the variational 
formulation of the field theory. Classically, a varia­
tional formulation can usually be regarded as Hamil­
ton's principle4 for a particular field. There are many 
other variational formalisms, including, for example, 
the method of complementary energy5 in linear 
elasticity and Reissner's variational formulation of 
linear elasticity.6 However, this discussion will be 
confined to those variational formulations that can be 
regarded as Hamilton's principle in the classical 
sense. From this author's point of view, the crucial 
distinction between Hamilton's principle and those of 
others is that in Hamilton's principle the Lagrange 
density is expressed in terms of the minimum number 
of dependent field variables and their derivatives; 
whereas in the others, the Lagrange density is ex-

• Present address: Department of Mechanics, Rensselaer Poly­
technic Institute, Troy, N.Y. [2[81. 

1 L. V. Kantorovich and V. 1. Krylov, Approximate Methods of 
Higher Analysis (Interscience Pub!. Inc., New York, and P. Noord­
hoff Ltd., Groningen, The Netherlands, transl. by C. D. Benster 
from 3rd Russian ed., 1964), Chap. IV, Sec. 2 and 3. 

2 R. D. Mindlin, Quart. Appl. Math. 19, 51 (I 96 \). 
3 M. Onoe, J. Acoust. Soc. Am. 30, 1159 (1958). 
4 C. Lanczos, The Variational Principles of Mechanics (University 

of Toronto Press, Toronto, 1949), Chap. V, Sec. I. 
<; 1. Sokolnikoff, Mathematical Theory of Elasticity (McGraw-Hili 

Book Company, New York, 1956), 2nd ed. Chap., 7, Sec. 108. 
6 E. Reissner, On Variational Principles in Elasticity (Proceedings 

of the Eighth Symposium on Applied Mathematics, Calculus of 
Variations and ifs Applications) (McGraw-Hill Book Company, 
New York, 1958), pp. 1-6. 

pressed in terms of a larger number of field variables. 
In Hamilton's principle, the variations of each of the 
field variables are independent (unconstrained) within 
the domain, i.e., excluding the boundary; and there­
fore, each variation yields an independent differential 
equation. Moreover, the variation of each of the field 
variables is constrained to vanish at t and to through­
out the domain and the boundary. Furthermore, if, 
on any portion of the boundary, a particular field 
variable is prescribed, its variation is constrained to 
vanish on that portion of the boundary for all time. 
If, in addition to the aforementioned boundary, the 
domain contains a surface of discontinuity, the 
variations of each of the field variables are uncon­
strained in the regions on either side of the discon­
tinuity, but are constrained to be continuous across 
the surface. The removal of the constraints on the 
variations of the field variables on the portions of the 
boundary where they are prescribed and across an 
internal surface of discontinuity, for all time, and, at 
t and to, throughout the domain and the boundary, 
in Hamilton's principle is precisely the subject of this 
paper. The removal of these constraints on the 
variations of the field variables can be very important 
in obtaining approximate solutions to boundary- or 
initial-value problems because, if the constraints are 
imposed on the variations, the approximating func­
tions must satisfy these constraints; but if no constraints 
are imposed on the variations, the approximating 
functions need not satisfy any constraints. Although 
in many instances it is desirable for the approximating 
functions to satisfy the constraints so that the approxi­
mation will be more accurate, in other instances it is 
imperative that the approximating functions do not 

1445 
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satisfy certain constraints required by the classical 
form of Hamilton's principle. A particularly important 
situation arising in connection with a boundary-value 
problem, in which an internal surface of discontinuity 
is present and in which functions constrained in the 
classical Hamiltonian manner cannol be used, is 
discussed in the last section of this paper. The problem 
treated is an eigenvalue problem in which the initial 
conditions may be left out of account. Although the 
variational formulation permits a similar approximate 
treatment of initial-value problems, no such problem 
is discussed. It is interesting to note that the removal 
of the constraints on the variations at 1 and to applies 
in the case of particle mechanics also. In that case the 
modified Lagrangian yields the differential equations 
and the initial conditions. 

The technique for removing the boundary con­
straints and the time constraint at 1 required by the 
Hamiltonian form of the variations is the classical one 
of adding to the Lagrangian, each constraint as a 
zero times a Lagrange multiplier, so that the variations 
of the field variables can be treated as free (uncon­
strained). The only difference between this situation 
and the usual one is that the constraints treated here 
by the Lagrangian technique are boundary constraints, 
while those usually treated by the Lagrangian tech­
nique are either domain or isoperimetric constraints. 
In this situation the Lagrangian multiplier is either a 
function on a surface for all time or a function over 
a domain at a fixed time, instead of a function over a 
domain, for all time, as it usually is in the absence of 
isoperimetric constraints. In any case, the Lagrangian 
multiplier can be varied freely.7 The technique for 
removing the constraints at 10 consists of simply 
introducing initial prescribed (inertial) terms in 
exactly the same way that prescribed boundary con­
ditions are introduced. Additional variational terms 
are introduced at to in order to account for the initial 
conditions on the field variables. 

The resultant Lagrangian has been given for the 
scalar Helmholtz equation by Morse and Feshbach,8 
for the biharmonic equation by Hildebrand,9 for the 
electromagnetic equations as applied to waveguides 
and resonators by Berk,10 and for a special case in 
linear piezoelectricity by Eer Nissell and Eer Nisse 

7 R. Courant and D. Hilbert, Methods of Mathematical Physics 
(lnterscience Pub!. Inc., New York, 1953), Vol. I, Chap. IV, Sec. 
9.2. 

8 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hili Book Company, New York, 1953), par! II, p. 1I32. 

• F. B. Hildebrand, Methods of Applied Mathemallcs (PrentIce­
HaU, Inc., Englewood Cliffs, New Jersey, 1965), 2nd ed., p. 219, 
Pro~ml~ . 

10 A. D. Berk, Inst. Radio Engrs., Trans. Antennas PropagatIOn 
44, 104 (1956). 

11 E. P. Eer Nisse, IEEE Trans. Sonics Ultrasonics 14, 153 (1967). 

FIG.!. Diagram of a bounded region containing an internal 
surface of discontinuity. 

and Holland.12 In each instance the modified La­
grangian is simply presented without a convincing 
explanation of why the new Lagrangian is permissible, 
i.e., without either the explicit use of Lagrange 
multipliers or any clear discussion. However, the 
demonstration of validity in the case of Refs. 8 and 9 
is rather straightforward. Moreover, all the modified 
Lagrangians that have been presented are applicable 
only when field variables are prescribed on portions 
of the boundary and none are applicable to time­
dependent systems. The additional modifications 
required for either the important case of an internal 
surface of discontinuity or for time-dependent 
systems have not been presented. In all the afore­
mentioned cases,8-12 specifically when there is no 
surface of discontinuity, and even when there is a 
surface of discontinuity, the proof of the validity of 
the Lagrangians presented can be provided without 
the use of Lagrange multipliers by using the appro­
priate version of what might well be caJIed "Reissner's 
unconstrained variational technique." 6 Furthermore, 
for the scalar systems presented in Refs. 8 and 9, the 
proof can be provided without the use of either 
Lagrange multipliers or Reissner's technique, simply 
by employing the definition of the variation. This 
same procedure can be used to obtain a transformed 
version of Hamilton's principle, which yields initial 
conditions naturally, without the use of either La­
grange multipliers or Reissner's technique. 

2. CLASSICAL FORM OF HAMILTON'S 
PRINCIPLE 

In this section we briefly present Hamilton's 
principle so that we may clearly note the consequences 
when we transform it in the next section. Consider 
the diagram shown in Fig. 1. The diagram contains a 
region (possibly a body) which is divided in two by a 
surface of discontinuity S(d). The remaining boundary 
of region I is labeled SU) and of region 2, S(2). Let the 
behavior of this body be governed by a vector13 field 

12 E. P. Eer Nisse and R. HoUand, Proe. IEEE Letters 55. 1524 
(1967). 

13 Cartesian tensor notation is employed throughout; the .sum­
mation convention for repeated tensor indices is employed as IS the 
dot notation for differentiation with respect to time, and a comma 
followed by an index denotes differentiation with respect to a space 
coordinate. 



                                                                                                                                    

NATURAL BOUNDARY AND INITIAL CONDITIONS 1447 

<p~m)(Xi' t); k,j = 1,2,3; m = 1,2. Let the Lagrange 
density in regions 1 and 2, respectively, be given by14 

elm) = tp(m)<j{m)q?~m) _ 'U,(m)(<p~m), <p~~), Xi)' 

m = 1,2. (2.1) 

In Eq. (2.1), elm) has continuous first and second 
derivatives with respect to all its arguments in v(m) > 

and <pim) is twice continuously differentiable with 
respect to all independent variables in VIm) and attains 
prescribed values !fJicm ) on portions of s(m), which we 
denote by Shm ). On the remaining portions of the 
boundaries s(m), the <Pkm ) are unknown, but the 
quantities nlo'U,(m)jo(<pic~) == nIGi;:') == F~m) are pre­
scribed and are given by' 

F (m) = n OC) I (m)jo( (m» = n G(m) - p(m) 
k - I w <Pk,1 - I Ik - k , m = 1,2, 

(2.2) 

in which the F~m) are prescribed functions of the Xj 

and t, and n l denotes the components of the outward­
directed unit normal. The 'portions of the boundaries 
scm) on which (2.2) holds are denoted by Sir). When 
the <p1m ) are prescribed, we have what are termed 
constraint conditions, and when the F~m) are pre­
scribed, natural conditions. At this point it is clear 
that Hamilton's principle may be written in the form 

(j t dt i [r elm) dV + r Fi,m)<pkm) dS] = 0, Jto m=l Jv(m) JSN(m) 

(2.3) 

where the d<p~m) are constrained to vanish everywhere 
at t and to and for all time on Sgl and Sgl, and to be 
continuous across SId). Taking the variations,15 
utilizing the fact that the variation operation com­
mutes with differentiation, integrating by parts with 
respect to time, and employing the divergence 
theorem and the constraints on the variations, we 
obtain 

L dtmt [Ltffl)( - o'u,(mljo<pi,m) 

_ p(m)cji~m) + G:;:!)c3<p~m) dV 

+ r (-n (mlG(m) + F(m»c3<p(m) dS] 
JSN(ml I lk k k 

- t dt r n(d)(G(l) - G(2»(l<p(1l dS = 0 Jlo JS(d) I lk Ik k , 
(2.4) 

where nid
) denotes the components of the unit normal 

to the surface of discontinuity sed) directed from VW 
to V(2). Since the volumetric and surface variations 
o <picm ) appearing in (2.4) are arbitrary, we have the 

,. The extension to more than one field and to spaces of higher 
(different) dimensionality is evident, as is the extension to more than 
one surface of discontinuity. 

16 Reference 4, Chap. II, Sees. 8-11. 

Euler differential equations 

- a'U,(m)ja<p~m) - p(m)cjikm) + G:;::: = 0, III = 1,2, 

(2.S) 
the boundary conditions on s}vml 

_ (mIG(ml + F(m) - 0 n l lk k - , m = 1,2, (2.6) 

and the discontinuity (jump) condition across S(dl 

nid)(Gi!) - Gi!» = O. (2.7) 

In addition, by virtue of the constraints on the varia­
tions, we have the boundary conditions on s&m) 

<p~m) _ !fJ~m) = 0, m = 1,2, (2.8) 

and the continuity conditions on SId) 

roW _ ro(2) - 0 
rk rk - • (2.9) 

Thus, this Hamiltonian variational principle (2.3), 
constrained in the c0nventional manner> yields the 
differential equations (2.S), the boundary conditions 
(2.6) and (2.8), the jump conditions (2.7), and the 
continuity conditions (2.9) of the field in which we are 
interested, but does not yield all the initial conditions. 

As usual, Eqs. (2.3) or (2.4) can be used to obtain 
approximate solutions to boundary-value problems, 
provided that initial conditions may be left out of 
account by a variety of techniques, such as the 
Rayleigh-Ritz procedure,! Kantorovich's procedure,l 
and many others. However, any approximating 
solution must satisfy the constraint conditions (2.8) 
and (2.9) in accordance with the variational principle; 
but the approximating solution need not satisfy the 
differential Eqs. (2.S) or the natural conditions (2.6) 
and (2.7). This point is discussed very thoroughly by 
Kantorovich and Krylov16 and ColIatz,17 Clearly, the 
formulation is completely inadequate for obtaining 
an approximate solution to any problem in which 
initial conditions must be considered, since the 
approximating solutions must satisfy the constraints 
on the variations at t and to and the values of the 
field variables at t are unknown. Moreover, there are 
no conditions on the known initial time derivatives of 
the field variables. These inadequacies of the classical 
form of Hamilton's principle have been noted by 
Gurtin18 in a somewhat similar context. In connection 
with purely boundary-value problems, it should be 
noted that, although the requirement of satisfying 
(2.8) and (2.9) is frequently not restrictive and even 
desirable (for obtaining accuracy) in practice, at 

16 Reference 1, pp. 258-260, 272-273, and 279-281. 
17 L. Collatz, The Numerical Treatment of Differential Equations, 

translated by P. G. Williams (Springer-Verlag, Berlin, 1960), 2nd 
ed., pp. 202-207 and 2\3-216. 

18 M. E. Gurtin, Arch. Rat!. Mech. Anal. 16, 34 (1964). 
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times it is excessively restrictive and for certain types 
of procedures, which are discussed in Sec. 4, it is so 
stringent as to be prohibitive. In the next section we 
will transform the Hamiltonian variational principle, 
with the aid of Lagrange multipliers, in order that all 
conditions, including those at boundaries, at surfaces 
of discontinuity, and at the initial time, appear as 
natural conditions and there are no constraint con­
ditions which an approximating solution must satisfy. 

3. THE TRANSFORMED PRINCIPLE 

In Sec. 2, the variations otpJ.,m) are constrained to 
vanish on those portions of the boundaries where the 
tp£m) are prescribed, to be continuous across the 
surface of discontinuity Sid>, and to vanish everywhere 
at t. This situation is analogous to the usual one in the 
calculus of variations where holonomic19 constraints 
are used to reduce the number of independent varia­
tions. Instead of eliminating a particular field variable 
for each holonomic constraint, it is common practice 
to add to the Lagrangian each constraint as a zero 
times a Lagrange multiplier/· 20 and then to treat all 
variations as free. As stated in the Introduction, the 
constraint on the variations otplm) at to can be elimi­
nated by introducing initial prescribed terms in the 
Lagrangian in the same way that prescribed surface 
terms are introduced; additional variational terms 
must be introduced at to in order to take account of the 
initial conditions on the field variables. Thus, in 
accordance with the above, we introduce Lagrangian 
undetermined multipliers Aj,m), Ai;o, and Att); then we 
dot A~.m) into (2.8) and integrate over Si?") and t; A1d

) 

into (2.9) and integrate over Sid) and t; and finally 
A)/) into dtp;/''' and integrate over V(III). And then we 
add the three integrals to the left-hand side of (2.3) 
while introducing the aforementioned terms at to to 
obtain, in place of (2.3), 

oJ·tdt ± [( Lim) dV +J Fill/)eri'") tiS 
to 111=1 J V (IIi) .';.\,(111) 

+J A (m)(rpim) - q/III») cis] 
Sc(tn) ~k lc k 

+ 0 (tdtf A(,'l)(q:(2) - q(ll) dS J to 8(11) k k I~ 

+ 1~1 {(m, [},it!(jqi·III)(t) + PI~"d(jq 1.""(10) 

+ (q;,''')(to) - (P;'.III)(to»pim)r)(i';,""(to)] dV = 0, (3.1) 

where, now, the brr{m) are unconstrained on SL:/) and 
Sid) as well as on S~") and in VIlli) at all times, and at t 

and to everywhere, and the Atm), AJ,~t>, and },J,n are to be 

]9 Reference 4, Chap. I, Sec. 6. 
20 Reference 4, Chap. II, Sec. 12. 

varied freely / and p~m)(to) denotes the initial value of 
pim)rj{m). In place of (2.4) we now have 

(t dt i [( (-o'l1(m)/otpkm) J to m=1 J vIm) 

- pim);,;(m) + Gim»Om(m) dV 
,k 11c.1 ,Ic +f (_nim)G(m) + pim)om(m) dS 

(11l) l lk k,k 
SN 

+ ( [(_n(m)G lm) + Alm»o<plm) 
JSo(m) 1 lk k k 

+ oAkm)(<pkm
) - rjikm »] dSJ 

+ftdt r [-(n(d)G(}) + A(d»Otp(l) 
to J SId) I lk k Ie 

+ (n:d)G:~) + A~d»)Otp~2) + OA~d)(<p~2) _ <p~l)] dS 

+ i1 L(m, [(p¢~m)(t) + Aktl)Otp;:'(t) 

+ (Pim) - p¢~m)(to»otpim)(to) 

+ (g{m)(tO) - rjiim)(tO»pim)o¢im'(to)] dV = O. (3.2) 

Since the volumetric variations o<p~,m) are arbitrary, we 
have (2.5) in Vim); and since all the surface variations 
6q{,/I), dAle'''), and bAled) are now free, we have the 
boundary conditions (2.6) on s~m), the conditions 

_ Irn)G(m) + ,(m) - ° n( lk Ak - , 

(m) _ ,;jim) = ° tpk ,Ic 

on st"), and the conditions 

Jli,I)Gi~) + A;,.'/) = 0, 

(,il Gi2 ) + ,Id) = 0 
III Ik "Ie ' 

(2) (1) - ° <PI.' - <p" -

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

across S(d). Since the variations ()rr'!.m' are arbitrary at 
1 and to, we have 

).,y) + (p' im)(t) = 0 
k P ~" , 

P- Im ) _ 1m)· (m)(t ) - 0 
I, P tpk 0 - • 

(3.8) 

(3.9) 

Since the r)(iLm)(to) are independent of the rJ <p;,m) (to) , 
we have 

(m)() -(m)() 0 <PIc to - <Pic to = , (3.10) 

all in Vim). The subtraction of (3.6) from (3.5) yields 
(2.7). Equation (3.4) is identical with (2.8) and (3.7) 
with (2.9); but (3.4) and (3.7) appear as natural con­
ditions, whereas (2.8) and (2.9) are constraint con­
ditions. The Lagrange multipliers A;'.m) may now be 
obtained from (3.3), Aj,d) from either (3.5) or (3.6), and 
),j/' from (3.8). Moreover, it is clear that the initial 
conditions may be read off from (3.9) and (3.10). Thus 
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it is clear that the variational principle (3.1) with 
unconstrained variations yields the Euler equations 
(2.5), the boundary conditions (2.6) and (2.8), and the 
conditions across sed) (2.7) and (2.9), as does the 
variational principle (2.3) with constrained variations. 
I t is also clear that the unconstrained variational 
principle (3.1) yields the initial conditions (3.9) and 
(3.10), whereas the constrained variational principle 
(2.3) does not. 

As already mentioned, the unconstrained variational 
principle (3.1) has an advantage over the constrained 
variational principle (2.3) for obtaining approximate 
solutions to boundary-value problems, since, with 
(3. J), an approximating solution need satisfy no 
conditions. In order to find the most appropriate 
forms of (3.1) and (3.2) to be used in obtaining 
approximate solutions, add (3.5) and (3.6) to obtain 

,(d) _ _ I n(dl(G(1) + d21) 
/10 k - 2 I lk lk , (3.11) 

and substitute from (3.3), (3.8), and (3.1 J) into (3.1) 
and (3.2) to obtain, respectively, 

b L dt m~JL(m)£(m) dV + LN('nll;mlrp~rnl dS 

+J n(mlG(ml(rp(m) - <p Crnl) dSJ 
sc(m) I lk k k 

_ oJt £It r ~n(d)(G(1) + G(2»( rp(2) _ rp(!) £IS 
In JS(d) - I lie lk k k 

+ i r [- p(tn)Pkutlorp1ml(t) + P~"'lbrp1:nl(t() 
tn=l J J,(nt) 

+ (rpi,.ml(to) - lji~ml(to»p(mlb(p~ml(to)] dV = 0, (3.12) 

t dt i [r (_o<lLCnd/O<pCml _ p(>nlip(nd J to m=l J vIm) k k 

+ G(m»om(ml £IV +1 (-n (mlG(m) 
lk,l Tk • (m) I lk 

S.V 

+ p(ml)O<p(ml £IS +1 n(ml(rp(ml - <p(m»oG(ml dS] 
Ie k so(m) I k k lie 

- t ftdtJ (d)n:dl[(G:~l - Gl~l)(o<p~ll + O<pk21) 
10 S 

+ (<p~21 _ rp~l)(oG:!l + OG:~l)] £IS 

+ i1 L(m)[(Pl~m) - PPkml(to»orpim)(to) 

+ (<p~ml(to) - <Pkml(to»p(mlbpkml(to)]dV = O. (3.13) 

The integrals over s~ml in (3.12) and (3.13) are pre­
cisely the forms presented in Refs. 8-12, but without 
the explicit use of Lagrange multipliers or any refer­
ence to Reissner's6 technique or any meaningful dis­
cussion. The integrals over S(dl and over Vern) at t and 

FIG. 2. Diagram of a symmetric bounded elastic plate with internal 
surfaces of discontinuity. 

to in (3.12) and (3.13) do not appear in any of the 
references. Clearly, the expression (3.11), and conse­
quently (3.12) and (3.13), is not unique, because of 
the difference of (3.5) and (3.6). However, the forms 
chosen are obviously the most straightforward and 
give equal weight to each adjacent region. 

4. APPLICATION TO A BOUNDARY-VALUE 
PROBLEM 

In this section we consider a technique of solution 
of a particular boundary-value problem in which the 
transformed principle in Sec. 3 can be used and the 
classical principle in Sec. 2 cannot. For clarity, 
simplicity, and definiteness, we confine ourselves to a 
prototype problem in isotropic, linear elasticity,21 in 
which case the £(m) are of the form 

(4.1) 

In Eq. (4.1), the g{ml have been replaced by the uim ), 

which represent the components of mechanical dis­
placement in region m, ).(m) and l1(m l are the Lame 
constants in region m, and p(m) is the mass density in 
region m. Consider the bounded plate shown in Fig. 
2, in which region 1 is identical with region 3 while 
region 2 is different, and in which the length out of the 
paper is infinite and may be left out of account. The 
length out of the paper may also be infinitesimal, in 
which case the A(m) in (4.1) must be converted to the 
plane stress value22 211(ml ).(m) /(;,(m l + 211(m»). Let the 
upper and lower surfaces be traction free (Fpl = 
Fk21 = F~31 = 0) and the left and right surfaces be 
displacement free (iliO = ili31 = 0). 

Suppose we are interested in determining the 
eigenfrequencies and mode shapes corresponding to 
the extensional solutions that are symmetric (and/or 
antisymmet,ric) about Xl = 0 so that initial conditions 
may be left out of account. Although there are many 
procedures for obtaining an approximate solution to 
such a problem, a particularly interesting, useful, and 

21 A. E. H. Love, A Treatise on the Mathematical Theory of 
Elasticity (Cambridge University Press, Cambridge, England, 1927), 
4th ed. (reprinted by Dover Publications, Inc., New York, 1944), 
Sees. 69 and 115. 

22 Reference 21, Sec. 146. 
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enlightening technique, suggested by Mindlin23 and 
employed by Onoes for the case of all traction-free 
boundaries and no internal surface of discontinuity, 
consists of expanding the solution of the bounded 
plate in an appropriate number of the exact solutions 
for the infinite plate with traction free surfaces24 

(Rayleigh modes) and satisfying the remaining con­
ditions on the traction-free end edges approximately 
by means of what remains of (2.4). However, the 
technique of expanding in the Rayleigh modes cannot 
be used with (2.4) when the I and r edges are displace­
ment free and/or there is an internal surface of 
discontinuity because the approximating functions 
must satisfy (2.8) and/or (2.9) in order to be used in 
(2.4); that is not possible when expanding in the 
Rayleigh modes. Nevertheless, the technique of ex­
panding in the Rayleigh modes can be used with (3.13) 
when the I and r edges are displacement-free and/or 
there is an internal surface of discontinuity-or any 
other combination of conditions for that matter­
because the approximating functions need not satisfy 
any conditions in order to be used in (3.13), 

Explicitly, the Rayleigh solution for standing waves, 
which are symmetric about the center plane, in an 
infinite, isotropic plate may be written25 

Ul = [';B cos rxx2 + f3C cos f3xz] cos ,;x1 cos wt, 

U2 = [- ('J.B sin ('J.X2 + ';C sin f3xzl sin ';Xl cos wt, 

Ua = 0, (4.2) 

so that 

Tn = -.u[(tP + ';2 - 2('J.2)B COS ('J.Xz 
+ 2f3';C COS f3Xg] sin ,;x1 cos wt, 

T22 = 1'[(;2 - f32)B cos ('J.X2 
+ 2f3';C cos f3Xg] sin ,;xl cos wt, 

T 33 = -A(OC2 + ';2)B cos ('J.Xz sin ,;x1 cos wt, 

T12 = I' [ - UIXB sin rxX$ 

+ az - P2)C sin pXz] cos eXt cos O)t, 

T23 = TI3 = 0, 

(4.3) 

where the GlI, of Secs. 2 and 3 have been replaced by 
the TlI" and where the differential equations are 
satisfied if 

(4.4) 

23 R. D. Mindlin, investigations in the Mathematical Theory' of 
Vibrations of AnisotropiC Bodies, CU-4-5~-SC-64687-CE, Fmal 
Report, U.S. Army Signal Corps EngmeerIng Lab., Fort Mon­
mouth, N.J. (1956) (unpublished). 

2~ Lord Rayleigh (J. w. Strutt), Proc. London Math. Soc. 20, 225 
(1889). . . 

25 R. D. Mindlin, All TntroductlOII to the MathematIcal Theory of 
Vibrations of Elastic Plates, DA-36-039·SC-56772, U.S. Army 
Signal Corps Engineering Lab., Fort Monmouth, N.J. (1955) 
(unpublished), Sec. 2.06. 

and VI and V2 are the velocities of dilatational and 
equivoluminal waves, respectively. The boundary 
conditions T21 = T22 = T23 = 0 on the upper and 
lower surfaces of the plate are satisfied if26 

tan f3b/tan IXb = _4';21Xf3/(e2 - f32)2. (4.5) 

B = -2ef3 cos {3b, C = (;2 - f32) cos (f..b. (4.6) 

Equation (4.5) is the Rayleigh frequency equation for 
waves that are symmetric about the center plane of the 
plate. Equations (4.4) and (4.5) determine dispersion 
curves w = w(~), which are now well known.27 For 
any given real, positive w, there are a denumerably 
infinite number of branches-some are real, others 
imaginary, and still others complex. Nevertheless, 
in many frequency ranges one can conclude that a 
good approximation can be obtained by omitting all 
branches except a rather small number.28 In fact, for 
the symmetric modes, below a certain frequency 
(edge mode) the number of branches that must be 
included is only one,3,29 and, for the antisymmetric 
modes, below a certain frequency the number of 
branches that must be included is only two.30 Although 
the actual number of branches required for obtaining 
an accurate solution is very important, it is not partic­
ularly important in this paper because we are inter­
ested only in giving an ~xample of the use of (3.13) 
under circumstances in which (2.4) cannot be used. 
Consequently, we simply consider the situation where 
only the one lowest, real, symmetric branch is needed. 
The extension to more than one branch is trivial in 
principle, although cumbersome in practice. 

Before proceeding further, it is important to note 
that a solution, symmetric about the center plane of 
the plate and linearly independent of the one in (4.2) 
and (4.3), can be obtained from that one simply by 
interchanging sin ~X1 and cos ~Xl and, in the quanti­
ties in square brackets, replacing ~ by -.;. Equations 
(4.4) and (4.5) remain unchanged and; should be 
replaced by -.; in (4.6). Since we are interested only 
in solutions that are symmetric about Xl = 0, this 
latter solution will be the only one needed in region 
2, but both linearly independent solutions associated 
with the one branch will be required in region 1. Thus, 
it is clear that, for each additional real or imaginary 
branch that must be included, two linearly inde­
pendent solutions occur when symmetry with respect 

o. Ref. 25, Eqs. (2.115) and (2.116). . . 
27 R. D. Mindlin, Proceedings of the First SymposIUm on 

Naval Structural Mechanics (Pergamon Press, Inc., New York, 
1960), Sec. 12, pp. 214-219. 

28 Reference 25, Chaps. 4 and 5; Ref. 27, Sees. 16 and 17. 
29 D. C. Gazis and R. D. Mindlin. J. Appl. Mech. 27, 541 (1960). 
30 H. Deresiewicz and R. D. Mindlin, J. App!. Mech. 22, 86 (1955). 
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to Xl does not exist and only one when symmetry 
exists. When the branches are complex, each linearly 
independent solution is composed of a pair of complex 
conjugate branches so that the resultant solution is 
real. 29 

At this stage it should be noted that, s.ince the 
differential equations and boundary conditions on the 
upper and lower surfaces of the plate are satisfied in 
each region and the solution is symmetric (or anti­
symmetric) about Xl = ° and the initial conditions 
may be left out of account, all that remains of Eq. 
(3.13) is 

+ [ (O lIkob Tg) dx
2

] J-{) Xl=a+c 

_ ! [(b [(Tg) _ Ti~»(bu~l) + bU~2» 
2 J-o 
+ (uL2

) - uio)(bTit) + bTg»] dX21,,=a = 0, 

(4.7) 

where the first integral is evaluated at the edge 
Xl = a + c and the second at the internal surface of 
discontinuity Xl = a. It should also be noted that 
those terms that still remain in (3.13) and appear in 
(4.7) are precisely the ones that do not exist in (2.4). 
The first integral in Eq. (4.7), which is associated with 
a displacement· free edge, is the type of term that 
appears in Refs. 8-12, but the second integral in Eq. 
(4.7), which is associated with an internal surface of 
discontinuity, does not appear in any of those refer­
ences. 

The solution for the bounded plate may now be 
written: 

uiI
) = (L~OA(1) cos ~(1)(Xl - a) 

+ Mil) DU) sin ~U)(XI - a» cos OJt, 

U~l) = (L~I)AU) sin ~U)(Xt - a) 

+ M~o D(1) cos ~(I)(Xl - a» cos OJt, (4.8) 

U~2) = Mi2
) D(2) sin ~(2)XI cos OJt, 

U~2) = M~2) D(2) cos ~(2)X2 cos OJt, 

u~l) = U~2) = 0, 

where the Lkl
) are the terms appearing in square 

brackets in (4.2) times the shear modulus in region 1, 
p{l), and the Mic rn ) are the equivalent terms that would 
appear in place of the Lkm ) in the aforementioned 
linearly independent standing-wave solution for the 
infinite plate. The Ti;:') may readily be obtained from 

(4.8) in the same way that (4.3) were obtained from 
(4.2), i.e., by means of 

T(m) = A(m)u(m)b .. + u(ml(u(m) + u(~». (4.9) 
') k,k 13 r 't,1 3,t 

Thus, at this stage, given an OJ, ~(m) can be determined 
from the appropriate dispersion curve, which was 
calculated27 from (4.4) and (4.5), after which the 
(l(m) and p(m) may be found from (4.4), and then the 
B(m) and c(rn) from (4.6), so that the D,;) and Micm) are 
known. In the usual way, all quantities are now 
substituted in (4.7), in which the independent varia­
tions are bAU), oDU), and OD(2), and the integrations 
through the thickness 2b are performed at the appro­
priate values of Xl' Since the variations oA(I), bD(I), 
and bD(2) are arbitrary, the coefficient of each must 
vanish, thereby yielding three homogeneous, linear, 
algebraic equations in the three constants A(1), D(1), 
and D(2). The vanishing of the determinant of the 
coefficients of A (1) , D(l), and D(2) in the three equations 
yields the. geometric ratios for the selected eigen­
frequency. There is no point in carrying the solution 
any further, since we have no intention of presenting 
any results because we are interested only in giving a 
definite example of a specific situation in which (3.13) 
can be used and (2.4) cannot. Since this has been done, 
we proceed no further. 

In closing, it should be noted that the method of 
least squares31 could have been applied to the situation 
presented in this section in place of (3.13). However, 
when the method of least squares is applied in the 
case of a surface of discontinuity and in many other 
cases,31 there exists a dimensional problem in that 
the different conditions are not naturally dimension­
ally compatible. All the procedures for making them 
dimensionally compatible introduce a degree of 
arbitrariness into the approximation. This undesirable 
feature is automatically avoided by using the trans­
formed variational principle (3.13) in place of the 
method of least squares in treating such a problem. 
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. T~e G:ibbs appro.ach to q~antum dynamics is justified for nonrelativistic systems. It is shown that 
mfimte-tlme an~ mlcrocanomcal ensemble averages may be equated wherever the former exists and 
~henever a maxIma! set of constants of the motion can be determined, provided that the ensemble average 
I~ over states whose llT~a!?es under th~ m~xi~al set a~e virtually stationary. The relevance of the demonstra­
tIOn f~r quantum-statIstIcal mechamcs IS dIscussed m the light of the ensemble formalism and the classical 
ergodIc problem. 

INTRODUCTION 

It is generally accepted that the Gibbs approach to 
Hamiltonian dynamics has been justified to a large 
degree by the fundamental theorems of von Neu­
mann l and Birkhoff.2 These propositions, when taken 
in a dynamical sense, assert the existence (in the 
mean of order two or almost everywhere, respectively) 
ofthe infinite-time average of any property of a physical 
system expressible as a Lebesgue-integrable function 
on phase space. Moreover, if the infinite-time average 
is independent of almost every initial state (point in 
phase space) of the system, it may be equated with a 
Gibbs microcanonical ensemble average. These state­
ments admit of an interesting but unfortunate reci­
procity as regards their significance in mathematics 
and physics: The first is difficult to prove but, in an 
operational sense, is simple to verify experimentally, 
while the second is easy to show but hard to apply. 
The epigram is unfortunate because it is the second 
statement which is of greater relevance to dynamics. 
It was with this problem in mind that Lewis3 has shown 
recently that the infinite-time average need not be 
independent of nearly every initial state in order that 
it may be put equal to a microcanonical average, 
provided that the meaning of the latter is generalized 
somewhat. To be specific, if a maximal set of constants 
of the motion is known, in that every infinite-time 
average can be expressed as a Borel-measurable 
function of it, then the time average may be equated 
with a microcanonical average, wherein the average 
is taken over those points in phase space whose 
images under the maximal set (not just the Hamilton­
ian) are stationary. This represents a natural extension 
of the microcanonical ensemble average and permits 
the difficult task of ascertaining the independence of 
the time average from initial states to be replaced 

1 J. von Neumann, Proc. Natl. Acad. Sci. U.S. 18, 70 (1932). 
2 G D. Birkhoff, Proc. Natl. Acad. Sci. U.S. 17, 650 and 656 

(1931). 
3 R. M. Lewis, Arch. Ratl. Mech. Anal. 5, 355 (1960). 

by the possibly less arduous problem of determining 
a maximal set of constants of the motion. 

The picture is not quite so clear as this if one looks 
into the vindication of Gibbs's approach as extended 
to quantum dynamics. yon Neumann's argument,4 
for example, has an unsavory probabilistic air about it 
since it invokes the random phase assumption. More 
recently, Klein5 and Emch6 have dealt with the 
problem rigorously by pointing out that von Neu­
mann's classical mean-ergodic theorem applies to any 
separable Hilbert space and so may be adapted to that 
comprising the dynamical observables for a physical 
system. However, their arguments are limited in the 
same way as is von Neumann's theorem and, there­
fore, cannot produce a general physical criterion for 
equating infinite-time and ensemble averages whenever 
constants of the motion exist which are not stationary 
on every eigensubspace of the energy operator. 

This paper represents an attempt to remedy the 
present situation. A precise formulation of the 
nonrelativistic quantum-ergodic problem is developed 
which employs, in contradistinction to the work of 
Klein and Emch, the notion of state in Lebesgue space, 
rather than observable, as primitive. In this way it is 
not difficult to illustrate the significance of the 
formalism for quantum-statistical mechanics and to 
outline its relationship with the ergodic problem in 
Hamiltonian dynamics. The point of view taken here 
thus differs in an essential way from that of the recent, 
very interesting attempts to formulate quantum­
statistical mechanics as a problem in the theory of 
Banach algebras. 7 In the C*-algebra approach, one 
discusses only functionals on sets of observables for an 

4 J. von Neumann, Z. Physik 57,30 (1929). 
5 M. J. Klein, Phys. Rev. 87, 111 (1952). 
6 G. G. Emch, in Lectures in Theoretical Physics (University of 

Colorado Press, Boulder 1966), Vol. VIII-A, p. 65. See also G. G. 
Emch and C. Favre, "Coarse Graining in Liouville Space and Ergod­
icity," preprint, University of Geneva (1965). 

7 See, for example, D. Kastler and D. W. Robinson, Commun. 
Math. Phys. 3, 151 (1966); and R. Haag, N. M. Hugenholtz, and 
M. Winnik, Commun. Math. Phys. 5, 215 (1967). 
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infinite system, thereby obviating the existence of 
recurrences. Or< the other hand, it has become 
apparent7•8 that this approach has the bad side effect 
of invalidating the use of compact density operators. 
It will be observed that this phenomenon causes no 
difficulty in what follows, when the limit of infinite 
volume is considered. 

THE QUANTUM-ERGODIC THEOREM 

The ergodic problem is seen in the clearest light 
when discussed in the language of measure theory.9 
The physical motivation for casting the argument 
into this form should become clear when the formalism 
is brought to bear upon the subject of quantum en­
sembles in the next section. 

Lemma: Let 8 be the product space generated by 
the empty square 0 X 0 and the class of all rec­
tangles in £2 X L2 • Let .AL be the class of all subsets of 
8. Then (8, .At,) is a measurable space. 

Proof' IfL is the class consisting of 0 (the empty set) 
and all the subsets of L2 , then L is certainly closed 
'under complementation and the taking of countable 
unions. Thus L is a a algebra. It follows by definition 
that (\.:;, L), where L; is \.:2 adjoined to 0, is a measur­
able space. Moreover, if .At, = L x L, then (L; X L;, 
L x L) = (8,.At,) is a measurable space because 
there exist for every {lp, tp} E £; x L; the sets A and B 
such that 11' E A ELand ep E BEL-which means 
{lp, tp} E A x BEL x L. 

Definition: The elements of the nonempty ordered 
pair {lp, tp} E S are equimlent (11''''''' 1> in symbols) if 
1111'11 = 1111'11 = 1(11',11)1 = 1. An equivalence class in 8 
is therefore a square whose side is a unit ray. 

Lemma: Let ft be a function from the elements of 
.At, into the set of extended nonnegative integers, such 
that 

{

cardinality of the collection of linearly 
(M N) = independent equivalence classes in 

ft X M x N if this collection is finite 
+ 00 if the collection is infinite 

for any rectangle M x N E .A{,. Then (8, .At" ft) is a 
measure space. 

Proof: Evidently, ,u(M x N) ~ 0 for any M x 
N E..A(' and /1(0 X 0) = O. If {Mk } is a sequence of 
disjoint rectangles, each of which contains at most a 
countably infinite number of equivalence classes, then 

8 The problem has been discussed carefully by G. G. Emch, 
J. Math. Phys. 7,141.1 (1966). 

9 Those unacquainted with the basic notiollsof measure theory will 
find them presented very clearly in P. R. Halmos, Mi'l/slIr" Thi'ory 
(D. Van Nostrand Co., Inc., Princeton, N.J., 1950). 

the rule for adding integers requires that 

ftC91Mk) =k~ft(Mk)' 
If one of the rectangles in the sequence contains an 
uncountable number of equivalence classes, then the 
above equality is perforce satisfied. It follows by 
definition that ft is a measure function on all of 8 and, 
by the first lemma, that (8, .At" ft) is a measure space. 

Lemma: Let {T t } be a single-parameter group of 
one-to-one, unitary transformations of L2 X L2 onto 
itself which are continuous in RI. Then (8,.AL, ft, 
{T t }) is a measure-preserving space. 

Proof: For any M E .AL and fixed t E RI: 
(a) Ttl exists and TtIME.AL because {T t } is a 

group and T t maps L2 X L2 onto itself. 
(b) ft(Tt1M) = ft(M) because T t preserves the 

scalar product on L2 X L2. 
For any ME .AL and any t in the Borel sets of Rt, 

{T t } is a measurable transformation from (Rl x 8, 
3) x .At" VB X ft) into (8, .A{" ft), where 3) is the class 
of Borel sets in Rl and VB is Borel measure. This is so 
because {T t } is a continuous transformation and 
because of statement (a) above. 

Since T t is measurable and ft(TtlM) = ft(M), 
(8, ,AL, ft) is by definition a measure-preserving space. 

Definition: A Hilbert function is a composite, 
elementary, complex-valued function on the ortho­
normal elements of S. It is expressed by 

(f,(lp) 0 H)(tp) = I. f~k'X(Mk X M".), (1) 

where t E Rl, 
(k,k') 

X "x k' - . (M M) _ {I {lp, tp} E Mk X M"., 
o otherWise, 

Mk X M". = {{lp, tp}3 (11', Rep) 
_ ik j'k' t 
-(lptn,Rlpln,)=fkk'}' (2) 

and the sum is over all {k, k'} corresponding to 
distinct hk" Here H is a bounded, self-adjoint, linear 
operator mapping \.:2 into itself and lp;n is anyone of the 
countably many orthonormal vectors in L2 which are 
solutions of the Schrodinger equation 

iii 011':" = JC j ( , 1 1 at lpln) = ,"', m n ; n = ,"', 00). 

(3) 

In Eq. (2) it is understood that unless (ft (lp)oH)(tp) is 
identically zero, lp~n""" 11' E M k , lp:~,,...., tp E Me, and 
the Mk are not necessarily disjoint sets of orthonormal 
eigenvectors, Moreover, U':l M" is equivalent to 
the set of all orthonormal solutions of Eq. (3). 
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Theorem: The infinite-time average 

exists almost everywhere on (S, .AL, fl) and is invariant 
under the group of continuous transformations 
{Vt} generated by ,le in Eq. (3). Moreover, if S c S 
is a subset of finite fl measure, then 

LUo(tp) 0 H)(f{!) dfl = J,(fo(tp) 0 H)(f{!) dfl (5) 

almost everywhere (a.e.). 

Proof: It is easy to deduce from Eq. (3) that, if Je is 
time-independent, 

tp:n = exp ( - iJCt / Ii)tp:, == Uttp:, , 

where Ii is Dirac's constant and tp~ is one of the 
orthonormal solutions of the eigenvalue problem 

JCtp~ = Entp~ (j = 1, ... , Inn; n = 1, ... , (0), 

En being a real number. Thus 

Ut(fo( tp) 0 H)( f{!) = (fo( Uttp) 0 H)( Utf{!) = (fl tp) 0 H)( f{!) 

(6) 

and, because {Vt} is measure-preserving, each value 
(at fixed {tp, f{!}) of the time-dependent Hilbert 
function is of the form 

(tp!" H tp:':) exp [- i(En' - Ey/)t/Ii], 

which is strictly periodic in t. The measure S dt may be 
suitably completed so that the integral in Eq. (4) is a 
Lebesgue integral. In the present case the integral is 
evaluated easily, with the result 

where 

Mk X Mk, = {{ tp, f{! h (tp, H f{!) = (tp!~, H tp~k') = l~k'}' 
(7) 

Equation (6) makes sense only if {tp, f{!} is a member 
of an orthonormal rectangle; the ordered pairs which 
are not have fl measure zero. It should also be noted 
that 

But 

The time-averaged Hilbert function is invariant under 
{Ut} because of Eq. (6) and because the tp~ are 
eigenvectors of Je. 

Now suppose S is a subset of S such that {Vt} is 

measure-preserving and fl(S) < 00. Then 

r (fo(tp) 0 H)(f{!) dfl == ~ l~k'fl(S n Mle x M,J Js {1e,1e'} 

and 

r (fo(tp) 0 H)(f{!) dfl == ~ f~Ie'f-l(S n MIc x M Ic,). Js {k,k'} 

Because fl assigns zero measure to every argument of 
(!o(tp) 0 H)(f{!) that is not an equivalent-ordered pair, 
and because of Eqs. (7) and (8) and the finiteness of 
fl(S), 

J}fo(tp) 0 H)(f{!) dfl = L(fo(tp) 0 H)(f{!) dfl, (5) 

except on sets of fl measure zero. 

QUANTUM-STATISTICAL MECHANICS 

The principal result of the foregoing section, 
insofar as equilibrium quantum-statistical mechanics 
is concerned, is Eq. (5). Its application to the Gibbs 
microcanonical ensemble becomes evident if, following 
Lewis,3 a maximal set of invariant Hilbert functions is 
defined. 

C == (C(tp) 0 0e)(f{!) = {Cl> C2 ,'" ,Cx } 

is a maximal set of invariant Hilbert functions if 
each of the Cj == (Cj(tp) 0 Oc) (f{!)(j = 1, ... ,N) is 
invariant under {V t}, as defined in the previous section, 
and if every measurable-invariant Hilbert function 
(g( tp) c, Oy)( f{!) is a measurable function of (C( tp) 0 0e)( (I) 
almost everywhere on (S, .AL, fl): 

(g(tp) 0 Oy)(f{!) = G[(C(tp) 0 0e)(f{!)] a.e. 

If (S, .AL, fl, {VI}) is a measure-preserving space and 
C is a maximal set of invariant Hilbert functions on 
(S, .AL, fl), then (S, .AL, fl, {Ut}, C) is called a complete 
space. 

Now suppose that a maximal set of invariant 
Hilbert functions has been determined for some 
physical system. Then, for all infinite-time averages, 

Uo(tp) 0 H)(f{!) = F[(C(tp) 0 0e)(f{!)] a.e., (9) 

where H is a dynamical property of the system. If 
some region of the "state space" (S, .AL, fl) is measure­
preserving, 

LF[(C(tp) 0 0e)(f{!)] dfl = Js(fo(tp) 0 H)(rr) lIfl' (10) 

according to Eqs. (5) and (9). In particular, let 

S = {{tp, f{!}:3 I(C(tp) 0 0e)(f{!) - X,I ::;; bC}, (11) 

where X, E RN, 

I (C(tp) 0 0e)(f{!) - X,I = {I (Cj(tp) 0 OU)(f{!) - Kjl}' 
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K j E Rl, and bC = {bC j } is a very small interval in 
RN whose (Borel) measure is determined by un­
certainty relations. Because (C(1p) oOe)(Ij?) is essen­
tially stationary on S, 

F[(C(1p) 0 0e)(Ij?)] = const == H(C-I(:K,». (12) 

It follows from Eqs. (9)-(12) that 

H(S) = f}fo( 1p) 0 H)( Ij?) dfllfl(S), 

or, in the notation of the previous section, 

! f~k'fl(S n Mk X Mk,) 
D(C-\:K,» = __ ...:.:{k:..:..c.k:....:.'l ________ _ 

fl({ 1p, Ij?} 3 I(C( 1p) 0 0e)( Ij?) - :K,I ~ bC) 

(13) 

Equation (13) is a generalization of the Gibbs micro­
canonical average. 

The foregoing analysis provides a justification of 
the Gibbs approach to quantum dynamics in the 
following sense. If a maximal set of constants of the 
motion is known for a chosen system, and if a 
measure-preserving set in the "state-space" (S, .M" fl) 
can be found upon which the maximal set is very nearly 
stationary in value, then the infinite-time average of 
any property of the system is equal to its (generalized) 
microcanonical average over the determined set. It is 
to be noted that 

is the "statistical weight" of the contribution of hOk' 

to the microcanonical average of H. The measure fl 
itself is analogous to the Liouville measure (Lebesgue 
measure on phase space) encountered in the Gibbs­
Hamilton dynamics in that, if L is a subspace of 
L;, fl(L x L) is the dimension of L. 

Generalized canonical and grand canonical distri­
butions may be derived by considering physical 
systems in \l'eak interaction, in the sense of Lewis. 3 

The generalization of these distributions amounts to 
replacing the conventional canonical partition function 
by 

Q«(3) = ! [exp (-(3C)]kk'fl(S n Pk x Pk,), 
{I.:,k'l 

where (3 = {(31' ... , (3A} is an arbitrary vector in R.\', 

.v 
(3C = 2. (3 i e j , 

i~l 

S is a measure-preserving subspace of S, and 

Pk x PIc' = {{1p, Ij?} 3 (1p, exp (-(3C)Ij?) 

= [exp (-(3C)hd. 

The arguments leading to this result are quite analo­
gous to those put forth for the classical case in Lewis' 
paper, which may be consulted for details. 

THE CLASSICAL LIMIT 

In general, there is no classical limit of Eq. (13). A 
classical limit will exist only if H and the maximal set 
(C(1p) 0 0e)(Ij?) possess classical analogs. If this condi­
tion is met, the facts that S is a product of invariant 
subspaces and that unitary transformations on S are 
measure-preserving may be used to rewrite Eq. (13) 
in the "expanded" form 

! f~k'fl(S n Mk x M k,) = !(0p , H0 p ), (14) 
(k,k'l (P} 

where 0 p is an eigenvector (in (2) of the kinetic 
energy and P = {PI' P2, ... , PN} == {Pk}, Pi being the 
momentum of the ith of N particles making up the 
system. [In writing down Eq. (14), the invariance 
property of the trace under changes of basis is in­
voked.] The expression may be simplified a little by 
noting that a sum over each of the P is the same as a 
sum over the Pi individually, provided the latter sum is 
corrected by dividing it through with N !-the number 
of ways of permuting the Pi in a given P. Thus 

2, f~k'fl(S n Mk x Mk,) = J... ! (0 p, H 0 p). (15) 
(k,k') N! (p,j 

The classical limit is obtained by writing 

~-+; fd Pi 

(in the sense of Lebesgue) into Eq. (15) and by 
replacing 0 l' by its finite-volume, unsymmetrized 
counterpart: 

-+ exp -i2,PiOfjlli H (27T1i)-3Nf [N ] 
N! i~1 

X exp [ij~lPj 0 filii] dv, (16) 

where v is the Liouville measure and the domain of 
(Lebesgue) integration is understood to be the set of 
all points in R2.V whose images under the maximal set 
of classical constants of the motion are, in a limiting 
sense, stationary. Equation (16) is brought into the 
desired form by making use of the following propo­
sition. Let 0 be observable and possess a classical 
analog 0c. Then 

Oc = exp [ -ij~lPj 0 filii Jo exp [ii~lPj 0 fjlli} (17) 



                                                                                                                                    

1456 GARRISON SPOSITO 

where N is the number of particles in the system 
described by O. Equation (17) is an immediate conse­
quence of the fact that observables with classical 
analogs depend only upon fixed parameters, the 
coordinates, and derivatives with respect to the 
coordinates. Equation (17), when applied to Eq. (16), 
yields 

L f~k'!),(S n Mk X M k,) --+ He dv. (2'TT1i)-
3Nf 

U,,!."} N! 
Once it has been noted that 

I"(S)= L (!Pm,!Pm')= L (!Pm,I!pm')' 
m,m'EJIs m,m'EJls 

M s = {{ m,m'} 3 {!Pm' !Pm'} E S; !Pm'-""" !Pm' ,-....., !p~}, 

where I is the identity operator, the denominator in 
Eq. (13) can be transformed according to the argu­
ment just given. Equation (13) then becomes, in the 
classical limit, 

fHedV 
H(c-I(J(,» --+ lim , 

~e(J""O v({p,r}3ICc{p,r} - J(,cI S bCd 
(18) 

where Cc{p, r} is the classical analog of (C(!p) 0 0e)( f{!). 

The quantity on the right-hand side of Eq. (18) is 
Lewis' 3 generalization of the Gibbs microcanonical 
average. 

J 0 URN A L 0 F MAT HEM A TIC ALP H Y SIC S VOL U M E 9, N U M B E R 9 S EP T E M B E R I 9 6 8 
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The problem of finding a weighted average of an unknown solution to an inhomogeneous equation is 
examined. An analytic approximation technique is developed in terms of an iterative series involving a 
trial operator. By choosing the operator so that successive terms in the series vanish, one obtains a solution 
which has characteristics similar to variational solutions to the problem. The iterative approach has the 
added features of giving error estimates, the sign of the error, a testing ground for the quality of classes of 
trial operators or functions, and a possible means of determining upper and lower bounds to the exact 
result. Several examples are given for both self-adjoint and non-self-adjoint systems. It is shown that the 
trial operator approach can give useful analytic approximations, with results which may be superior 
to variational calculations. 

Consider the class of problems characterized by 
the equation 

H!p = s, (1) 

where Hand s are a given operator and a given 
source, respectively, and !P is the unknown solution. 
Assuming that Eq. (1) is not amenable to exact solu­
tion, one must resort to approximate methods. A 
conventional approximation technique to equation 
solving is by iteration. Equation (1) may be put into 
a form which is convenient for iteration, by formally 
dividing H into two parts: 

H = Ho + HI' (2) 

The hope is that the operator Ho is a good representa­
tion of H. That is to say, Ho is assumed to be the 
major part of H, while HI is treated as a perturbing 
operator. Using Eq. (2) and assuming that Ho is 
nonsingular, Eq. (1) may be rewritten as 

(3) 

which is now in a form that is convenient for iteration. 

A first approximation to !P may be obtained by 
neglecting the term in Eq. (3) which involves the 
perturbing operator HI: 

!p(I) = H;IS. (4) 

Iterating once on this first-order solution, a second­
order approximation is obtained, 

(5) 

and this process may be continued. 
Suppose one is interested in a weighted average of 

the unknown solution 

1= (w, !p), (6) 

where w is an arbitrary weight function and the 
scalar product (j, g) denotes integration of the two 
functions f and g over the entire domain of interest. 
A first approximation to I, the integral of interest, 
may be obtained from Eqs. (4) and (6): 

(7) 
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where N is the number of particles in the system 
described by O. Equation (17) is an immediate conse­
quence of the fact that observables with classical 
analogs depend only upon fixed parameters, the 
coordinates, and derivatives with respect to the 
coordinates. Equation (17), when applied to Eq. (16), 
yields 
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where I is the identity operator, the denominator in 
Eq. (13) can be transformed according to the argu­
ment just given. Equation (13) then becomes, in the 
classical limit, 

fHedV 
H(c-I(J(,» --+ lim , 

~e(J""O v({p,r}3ICc{p,r} - J(,cI S bCd 
(18) 

where Cc{p, r} is the classical analog of (C(!p) 0 0e)( f{!). 
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Consider the class of problems characterized by 
the equation 

H!p = s, (1) 

where Hand s are a given operator and a given 
source, respectively, and !P is the unknown solution. 
Assuming that Eq. (1) is not amenable to exact solu­
tion, one must resort to approximate methods. A 
conventional approximation technique to equation 
solving is by iteration. Equation (1) may be put into 
a form which is convenient for iteration, by formally 
dividing H into two parts: 

H = Ho + HI' (2) 

The hope is that the operator Ho is a good representa­
tion of H. That is to say, Ho is assumed to be the 
major part of H, while HI is treated as a perturbing 
operator. Using Eq. (2) and assuming that Ho is 
nonsingular, Eq. (1) may be rewritten as 

(3) 

which is now in a form that is convenient for iteration. 

A first approximation to !P may be obtained by 
neglecting the term in Eq. (3) which involves the 
perturbing operator HI: 

!p(I) = H;IS. (4) 

Iterating once on this first-order solution, a second­
order approximation is obtained, 

(5) 

and this process may be continued. 
Suppose one is interested in a weighted average of 

the unknown solution 

1= (w, !p), (6) 

where w is an arbitrary weight function and the 
scalar product (j, g) denotes integration of the two 
functions f and g over the entire domain of interest. 
A first approximation to I, the integral of interest, 
may be obtained from Eqs. (4) and (6): 

(7) 



                                                                                                                                    

ITERATIVE SOLUTIONS BY MEANS OF TRIAL OPERATORS 1457 

To second order, from Eqs. (5) and (6) we have 

[(2) = (w, Hols) - (w, HOIHIHOIS). (8) 

The general result is 

l(n+1) = [(n) + (-l)nRn' 

[(0) = 0, (9) 
where 

(10) 

for n = 0, 1, 2, .... 
Note that the "remainder terms" Rn are of nth order 

in the perturbation HoI HI' Assuming that the itera­
tion procedure given by Eq. (9) converges, one may 
write the formal solution for the integral [ as the 
Neumann series 

00 

[= L(-l)nR n • (11) 
n=O 

(Note that, by definition, Ro = 1(1).) How well the 
iteration procedure (9) or the series solution (11) 
converges, will depend, essentially, upon how well Ho 
represents H. 

The remaining problem then is the determination 
of Ho. Clearly, one good criterion for finding the 
"best" Ho, would be to reduce the perturbation HI 
as much as possible (in some sense); for example, 
one might require that the norm II HOI HI II « 1. This 
choice of Ho and HI should certainly give a rapidly 
convergent solution. Finding this best Ho is, of 
course, another problem. 

Suppose, however, one is .able to make only a 
limited number of iterations due to practicality. This 
may be due to time or economic considerations, or 
perhaps the desire for an analytic solution causes this 
limitation. We propose to treat Ho as a trial operator, 
determining it by a scheme which is especially useful 
when one is limited to a small number of iterations. 
Furthermore, we give here a specific procedure for 
the determination of Ho. 

Suppose we formally choose Ho such that RI = 0. 
It follows from Eqs. (9-11) that 

[(2) = [(1) (12) 
and 

1 = I(I) + R2 - Ra + .... 
This choice of Ho thus eliminates terms of first order 
in HI' and the quantity of interest 1 is calculated 
accurate to second order. In this sense, this procedure 
should give results which are equivalent to a varia­
tional formulation of the problem which renders a 
functional stationary to first order. Furthermore, if 
we require that 

RI = R2 = ... = Rn = 0, (l3) 

then, at least formally, the integral 1 will be calculated 
accurate to order (n + 1). This should be equivalent 
to higher-order variational principle~. . 

A general expression for the remamders Rn , which 
involves only Ho and known quantities, may be 
obtained from Eq. (10). This is 

Rn = (w, [HOIHl"HoIS) - Cw, HOIS) 
n-I n1 - L . Rm· (14) 
m=I m!(n - m)! 

Equation (14) gives a direct relation between Ho and 
the remainders Rn. If we require that all the lower­
order remainders vanish (Rm = 0, for m < n), then 
the nth-order remainder is given by 

R" = (w, [HOIH]"HoIS) - (w, HOIS), (15) 

forn=I,2,3,···. 
We still require a concrete method for finding an 

operator Ho which satisfies the set of conditions ~13). 
One approach is to introduce free parameters mto 
the trial operator and then fix the parameters by 
requiring that the conditions (13) be satisfied: If o~e 
wishes, the trial operator may be determmed m 
terms of a trial function "Pt. For example, let "Pt be 
the solution to the fundamental equation (1), with H 
replaced by Ho: 

Ho"Pt = s or HOIS = "Pt. (16) 

Equation (16) does not yet determine Ho uniquely. 
How specific one must be about Ho depends upon the 
type of calculation one is performing. In some cases, 
for example, if we require that Ho be self-adjoint, 
then only the combination Hols may appear. In 
these cases it is sufficient that Ho satisfy Eq. (16) and 
nothing additional is required. In other cases, an 
explicit expression for HOI is needed, and then a 
particularly simple choice, for example, is to choose 
HoI as a multiplication operator. That is to say, 

HOI = "Pt/s. (17) 

By the use of trial functions with free parameters 
one also has an indirect means of introducing param­
eters into the trial operator: 

HoI(KAf-l' . ')s = "P(KAf-l' . '). (18) 

If we have an n-parameter trial operator, it may be 
fixed by requiring Eq. (13) to hold, and then I is 
estimated to order (n + 1). 

We will now apply to some general examples the 
formal theory which has been developed. At the same 
time we will compare the iterative approach involving 
trial operators given here with variational formula­
tions of the problems. Consider first a self-adjoint 
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operator H. The functional 

F('Pt) = 2(s, 'Pt) - ('Pt, H'Pt) (19) 

has the property of being stationary about the 
solution 'P to Eq. (1), with the stationary value of the 
functional being 1= (s, 'P). If we use as the trial 
function 

"Pt = Af(x), (20) 

where A is a free arbitrary constant andf(x) is a given 
fixed function, then the functional (19) becomes (note 
that everything is assumed to be real here) 

F(A) = 2A(s,J) - A2(f, Hf). 

The amplitude A which renders this functional 
stationary is that satisfying the condition oFjoA = O. 
Putting this value of A back into the functional 
in order to obtain the stationary value, as the varia­
tional estimate to I we obtain 

F = (S,J)2j(f, Hf). (21) 

The iterative solution to the problem is obtained by 
requiring that Rl = O. In this example, the weight 
function w is equal to s. Putting this into Eq. (15) for 
n = 1, we have 

Rl = (s, HolH Hols) - (s, Hols). (22) 

The trial operator may be chosen as 

Hols = Af. (23) 

This choice is consistent with Eq. (20) for comparison 
purposes. For this problem, the only requirement 
additional to (23) that need be made on Ho is that it be 
self-adjoint (and not necessarily multiplicative). In 
this case, Rl may be written as 

Rl = (Hols, H Hols) - (s, Hols), (24) 

and Ho now appears only in the combination Hols. 
After applying Eq. (23) to (24), the latter becomes 

Rl = A2(j, HI) - A(s,J). 

For Rl to be zero, a nontrivial A must be given by 

A = (s,J)j(j HI). (24') 

This gives, for the iterative solution to the problem, 

[(2) = [(1) = (s, Hols) = A(s,J) = (S,J)2j(j, HI). 

(25) 

For this case, the iterative result (25) is identical to the 
variational result (21). 

A second parameter oc may be introduced into the 
trial function by putting it into the function .l(x); in 
other words, 'Pt = Afix). The two methods again 

give the estimate 

(26) 

for the weighted average I, but the values of IX will 
differ in general. The variational estimate is deter­
mined from the conditions 

(27) 

whereas the iterative result comes from the solution to 

Whether one estimate will be better than the other 
depends upon the particular problem. For example, if 
the problem is such that I is an extremum for Eq. (26), 
then the variational result will be superior, because 
Eq. (27) is an extremum condition. However, if the 
problem is not an extremum, then the two approxi­
mations are on a par with each other and it is difficult, 
in general, to choose one over the other. The class of 
problems which are not self-adjoint is an example of the 
latter situation. 

A specific example in which the iterative result is 
superior to the variational result is given in the theory 
of resonance absorption of neutrons. This example 
will be discussed in detail later. 

We are trying to indicate that the iterative approach 
involving trial operators is useful for obtaining 
analytic solutions and is particularly convenient when 
a limited number of iterations are required. The latter 
condition exists not only because higher-order 
iterations may become increasingly complex, but also 
because it is not always clear that the series (II) con­
verges. However, we have no intention of summing 
the series, but only to obtain an "asymptotic type of 
approximation" in the sense that we have described. 

It is conceivable that with a particularly poor 
choice of the trial operator, even though Rl is chosen 
to be zero, the next term in the series R2 may be large. 
But this same situation exists in variational calcula­
tions. One can render a functional stationary to first 
order, but, by choosing a particularly poor trial func­
tion, the second-order terms may be large, thus 
producing a poor estimate of the stationary value. 

We do not claim to have a method which is gener­
ally superior to variational formulations, but only 
claim that this approach is a comparable approxi­
mation technique. However, the iterative approach 
does have the additional advantage of containing a 
great deal of other information. If the solution 
Rl(Ho) = 0 gives a reasonably convergent series, then 
the remainder term R2 contains much information 
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about the approximation. This includes: 

(1) If R z is small with respect to Ro = [(1), this is 
an indication of the reasonableness of the approach, 
and R2 gives one an order of accuracy estimate of the 
approximation I = [(I). . 

(2) The sign of R2 indicates whether the approxI­
mation is an overestimate or an underestimate of the 
exact result. Again this depends upon the series ap­
proximation being good, since we are neglecting other 
remainder terms. 

(3) By putting different classes of trial operators 
into R z , one has a means of testing their quality with 
respect to the particular calculation. Hence, without 
knowing the exact result, one has a direct means of 
comparing different classes of operators or functions. 

(4) By choosing forms for the trial operator or 
function so that one obtains both positive and negative 
values for R2 , one may be able to bound the exact 
result from above and from below. This would be an 
accomplishment for non-self-adjoint problems, since 
such bounds are especially difficult to obtain by other 
means. 

We now give some examples which we hope will 
establish the utility of the technique. Mathematical 
rigor is not intended. We simply wish to indicate that 
when good trial operators are used, not only does one 
obtain a good approximation to the exact answer, but 
additional valuable information may be obtained from 
the iterative series. 

Consider the self-adjoint problem 

H'IjJ(x) = s, -a ~ x ~ a, 'IjJ(±a) = 0, (29) 

where H is the one-dimensional operator 

1 d2 

H=l---. 
/(z dx2 

This system of equations may be used to represent 
the diffusion-theory problem as treated in Ref. I. 
If we choose the trial operator as 

H01S = Af 

for arbitrary A, then the solution for Rl = 0 is given 
by Eq. (25). This is identical to the variational solution 
of the problem. If s is spatially independent, then the 
weighted average 1= (s, 'IjJ) is related to the spatially 
averaged flux (ip = 1/2as). The approximate solution is 
given by Eq. (25) or by 

ip = (s/2a)(1 ,J)z/(f, Hf). (30) 

For any given shape function/(x), the approximation 
to the spatial average ijJ is determined by evaluating 

1 R. Goldstein, J. Math. Phys. 8, 473 (1967). 

the scalar products in (30). There are a number of 
possible trial shapes. For example, 

f1 = aZ - X Z or Iz = cos (7T/2a)x. (31) 

Both of these functions are symmetric in x and satisfy 
the homogeneous boundary conditions in (29). 
Which trial function shall we use? 

We can make use of the R z term in the iterative 
series to test the quality of the trial functions without 
reference to the exact answer. If we choose Ho as a 
multiplication operator (HOi = A//s), then we have 
from Eq. (IS) that 

A 3 

Rz(Ho) = - (f, H[jHfJ) - A(s,f). (32) 
s 

From the equation for RI(Ho) = 0 [i.e., Eq. (24')], 
the amplitude A is given by 

A = (s,J)/(f, H/). (33) 

Applying Eq. (33) to Eq. (32), we have that 

R (f) = t(l, j)[j, H(fHj)] - 1}1(I)(f). (34) 
2 (f, Hf)Z 

I f each of the trial shapes (31) are now inserted into 
(34), the results are 

R = ~ (/(a)4 J(I)(fI), 
2(fl) 14 (Ka)4 + 5(Ka)Z + .21 

which varies from 0 to 7.14 % of [(I) as Ka varies from 
zero to infinity, and 

RZ(f2) = (0.081)[0)(;;), 

which is 8.1 % of l(l) for all Ka. 
We immediately learn the following from this 

calculation: 

(1) The results are accurate to the order of 10%. 
This is not to be taken rigorously, because we are 
using only the first remainder in the series and we have 
not evaluated the other terms, Rn for n > 2. We are 
using this Rz calculation as an indicator more than 
anything else. The smal1ness of R2 suggests the 
reasonableness of the approximation. 

(2) Because R2 is positive in both cases, both trial 
shapes yield what is apparently an underestimate to the 
exact result. 

(3) Since for all Ka, R2(!1)/ [(1)(];) < R Z(f2)/1(1)(fZ)' 
It appears to be better than 12 as a trial shape. 

All of this additional information about the ap­
proximation was obtained from Rz without much labor. 
We now compare the approximate solutions (30) for 
each /, with the exact result. 
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FiG. I. The exact solution (F) and the iterative estimates (F1 and 
F2) for the average flux (Vi) as a function of ka. 

Let F = S-1ip. The exact solution to Eq. (29) for 
Fis 

F = 1 - (Ka)-1 tanh Ka. (35) 

The approximate solutions are 

F1 = (2a)-I(1,j1)2 = 0.811(Ka)2 (36) 

(11' HIl) (Ka)Z + 2.467 
and 

F2 = (2a)-1(1,j2)2 = 0.833(Kal (37) 

(12' Hlz) (Ka)2 + 2.500 

Equations (35)-(37) are plotted in Fig. 1 as a function 
of Ka. From the figure, we note, indeed, that both 
approximations Fl and Fz are reasonable, both are 
underestimates to the exact result, and Fl does give 
the better estimate. The actual errors vary from 0 to 
16 %, so that even the errors are reasonably predicted 
by Rz • 

We chose a particularly simple case to illustrate the 
utility of the method. Actually, the operator used here 
is positive-definite, so that we had a maximum 
principle. l Thus we had other means of obtaining 
some of the above information. However, in the next 
example, involving a non-self-adjoint operator, we do 
not have an extremum and the information obtained 
from R2 is even more revealing. 

We consider the problem of resonance absorption 
of neutrons in a homogeneous mixture. The equations 
here are not self-adjoint, in general, and they may be 
put into the form of Eq. (1) by writingZ 

H= s + a - Ka., 

where K is a slowing-down integral operator of the 
Volterra type and the other terms are known cross 
sections: 

I
u -(u-u') 

K = du,_e_-. 
u-A 1 - Q( 

• R. Goldstein and E. R. Cohen, Nucl. Sci. Eng. 13, 132 (1962); 
R. Goldstein, "Intermediate Resonance Absorption" in Reactor 
Physics in the Resonance and Thermal Regions (The M.I.T. Press, 
Cambridge, Mass., 1966), Vol. II, p. 37. 

An appropriate trial function for the flux per unit 
lethargy '1fJ is given by 

S + Aap 
'IjJ).. = (38) 

s + aa + AO'. 

This trial function has the property of being normal­
ized to unity above the resonance and of yielding the 
corresponding wide- or narrow-resonance solutions 
when A. is set equal to zero or unity, respectively. 
The problem is to find the value of the parameter 
A for each particular resonance, and then the corre­
sponding resonance integral. For the variational 
solution to the problem one can construct a 
functional analogous to Eq. (19), which has the 
resonance integral as its stationary value. However, 
since the problem is not self-adjoint, one has to 
examine the equation adjoint to Eq. (1) and use 
correspondingly appropriate adjoint trial functions. 2 

The iterative solution to the problem may be ob­
tained by choosing the trial operator as 

Hills = '1fJ;, = (s + A.ap)/(s + aa + A.a.). (39) 

When HoI is needed explicitly, we take it as a multi­
plication operator, which means that we need not con­
cern ourselves with adjoint trial functions or operators 
for this iterative approach. The iterative solution for A. 
is obtained from the equation RI(A.) = 0 and is given 
in the notation of Ref. 2 by 

A. = 1 - Xu. (40) 

The solution (40) has the appropriate behavior in the 
limiting narrow- and wide-resonance extremes. Once 
the parameter A is known, the resonance integral may 
be found directly. 

The Rz calculation is more complicated. Assuming 
that Rl = 0, we obtain after some manipulation (in 
the notation of Ref. 2, where 1* stands for the 
"infinite-dilution resonance integral") 

Rz(A.) = ~: {HS ~ ap)l (~:r + j(~J + 1J 
_ apes + ap)[! fJ; + fJ; (1 + 2A tan-1~) 

S2 2 fJ; A 2 

+ t1~ - fJ~ (_A_ + 1 tan-l~) + 1J 
t1~ A? + 4 A 2 

+ r:)T 1 + tz(2A tan-
1 A - A tan-

1 %) 
_ log (1 + A 2) + 2 log (1 + ~2) 

+ ~(2J(A,0) - J(A, -A) - J(O,O»J - I}, 
'TTA2 

(41) 
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where 

A = (J~ - (J~ 
(J~ , 

and 

J
' 00 d 

J(D., -D.) = ~ tan-1 (x - D.) tan-1 (x + D.). 
-00 1 + x 

The J integrals are easily evaluated numerically 
[J(O, 0) = 7T3jI2]. 

As a specific numerical example, we consider the 
192 eV resonance of U238 in a 1: 1 atomic-ratio 
mixture with hydrogen. This resonance is chosen 
because it is poorly represented by the narrow- or 
wide-resonance approximations and thus constitutes 
a good intermediate case. 2 

If we call Ao the solution to Eq. (40), then the 
resonance integral is given by 

I = 1* j (J;.o' 

which is 0.165 b for the above example. Note that it is 
not necessary to evaluate R2 in order to obtain this 
result. 

If we do evaluate R2 for this case, we find from Eq. 
(41) that 

This calculation reveals two things: The accuracy is 
of the order of 6 % and the approximation yields an 
overestimate to the exact result. 

Consider now another possible trial operator 

Hols = "PI' = (1 - fl)fo + flfl' (42) 
where 

s + Aap 
f). = for A = 0 or 1. 

s + aa + Aas 

This trial form has properties similar to that of 
Eq. (39). Equations (39) and (42) are identical for the 
limits fl = A = 0 and fl = A = 1, but they differ for 
the intermediate cases. 

If we call flo the solution to R1(fl) = 0, then 

I = I*/{3I'~ = 0.159 b 
and 

This approximation thus apparently yields an under­
estimate of the exact result, to an accuracy of the order 
of2%. 

Assuming the two approximations are reasonable, 
we have succeeded, therefore, in bounding the exact 
stationary value (the resonance integral) to this 
non-self-adjoint problem: 

0.159 b < I < 0.165 b. (43) 

A numerical evaluation of the integral equation3 

gives for the "exact" resonance integral 

I cxuct = 0.161 b. 

Not only does the exact result fall nicely between the 
bounds ofEq. (43), but it is slightly closer to the lower 
bound, as predicted by the R2'S. 

The corresponding variational calculations for this 
problem2 yield for the resonance integral I = 0.173 b. 
The iterative results thus give approximately a 5 % 
improvement over the variational estimates. 

We see, therefore, that excellent results may be 
obtained by the trial operator approach. We do not 
claim that these isolated examples imply the universal­
ity of the method, but we hope to have established the 
usefulness of the approach. 
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The ladder-approximation Bethe-Salpeter equation for a bound spin-i fermion-anti fermion system of 
zero total mass is reduced in the general case to coupled radial equations for general radial potential 
functions. Symmetries of the radial equations are also demonstrated. 

I. INTRODUCTION 

The angular analysis of the ladder-approximation 
Bethe-Salpeter equation for a bound spin-t fermion­
antifermion system has been investigated by Gunther,l 
Kummer,2 and Delbourgo et aJ.3 In the last paper, 
the Bethe-Salpeter equation is completely reduced to 
a set of coupled radial equations for a special class 
of representations of the symmetry group N4P of the 
equation. We extend this by performing a reduction 
for all classes of representation and by considering 
general radial potential functions. A feature of the 
approach is that only ordinary three-dimensional 
Clebsch-Gordan coefficients appear. 

II. MOMENTUM OPERATORS 

With a spin-i field operator 1p(x), the momentum 
operators P", M". satisfy the commutation relations 
(for details of conventions and notation, see the 
Appendix) 

[P", 1p(x)] = iC,,1p(x), 

[M".,1p(x)] = {i(x"o. - x.o,,) - !a"v}1p(x). (1) 

Taking the Hermitian conjugate of (1), and inserting 
Y4 where appropriate, we have for the adjoint field 
ip = 1ptY4 

[P", ip(x)] = iO"ip(x), 

[M"v, ip(x)] = ip{i(x"av - xva,,) + ia"v}' (2) 

Let IB) be a spin-i fermion-antifermion state in the 
Heisenberg picture and consider the two-body wave­
function or amplitude defined as 

X(Xl, x2) = (01 T{1p(xl )ip(xZ)} IB), (3) 

where T is the Wick chronological product operator. 
[We follow the usual practice of regarding X as a 
4 X 4 matrix whose (fl, v) element is 

X". = (01 T{lJIixl)ipV(X2)} IB).j 

1 M. GUnther, J. Math. Phys. 5,188 (1964). 
• W. Kummer, Nuovo Cimento 31, 219 (1964). 
• R. Delbourgo, A. Salam, and J. Strathdee, Nuovo Cimento 50, 

193 (1967). 

We wish to identify the operators 9'", .AL"V' which, 
acting in X, are equivalent, respectively, to P", M"v 
acting on IB), i.e., 

9'"X = (01 T{1p(Xl)ip(XZ)}P" IB), 
.AL"vX = (01 T{1p(Xl )ip(x2)}M"v IB). (4) 

Using the commutation relations (1) and (2), we 
find indeed 

9'"X = -i6."X, 

.AL"vX = -i{(X,,6.v - X.t!:.,,) + (x"ov - xAJ}x 
+ Ha"v, xl, (5) 

where x = Xl - X2 and X = flaXI + flbX2 for arbitrary 
fla' flb satisfying fla + flb = 1 and where c, 6. are 
derivatives with respect to x, X, respectively. In the 
center-of-mass system we have 

X = e-iET!(x), (6) 

where E is the total energy of state IE) in that system, 
and X4 = iT. 

For a system so tightly bound that E vanishes,' the 
expression for .AL". simplifies to 

.AL". = -i(x"ov - xvo,,) + Ha"y,]. (7) 

m. BETHE-SALPETER EQUATION 

For a suitable range of E, Wicks showed that the 
Bethe-Salpeter equation may be analytically continued 
in the relative coordinate X4 (and its conjugate 
momentum P4) between real and imaginary axes. We 
assume such a range for E in the following, taking X4 

and P4 real. 
Separating X according to (6), in ladder approxi­

mation, the Bethe-Salpeter equation in the Euclidean 
relative-coordinate space becomes 

(y' a - iflaEY4 + ma)f(x)(y· ~ + ipbEy, + mb) 

= -A'lJ!(X) , 
or briefly 

$Ef(X) = -A'lJ!(X), (8) 

• We ignore, in common with other authors, the fact that a 
center-of-mass system does not exist for zero-mass states . 

• G. C. Wick. Phys. Rev. 96. 1124 (1954). 
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where the linear operator '\J describes the interaction 
between the fermion of mass ma and the antifermion 
of mass mo. 

The most general form of potential we shall con­
sider is given by 

'\Jj = Vs(R)/ + Vv(R)yJYJl + tv T(R)a/Jo/a/Jo 

+ VA(R)iYsyJiYsY/J + Vp(R)Ydys. (9) 

The set of 16 linear operators {YA}, defined by 

Y AI(x) = y AI(x)Y A (not summed), (10) 

forms an Abelian group whose simultaneous eigen­
functions are YB. 

If we define 

(11) 

summed over all YA in r i for i = 1,2,3,4, or 5, we 
may write 

Now j may be expressed as 
5 

f= ~hri' 
i=1 

where for each i 

(12) 

(13) 

hI'i = "'2.flYA (no summation in i, I.h.s.), (14) 
. .:lei 

so that 

9Jf = "'2. V;(R)!jrir j = ~:CiiV;(R)fjrj, (15) 

where 
ii ij 

(16) 

The numerical values of the coefficients cij are given 
in Table I. For E = 0, we find 

[$0' 1'2 - 1\]/ = -2(m" - mb)I\(Jy . a - Y· of), 
[$0,1\ - 1',]/ = -2(m" - mb)l\(Jy· a - Y· of), 

(17) 

so that, when ma = mb , there are two operators that 
commute with ~o. They are, however, algebraically 
dependent so we select one of them 

:K=I\-I\ (IS) 

TABLE I. Coefficients Coj: 1';l'j = C,jl'j. 

1', 1'. 1'3 1'( r 5 

l' , 1 1 
f'a 4 -2 0 2 -4 
f'3 6 0 -2 0 6 
11

" 
4 2 0 -2 -4 

f\ -1 -1 

for further consideration. Its eigenfunctions Y A 

belong to eigenvalues -3 (for YA E r l , r 2), 1 (for 
YA Era, r,), and 5 (for YA E rs).6 One may regard 
its commuting as being responsible for the well-known 
decouplingofS-V, T-A,andPsectorswhenma = mo. 

Clearly 
[:It, '\J] = 0, 

and one may readily show that 

[:n, .A(,/Jo] = O. 
Since 

(19) 

(20) 

[.A(,/JV, $0] = [.A(,JlY' '\J] = 0, (21) 

we may require solutions of (S) for E = 0 to be 
simultaneous eigenfunctions of a maximal commuting 
set of the .A(,/Jv, and of :It as well when ma = mlJ. 

Define, for i,j, k E 1, 2, 3, 

Ji = tEiik.A(,ik, Qi = !(.A(,i' - .A(,'i) (22) 

or, since .A(,YJl = - .A(,/Jo , 

J i = .A(,ik = - .A(,ki , 

Q i = .A(,,, = - .A(,4; , 

where i, j, k cycle 1,2, 3. 

(23) 

Intercommutation relations between the MJlo imply 

Also, 

[Ji ,Ii] = iEii~k' [Qi' Qi] = iEii~k' 
[Ji , Qi] = iE;ikQk = [Qi' J i ]· 

IX = !.A(,/Jo.A(,/Jo = J2 + Q2, 

(24) 

{3 = !.A(,~.A(,/Jo = lE/JvuP.A(,up.A(,,,o = J . Q (25) 

commute with all .A(,,,o' and hence with Ji and Q;. 
A maximal commuting set is then given by 

Set I {IX,{3,J2,Ja}. (26) 

where we recognize J as the ordinary angular-mo­
mentum operator. Indeed, for spin-zero particles, 
the operators corresponding to .A(,,,o are obtained from 
(7) by omitting the Ha"o, ] term, and in terms of 
spherical polar coordinates (R, tp, e, c/», 

02 3 0 IX 
0=-+----

OR2 R oR R2' 

02 0 J2 
IX = - - - 2 cot tp - + --

Otp2 otp sin2 tp , 

= ---- SIO()- +--J 2 I 0 ( . 0) Ji 
sin () 00 00 sin2 0 ' 

Ja=-i:c/>, 

(27) 

• Since :It has three eigenvalues, it satisfies a cubic equation so 
that there exist no further algebraically dependent but linearly 
Independent. operators commuting with .'ao than the above, and 
the trivial 1\. 
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so that the four-dimensional surface harmonic7 

sin l 'If'C~::'~(cos 'If')Yzm((j, 4» 

is simply a simultaneous eigenfunction ohx, J2, and 
J3 belonging, respectively, to eigenvalues n(n + 2), 
/(1 + 1), and m. (In the spin-zero case f3 == 0.) 

IV. BISPHERICAL BASIS 

Let us exploit the homomorphism N4I, ~ N 3J, X N 31, 

by considering the alternative maximal commuting 
set: 

Set II (28) 

where 8 

J± = HJ ± Q). (29) 

The J± behave as a commuting pair of angular mo­
menta, and we may write 

J± = L± + S±, (30) 
where 

L; = -~i{(Xjak - xka j ) ± (x;a4 - xA)}, 

S± = i[O'jk ± O'i4' ]. (31) 

All commutators between Lf and Sf vanish, other 
than [Lj, Lj], [Li, Lj], [St, St], and [Si, Sj]. 

Combining eigenfunctions of (L +)2, L: ' (S+)2, S; in 
the familiar fashion with Clebsch-Gordan coeffi­
cients, we can therefore build eigenfunctions of (J+)' 
and Jt, and simultaneously we can build eigen­
functions of (J-)2, J:; from eigenfunctions of (L -)2, 
L3, (S-)2, and S:;. 

First, consider simultaneous eigenfunctions of (Ll?, 
L~f. Spherical polar coordinates are no longer ap­
propriate. Instead, consider "bispherical" coordinates 
(R, v, w, 4» defined by 

Xl = R sin v cos 4>, 
X 2 = R sin v sin 4>, 

X3 = R cos 11 cos W, 
(32) 

X4 = R cos v sin w, 

and with ranges: REO [0, (0), V EO [0, t7T], 4> EO [0, 27T), 
and w EO [0, 27T). Rand 4> coincide with the spherical 
polar coordinates represented by these respective 
symbols. Since (L +)2 == (L -)2, we denote these by V. 
One finds that 

L 2 = - - - + t cot 2v - - -'-2- [L3 + 3 {
I a2 a 1 (+)2 (L-)2] 
4 av2 av sm 2v 

_ 2 cos 2v LtLa}, (33) 
sin2 2v 

'c. Schwartz, Phys. Rev, 137, B717 (1965), , 
8 At first sight, the complete reflection operator 1':), Wlt~ 1':)/(:::) = 

ys/( -x)Ys. would seem to extend ~et II. In four-dimensIOnal 
Euclidean space. it is, however, not I~dependent of th: rotatIOn 
operators and one finds 1':) = exp (2m], ) = exp (-2m], ), 

L± = _li(~ ± ~). 
3 2 a4> aw (34) 

Normalized, properly phased, simultaneous eigen­
functions are given in terms of Jacobi polynomials by 

Zlrn+ m-(v, w, 4» 

= (_l)i(m+lmPN sin lml v 

Im'l <iml.lm'l> ( ) imq, im'ro 
X cos vPI-i<iml+lm'l> cos 2v e e 

= (_1)t(m+ lmI>N glm+m_(v)eimq,eim'ro 

= (_l)i(m+ lmI>N Hlm+m-(V, W, 4», (35) 

where 1 = 0, t, 1, t,··· ; and given I, the m± are in 
the set -I, -I + I,' .. ,I; m = m+ + m-, m' = 
m+ - m-. The normalization constant 

N = {21 + 1 ,(l + m-)!(l- m-)!}! 
27T2 (l + m+)!(l- m+)! 

for 1m-I;;:::: Im+l, 
or 

= {21 + 1 ,(l + m+)!(l- m+)!}2, 
27T2 (l + m-)!(l - m-)! 

for Im+l;;:::: 1m-I. (36) 

Next, consider simultaneous eigenfunctions of 
(S")2 and Sf ' If the quantum numbers corresponding 
to (S±)2 are s±, one finds that for YA EO (fl ,1\), s± = ° 
while for Y.t EO (f2' f 4), s± = t. One also finds that 
the three linearly independent matrices of type 
(l - ys)f 3 have s+ = 1 and s- = 0, while the matrices 
of type (1 + Ys)ra have s+ = 0, s- = l. Selecting 
now eigenfunctions of S31 corresponding to quantum 
numbers m/ ' we have, after defining 

at = 2-i (Yl ± iY2), 

at = 2-i (Y4 ± iYa), (37) 

the results displayed in Table H. We may regard the 

TABLE II. Dirac-space eigenfunctions, 

Eigenfunctions 
m; m-; (not normalized) 

0 0 I Yo 

1 t -at, -iy.O'i :r 
1 -:r 1 -:r aI, iy.a, 
1 1 ia; , i ' iy.a' :r -:r 
1 -2" t -iai, -i'iy,ai 

1 0 aia; 
s+ = 1, s- = 0 0 0 -2-li(aia, - ai(2) 

-1 0 -ola; 

0 1 aiai 
s+ = O,s- = 1 0 0 2-li(aja, - a.at) 

0 -1 -Glo;: 
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matrices shown as a bispherical basis for the Dirac 
space of 4 x 4 matrices. 

Since normalization of the Dirac-space-matrix 
eigenfunctions is achieved by requiring Tr (A+ A) = 1, 
each eigenfunction in Table II must be multiplied by 
a normalization factor, N = t. 

D . .L b . h (+ + - -) I enotmg a1,2 Y aJl , Wit ft = 1 2 1 2 ,ana-

ogous to the property [Y/l' Yvl+ = 20/l v , we have 
[all' av1+ = 2b~\" where b;.v = 1 when ft, v have the 
same numerical index and opposite sign index, and 
o~v = 0 otherwise. 

V. REDUCTION OF THE EQUATION 

Consider now the equal mass case ma = mb = m. 
In the S- V sector, since s± = 0 for the S term, we 
must have j+ = j- (= j, say). Distinct radial func­
tions will exist for each l value for each type (S or V) 
of term. For the S term we have simply Is = j, but for 
the V terms, since s± = t, we have Iv = j ± t for 
j ,c. O. Written in full, the solution must therefore be 
of the form 

/;m+m·-(R, l', (0,1» 
= /S(R)Zjm+m-F 

+ fV1(R) L (j + t t mi mt Ijm+) 
ms+ms-

x (j - t t ml m-; I jm-)Zj_!m,+m,-Am,+m,-, (38) 

where (I s m l m.1 jm) are Clebsch-Gordan coefficients 
and Am,+m,- are r 2-type eigenfunctions from Table II, 
normalized. In order to perform the reduction, the 
Bethe-Salpeter equation must now be written in terms 
of bispherical coordinates and matrices, and this is 
done in the Appendix. 

Define 

D± = ~ ± 2(j + (X) . 
a aR R 

(39) 

We note that 

Dt+1D;;_~ = D;;_lDt+!, (40) 

and that if'IiJHa is an eigenfunction of V with quantum 
number j + a, then 

O"Pi+a = D~!D;+1"Pi+a = Dd+!D;;"PHa' (41) 

If we define 
5 

Vi = L cjiV;CR), (42) 
j=l 

the radial equations obtained after substitutingfjm+m-

into the Bethe-Salpeter equation are 

{gJ~-}s + 2m(Dtv1 + D=iv2) = _(m
2 + ),V1)s, 

-i 1 (43a) 

D;~{DtV1 + 2(j + 1)(D:::!V2 + ms)} 
= -(2j + 1)(m2 + ),V2)V1 , (43b) 

D:{ -D=!V2 + 2j(DtV1 + ms)} 
= -(2j + 1)(m2 + ),V2)V2, (43c) 

where 

s = (2j + 1)!/s, V1 = -(j + 1)!JV1' V2 = l'fV2' 
(44) 

In Eq. (43a), the operator pairs DiDo, D=!Dt are 
to be regarded as alternatives according to Eq. (40). 

When j = 0, Iv has only the value t, then instead of 
Eqs. (43) we have 

+ - 2-
Di(DoS + 2mv1) = -em + ),V1)s, 

_ + 2 -
Do(D~V1 + 2ms) = -em + ),V2)V1 • (45) 

In the T-A sector, if the I quantum numbers for the 
(l + Ys)ra, (1 - Yo)ra , and r 4 terms are respectively 
I T+' IT-' and lA' then j+ and j- must simultaneously 
satisfy a combination of the following possibilities: 

j+ = IT +, IT -, IT - ± 1, fA ± t, 
j- = IT+' IT+ ± 1, IT-' lA ± t, 

where the signs in the last column are not correlated. 
There are therefore three possibilities: 

(A) j+ = j- = j (j '¢ 0), IT+ = fT - = j, 
(1 = j ± t; 

(B) j+ = j- - 1 = j, 'T+ = j, IT- = j + 1, 

IA=j+t; 

(C) j+ - 1 = j- = j, f T+ = j + 1, I T- = j, 
fA = j + t. 

Case A: There are four radial functions /T1(R), 
fT2(R) , 1:.41 (R), and 1:.12(R) corresponding respectively 
to terms of type (1 - Ys)r a, (1 + Ys)r a, r 4 with 
fA = j + t, and r 4 with IA = j - t. The coupled 
equations obtained after substitution into the Bethe­
Salpeter equation are 

{D~!D_:}w + 2m(Dta1 + D=~a2) = _(m2 + ),Va)w, 

D~Do (46a) 

D~{-Dta1 + 2j(D=~a2 + mw)} 
= -(2j + 1)(m2 + ),V4)a1 , (46b) 

D·;{D=~a2 + 2(j + 1)(D!a1 + mw)} 

= -(2j + 1)(m2 + ),V4)a2, (46c) 
+ - 2 -

{DiDo - (m + ),V3)}w = 0, (47) 
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where 

a1 = if Al , a2 = (j + l)tfA2' 

W = 2-t(2j + l)!UTl + fn), (48) 

W = 2-t(2j + 1)1UTI - fT2)' 

Case B: The three radial functionslTI , IT2 , andlA 
give the coupled equations 

{D~Dl} + _ 2 
D-D+ a + m(Dz t1 + Dotz) = -em + AV,)a, 

o t ~~ 
- - z 

Dt(Dotz + 2ma) = -em + AVa)tl' (49 b) 

Di(Ditl + 2ma) = _(m
2 + AVa)tz• (49c) 

where 

a =fA' tl = 21fTl' t2 = 2!fT2' (50) 

Case C: There are three radial functions as for Case 
B satisfying 

{D; Di} ( . + 2 _ + a + m Dotl + Dzt2) = -em + AV4)a 
DoDI 

(5Ia) 

Di(Ditz + 2ma) = _(m
2 + AVa)t!> (SIb) 

Di(D;tl + 2m a) = _(m
z + AVa)t2 • (SIc) 

In Case A when j = 0, there are no tensor terms, 
and lA = t only. Instead of (46), we therefore have 
the single radial equation 

- + 2 n {DoDI - (m + .h4)}al = 0. (52) 

In the P sector, since s± = 0, we have j+ = j- = 
/p = j and (with p = Ip) the equation 

{DiD; - (m
2 + AVs)}p = 0. (53) 

Equations (43), (46), and (47) are the analog, for 
general potentials, of the momentum-space equa­
tions obtained by Delbourgo el aP A complete 
solution fi+;-m+m-(R, 11, ro, ¢) of the Bethe-Salpeter 
equation, involving angular variables, can be 
obtained from any radial solution by appropriate 
combination wi,th Z functions and Dirac matrices 
[see, e.g., Eq. (38)]. 

To recover the ordinary angular-momentum con­
tent has only to note that 

so that 

J = J+ + J-, 

m = m+ + m-, 

fj+j-Jm = I (r r m+ m-I Jm)jj+j-m+m-, (54) 
m+m-

where once again three-dimensional Clebsch-Gordan 
coefficients only appear. 

VI. SYMMETRIES 

Consider the substitution j -- - (j + I ). Under the 
simultaneous substitutions s -- S, VI -- V2, and V2 -- VI 

Eqs. (43) are invariant. Under the simultaneous 
substitutions w -- w, al -- a2 , and a2 -- al the equa­
tions (46) are invariant. Similarly (47) and (53) are 
separately invariant. 

Under either the substitution j -- - (j + 2) or the 
substitution a -- a, 11 -- 1~, and 12 -- 11' the Eqs. 
(49) and (51) interchange; and under the combination 
of these substitutions the equations are separately 
invariant. 

The quasisymmetry between equations in the 
S-Vand T-A sectors noted by Delbourgo el aJ.3 is 
apparent also in the coordinate-space sets (43) and (46). 

When the interaction potential contains only 
scalar and pseudoscalar contributions, Eqs. (47) and 
(53) are identical. 

VII. UNEQUAL-MASS CASE 

When ma. -:F mb , except for the case j = 0, terms 
of all type (S, V, T, A, P) are coupled. Since for the 
Sand P terms s± = 0, we have j+ = r = j. There 
are eight distinct radial functions corresponding to 
the quantum numbers Is = Ip = IT+ = IT - = j, 
Iv = j ± t, IA = j ± t. 

When j = 0, there are no tensor terms and the 
V, A quantum numbers are restricted to Iv = fA = t. 
In this case the radial equations reduce to the coupled 
pairs 

Dt{D;s + (ma. + mO)vl} = -(ma.mo + AV1)S, 

D;{Djv1 + (ma + mb)s} = -(mamb + .?V2)V1 , (55) 

and 

D;{Dta l + i(ma. - mb)p} = (ma.ma + .?V,)a1 , 

Dt{D;p - i(ma. - mb)al} = (mamb + AVs)p. (56) 

Under the simultaneous substitutions mb -- -mb• 
A __ ±.?, al ~ VI' and ip~ s, the two sets interchange 
where the positive sign with A applies when the 
potential contains only vector and axial-vector inter­
actions, and the negative sign when there are only 
scalar, tensor, and pseudoscalar interactions. Indeed, 
since the ladder-approximation Bethe-Salpeter equa­
tion (8) is invariant under mb -- -ma, 1---+ Iys, and 
.? ---+ ±.? with the same restrictions on the potential 
for the alternative signs of .? as above, we see that 
the Delbourgo el al. pseudosymmetry is the remnant 
of a true symmetry that exists when particle and anti­
particle masses are unequal. 
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APPENDIX 

We take Ii = c = 1. Greek letter indices have the 
range 1, 2, 3, 4 with X 4 = it. op is the derivative with 
respect to xp. We take Yp to be Hermitian and 
satisfying YPYv + YvYp = 2tJpvI. As a basis for 4 x 4 
matrices we take the set of sixteen Hermitian matrices 
Y A in the sets: 

where 

r 1 = I, 
r 2 = Yl, Y2' Ya, Y4' 

r 3 = 0'23, O'a1' 0'12; 0'14, 0'24, 0'34' 

r 4 = iY6Yl, iY6Y2, iYsYa, iYSY4, 

rs = Ys, 

O'pv = -ii(ypYv - YvYp) = -O'vp, Ys = YIY2YaY4· 

Cast in bispherical form, the Bethe-Salpeter equation 
(8) for E = 0 reads 

(A· ~ + ma)f(x)(A· X + mb) = -}.'Uj(x), 

where 

A . ~ == At~t + Al~l + At~t + A2~i 

so that 

= H -O't~t + O'l~l - iO't~t + i0'2~2) 
= y·o, 

~t = 2! e'fi4> [i ~ T sin v (cos v ~ + sin v R ~)J' 
R sin v 01> ov oR 

~~ = 2!--- ±i- - cos v 
e±ico [ a 

R cos v ow 

x (Sin v £ - cos v R ~) J. 
0'1' oR 

If j(x) is expanded as 

f = S . 11 + V· A + r+ . 1:+ + T- • 1:-

where 
+ A . iY5A + p . iY5' 

T± .1:± = T±~± + 2!T±~± + T± ~± 1 1 0 0 -1 -1' 

we obtain in the equal mass case, ma = mb = m, the 

equations 

os - m~' . V = _(m2 + }.V1)S, 

m~t2S - OVt2 - t~t2(~' . V) = _{m2 + },V2)Vt2 

- (~t~l + ~t~2)Tri + (~t~tT~1 + ~i~2T~1) 
-m(~lAt - ~tAl ± ~2At T ~tA2) 

= -2(m2 + H'a)11, 

H(~t)2~1 + (~~YTi - 2~t~fTri} 

- m(~fAt - ~tAf) 

= _(m2 + }'V3)Tt, 

H(~1)2Tf + (~~)2T~1 - 2~1~~Tri} 

+ m(~~Al- ~lA~) 

= _(m2 + }'Va)T::1 , 

m{±~t(Tt + To) T (~2T~1 + ~tT!l)} 
+ OAt + t~t(~' . A) 

= _(m2 + ). V4)At, 

m{T~~(Tt - To) + (~tT::l - ~lTn} 

+ OA~ + t~~(~' . A) 

= _(m2 + ). V4)Af, 

OP = (m2 + }.Vs)P, 

~'. X = ~txl + ~lxt - ~tX2 - ~2Xt. 

Of importance are the following formulas, valid for 
m and m' positive: 

2-!(21 + l)MHlm+m-

= -(I + m-)HI_!m+_!m-_!Dt 

+ (1- m+ + l)Hl+!m+-!m-_!Do, 
2-!(21 + 1)~1 Him + m-

= -(1- m-)HI_!m++!m-+!Dt 

+ (I + m+ + l)Hl+!m++!m-+!D;, 

2-!(21 + l)~! Him + m-

= (I + m-)Hl_!m + +!m -_!Dt 

+ (I + lfl+ + l)HI+!m++!m-_!Do, 
2-!(21 + 1)~2 Him + m-

= (1- m-)Hz-!m+_!m-+!Dt 

+ (1- m+ + l)Hz+!m+_!m-+!DO. 
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We consider states prepared by a series of actions performed in a finite space-time region in the presence 
of a backgroun~ state desc~ibed by a density ~atrix. It is shown that there will always be some observable 
whose expectatIOn value In such a state wIll depend to some extent on the background. There will, 
however, be a certain set of observables whose expectation values will be independent of the background. 
We obtain a characterization of such sets of observables. 

1. INTRODUCTION 

The state set up in any experiment consists of a part, 
the local state, which is under the control of the 
experimenter, and also of a part not under his control, 
the background state. l The local state is set up by a 
series of actions performed in a finite space-time 
region. The background state describes the rest of the 
universe. The expectation values of observables may 
depend on both the background and the local state. 

It is generally assumed that an experimenter can 
perform a measurement or a finite series of measure­
ments that sets up an ideal state in which the back­
ground has no influence on expectation values.2 Such 
a state we say is background-independent. We show 
here that such an ideal state cannot be set up by 
measurements made in finite space-time regions. In 
every experiment there will be some observable whose 
expectation value will depend to some extent on the 
background state. 

For a given local state, however, there will be a 
certain set of observables whose expectation values 
will be determined by the local state independently of 
the background. We say that such observables are 
fixed by the local state. We give here a complete 
characterization of such sets of observables for a 
wide class of local states. 

In Secs. 2-4 we consider mainly those "pure­
selective" 3 local states prepared by measuring the 
value one for a projection in a finite space-time region. 
The more general case is reduced to this special case 
in Sec. 5. 

In Sec. 2 we show that a pure-selective state is 
background-independent if and only if it is formed by 
measuring a one-dimensional projection. A heuristic 
discussion is given to show that every projection 
measurable in a finite space-time region is infinite­
dimensional. This result is proven rigorously in 

* Part of this work was done in 1966 at the Institute for Advanced 
Study, Princeton, New Jersey. 

1 A. L. Licht, J. Math. Phys. 7,1656 (1966). 
2 R. M. F. Houtappel, H. Van Dam, and E. P. Wigner, Rev. 

Mod. Phys. 37, 595 (\965). See Postulate (a) on p. 611. 
3 Reference I, Secs. 3A and 4B. 

Appendix A. We conclude that no local pure-selective 
state is background-independent. 

In Sec. 3 we discuss the notions of observables 
determined and fixed by a local state. Propositions 3 
to 6 are used to characterize the set of all observables 
fixed by a pure-selective state. 

In Sec. 4 we consider in greater detail the set of 
projections fixed by a pure-selective state. The notion 
of linked projections is introduced. 

In Sec. 5 we consider the more general case of local 
states consisting of finite sequences of pure-selective 
and nonselective local states. We show in Proposition 
9 that no such state can be background-independent. 
In Proposition 10 we show that the sets of local 
observables fixed by such general states can be 
considered in terms of the sets fixed by certain purely 
selective states. 

In the following we will use some of the concepts 
and notation of Ref. 1. In particular, we assume that 
to each observable there corresponds an operator 
on a Hilbert space :re. The operators corresponding 
to observables measurable in a space-time region !X 
generate a weakly closed ring R(!X). We will occasion­
ally speak of an operator A being measurable in !x, 

by which we mean A E R(!X). 

2. DIMENSIONALITY 

Suppose a local state S is prepared in the presence 
of a background state T. The total state is then 
denoted by TS. The expectation value of an observable 
A in TS we denote by E(TS, A).4 

We regard both T and TS as being described by 
density matrices PT, PTS, respectively. Then 

E(TS, A) = Tr (pTsA). (2.1) 

We assume that the vacuum state exists and is a 
possible background. It has been shown5 that any 

4 This is the "mathematical" expectation value determined by a 
density matrix as in Eq. (2.1). It may differ from the physical 
expectation value if A is measured prior to the preparation of S. 
See Ref. I, Sec. 3C; Ref. 2, Eq. (4.7); and also S. Watanabe, Rev. 
Mod. Phys. 27, 179 (\ 955). 

5 Reference 1, Theorem 4. 
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density matrix state can be approximated in a certain 
sense by a series of measurements performed in the 
presence of the vacuum. We will therefore accept any 
density matrix state as a possible background. 

We will consider in particular the purely selective 
local state S = P prepared by measuring the value one 
for a projection p. This state can always be prepared 
in a background T if E(T,p) :F- O. It is well known 
that6 

(2.2) 

In the ideal state of ordinary quantum mechanics 
the expectation value E(TP, A) will be independent 
of T for all observables A. We show in Proposition 1 
that this is possible if and only if p projects onto a 
single vector state, i.e., if p = Icp)(cpl for some unit 
vector state cP in the Hilbert space Je. 

All actual experiments take place in finite regions 
of space-time. Suppose p is a projection measurable 
in the finite region rt.. According to Proposition 2, p 
must project onto an infinite-dimensional subspace 
of Je. We conclude that the ideal state cannot be 
prepared by a finite experimenter. 

Proposition J: Let p be a projection, T any back­
ground state such that Tp is a possible state. E(TP, A) 
is independent of T for all operators A if and only if 
dim [pJe] = 1. 

Proof: Sufficiency: If p = Icp)(cpl, for a unit vector 
cP, then 

E(TP, A) = Tr (PT Icp)(cpl A Icp)(cp\)/Tr (PT Icp)(cpl) 

= (cpl A Icp), 

independent of T for all A. 
Necessity: Let {CPn}, n = 1,2,'" ,d = dim [pJe] , be 

an orthonormal basis for pJe. Let 

Then 
PT, = ICPi)(CPil, Ai = Icp;)(cpil. 

E(TiP, Ai) = (CPi,pAjPCPi)(CPUPCPi)-1 

= I(CPi' CPi)1 2 

= ou· 
By hypothesis this is independent of i, which is con­
sistent only with d = 1. 

Proposition 2: Let p be a projection measurable in 
a finite space-time region rt.. Then dim [pJe] = 00. 

Proof" This was first proved by Guenin and Misra7 

under the assumption that the local rings of observ-

• G. Ludwig, Die Grundlagen der Quantenmechanik (Springer­
Verlag, Berlin, 1954), Chap. 11, Sec. 3. Also see Ref. I, Theorem 1. 

7 M. Guenin and B. Misra, Nuovo Cimento 30, 1272 (1963), 
Corollary to Theorem A. 

abIes are factors. We give a proof that does not 
require this factor hypothesis in Appendix A. Here 
we will only show the plausibility of the proposition 
by considering two examples drawn from non­
relativistic quantum mechanics. 

Consider first a single nonrelativistic point particle. 
The Hilbert space Jel for this particle is spanned by 
the functions 1J!(X) , L2 integrable over Euclidean 
3-space. Let Pv denote the projection corresponding 
to finding the particle in the volume V. Clearly 

Pv1J!(x) = Xv (x)1J! (x) , 

where Xv(x) is the characteristic function for the 
volume V. For any V there exists an infinite sequence 
of disjoint subvolumes {V n , n = 1, 2, ... }. The unit . 
vectors 

1J!n(X) = V;;:!Xn(x) 

are all orthogonal eigenfunctions of Pv with eigenvalue 
1. They span an infinite-dimensional subspace of 
pvJeI' which therefore must itself be of infinite 
dimension. 

Consider now the nonrelativistic quantum mechan­
ics of any number of point Bose particles. A vector 
state '¥ in this model is a sequence of symmetric 
functions, 

'¥ = {1J!n(x l ••• xn ), n = 1,2," .}, 

such that the norm 
00 

11'¥112 = ~ d3XI •.. d3xn l1J!nCXI ... xn)12 
n~l 

is finite. It is an element of the Hilbert space 

Je = Je l 8) (Je l @ Jel ) 8) (Je l (8 Je l @ Je l ) 8) .•.• 

Suppose one particle is observed in the volume V. 
Strictly speaking, this says that some one particle 
is in V and all other particles are not in V. This 
observation corresponds to the operator 

Pv = Pv + Pv @ (l - Pv) + (l - Pv) @ Pv 

+ Pv @ (I - Pv) @ (1 - Pv) + .... 
The subspace PvJeI includes PvJeI' which is infinite­

dimensional by the previous argument. It also 
includes tensor products of Pv:JeI with (1 - Pv)JeI , 
which are again infinite-dimensional. Thus 

dim [PVJeI] = 00. 

We conclude from these two examples that a 
projection p measurable in a finite region rt. is likely 
to be infinite for two reasons. First, the event corre­
sponding to the eigenvalue 1 of p could occur within 
rt. in an infinite number of disjoint ways. We see this 
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in the first example, where the particle in V could be 
in any of an infinite number of disjoint subvolumes. 
Secondly, an infinite number of disjoint events could 
occur outside ex, as in the second example, where 
particles could be distributed in an infinite number 
of ways outside V. 

3. FIXED OBSERV ABLES 

Suppose the operator A is such that E~TS, A) is 
independent of T, as T runs over all backgrounds 
such that iJ'S is possible. Then we say that S determines 
A and write 

S-A. (3.1) 

If A is self-adjoint, then a sequence of independent 
trials that gives the mean value E(TS, A) also gives 
as higher moments the expectation values E(TS, An), 
for n = 2, 3,···. 

If A is not self-adjoint, we would measure E(TS, A) 
by combining the mean values for the self-adjoint 
operators A + At, iA - iAt. Suppose we measure 
independently all the self-adjoint operators e

i8 A + 
ri8 At. By suitable combinations of the higher 
moments we could determine the expectation values 
E(TS, B), for all operators B in the ring :R,(A) of 
finite polynomials in A, At and the unit operator. 

It is clear from Eq. (2.1) that S - A implies 
S - At, and of course always S -+ 1. However, there 
may be other elements of :R/(A) not determined by S. 
The measurement of A is then not completely inde­
pendent of T. If, however, S - B for every B E :R,(A), 
then we say that S fixes A and we write 

S=> A. (3.2) 

Let F(S) denote the set of observables fixed by the 
state S. In this section we will derive a complete 
characterization of F(S) in the case when S = p. We 
will show in Sec. 5 that for a wide class of local 
states the set F(S) can be considered in terms of this 
special case. 

Proposition 3: Let p be a projection, and let A be 
some operator. Then p -+ A if and only if there is a 
scalar a such that 

pAp = ap. (3.3) 

Proof' Sufficiency: If Tp is a possible state, then 

E(TP, A) = E(T,pAp)[E(T, P)]-l 

= a, independently of T. 

This number a is the expectation value for A, given 
a measured value for p equal to I. 

Necessity: Let PT = 11f')(1f'I, with (1f',P1f') -:F O. 
E(TP, A) = (1f', pAp1f')(1f', P1f')-l = a, say, independent 

of ?p by hypothesis. Therefore 

(?p, (PAp - ap)1f') = 0, 

for any ?p. This implies, by polarization,S that 

pAp = ap. 

Remarks: In the particular case when A is a projec­
tion, 0 =::;; a =::;; 1. We then call a "the probability of 
A given p" and write 

a = P(p I A). 

Let .N' be some set of operators. Suppose p deter­
mines each element of .N', that is, 

p -+.N'. 

Let rp be some vector such that prp -:F O. By Proposi­
tion 3, for all BE.N', 

pBp = (rp,pBprp)(rp,prp)-lp. 

This equation is weakly continuous. 9 We can therefore 
extend it to the weak closure X of .N'. Since X ::::> .N', 
we see that: 

Corollary 1: p - .N' if and only if p - .N'. 

Let :R(A) denote the weak closure of the ring :R,(A). 
It is a von Neumann algebra.1o We also see that: 

Corollary 2: p => A if and only if p - :R(A). 

Proposition 4: Let.A(, be some von Neumann algebra, 
and let p be some nonzero projection in .A(,. Then 
p _ .A(, if and only if p is minimal for .A(,.11 

Proof: Necessity: Let r be some projection in .A(, , 

o < r =::;; p. By Proposition 3 there exists a scalar P 
such that 

prp = pp. 

But prp = r, and we must have r = p. Thus P is 
minimal. 

Sufficiency: Let A be some positive operator in .A(,. 

Consider the positive operator 

B = pAp. 

Since Bp = pB = B, there is a spectral resolution of 

8 F. Riesz and B. Sz-Nagy, Le~ons D'analyse Fonctionelle, 
(Akademiai Kiad6, Budapest, 1953), 2nd ed., p. 227, Sec. 92, Eq. (2). 

• J. Dixmier, Les algebres d'operateurs dans l'espace Hi/berrien 
(Gauthier-Villars, Paris, 1957), p. 33. Referred to in the text as 
Dixmier. 

10 Reference 9, Chap. I, Sec. 3.4, p. 44, Theorem 2, Corollary I. 
11 Reference 9, Chap. I, Sec 8.2, p. 122, Def. 2. 
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p, F(A) in .A(,,I2 such that F(A) S;; p, F(IIBII) = p, and 

I
IlBII 

B = 0 A dF(A). 

The projection p is minimal; therefore F(A) = 0 for 
A < IIBII and 

B= IIBlip. 

Any operator A E.A(, may be written as a sum of 
positive operators; therefore pAp = I1.p for some 
scalar 11.. By Proposition 3, P - .A(,. 

Proposition 5: Let Jf' be a von Neumann algebra 
fixed by p. Let .A(, be the von Neumann algebra 
generated by p and Jf'. Then (a) p -.A(, and p is 
minimal for .A(,; (b) .A(, is a direct sum .A(, = .A(,. + 
.A(,1" with .A(,.P = 0, P E .A(,1'; (c) .A(,1' is isomorphic 
to 1:(.3\,), the ring of all bounded operators on some 
Hilbert space .3\,. 

Proof: Part (a): Let :1' denote the ring of finite 
polynomials in p and Jf'. The ring .A(, is weakly 
generated by:1'. By repeated application of Proposition 
3, we see that p -:1'. By Corollary 2 to Proposition 3, 
we see that p - .A(,. Proposition 4 then shows that p 
is minimal for .A(,. 

Part (b): Let C be the central support of pP Let 
.A(,. = (l - C).A(" .A(,1' = C.A(" and Part (b) is 
immediate. 

Part (c): This is essentially Example 4 of Dixmier 
(Ref. 9, Chap. I, Sec. 8, p. 126). For completeness we 
give the proof in Appendix B. 

Remark: Let II> denote the isomorphism that takes 
.A(,1' onto 1:(.3\,). Clearly II> takes minimal projections 
onto minimal projections. The minimal projections of 
1:(.3\,) are just the one-dimensional projections. We can 
find an orthonormal basis for.3\" {CfJn' n = 1,2,' .. pus 
such that 

II>(P) = I CfJl)( CfJll. 

The operators I CfJn)(CfJml span 1:(.3\,). Define 

lI>-l(jCfJn)(CfJml) = Vnm • 
Clearly 

Vll = p, 

VnmVkZ = bm.kVnz , 

V!m = Vmn · 

(3.4) 

12 Consider tne operator B as restricted to pJe, and apply the 
spectral resolution tneorem of Ref. 8, Sec. 107, p. 272, and Proposi­
tion 2 of Ref. 9, Cnap. I, Sec. 1.2, p. 3. 

18 Reference 9, Cnap. I, Sec. 1.3, p. 7. Tne central support of p 
is the least central projection greater than p. 

14 In general J\, does not nave to be separable. However, we assume 
tne over-all Hilbert space to be separable. This forces ..A\.,p to be 
countably decomposable [Ref. 9, Chap. I, Sec. 1). The set {Vnn } 

must then be countable, and Je therefore separable. 
15 Reference 9, Chap. I, Sec. 8, Example 2, p. 126. 

Any operator B E .A(,1' can be written as 

B = IcnmVnm , 

with scalars cnm determined by 

A set of operators {Vnm} that satisfy Eq. (3.4) will be 
called a set of matrix units.16 

This leads to the following complete characteriza­
tion of all operators fixed by a given projection p. 

Proposition 6: p => A if and only if A = A. + A1" 

where A.A1' = A1'A. == pAs = A.p = 0, and there 
exists a set of matrix units Vnm as in Eq. (3.4) and 
scalars cnm such that 

Proof: Necessity: Take Jf' = 3t(A) and apply 
Proposition 5. Let A. to be the part of A in .A(,., A1' 

that part in .A(, l' , and the result follows by the above. 
SUfficiency: The orthogonality conditions imply 

that 3t(A) is the direct sum 3t(A.) + 3t(A1')' with 
p3t(A.) = O. The weakly closed ring generated by the 
Vnm , 3t({Vnm}), is clearly fixed by p and contains 
3t(A1')' Thus p - 3t(A 1') , and therefore p => A. 

4. FIXED PROJECTIONS 

An important subset of F(P) consists of the pro­
jections fixed by p. In this section we will construct 
explicitly the decomposition of such projections 
according to Proposition 6. 

Proposition 7: Suppose p -q. Let a = Pep I q) . 
Then, as in Proposition 6, q = q. + q1' where (a) 
q1' = qpqa-l

; (b) q1' - P and p - q1'; (c) q1' = 
aVll + [a(1 - a)]t(V12 + V21) + (1 - a)V22 , where 
the operators 

Vu = p, VZ2 = (1 - p)QIl(1 - p)(1 - a)-I, 

V21 = (1 - p)q1'p[a(l - a)]-l 

are matrix units. 

Proof: Part (a): The ring 3t(q) is the set of all 
operators of the form 11.1 + flq, for all scalars 11., fl. 
Therefore the relation p -- q is equivalent to p => q. 
Let .A(, denote the ring generated by p and 3t(q), and 
let C be the central support of p in .A(,. According to 
Proposition 6, 

q = q. + q 1" with q. = (l - C)q, 

q1' = Cq. 

181. Kaplansky, Ann. Math. 56, 460 (1952). 
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By Proposition 3, pqp = ap. Consider the operator 

e = qpqa-l • 

This is a projection, as 

e2 = qpqqpqa-2 = q(pqp)qa-2 = e. 
Also 

e = qCpqa-1 = q'J)pq'J)a-1 = Ceo 

Thus e < C and <q'J)' The operator e' = q'J) - e is 
clearly a projection <q'J) and < C. Since 

e'p = C(q - qpqa-1)p 

= 0, 

we see that e' commutes with both p and q. It is there­
fore in the center of .A(,C. In Proposition 5 it is shown 
that .A{,c is a factor. Therefore e' = C or O. It is 
orthogonal to p; therefore e' =;6 C. Thus e' = 0 and 

q'J) = qpqa-1• 

Part (b): By Part (a), 

pq'J)P = p(qpq)pa-1 = (pqp)(pqp)a-1 

=ap; 
thus P ~q'J)' 

q'Ppqp = (qpq)p(qpq)a- 2 = q(pqp)(pqp)qa-2 

= aq'J), 

and q'J)~p' 
Part (c) follows immediately from Parts (a) and (b). 

Remark: If two projections p, q are such that both 
p ~ q and q ~ p, then we say that both p and q are 
linked and write p~q. In Proposition 7 we see that 
every projection fixed by p breaks up into a part 
orthogonal to p and a part linked to p. For linked 
projections the following interesting reciprocity rela­
tion holds: 

Proposition 8: If p~q, then Pep I q) = P(q I p). 

Proof: By Proposition 3, the respective probabilities 
are the constants a, b in the equations 

pqp = ap, 

qpq = bq. 

(4.1) 

(4.2) 

If a = 0, it follows that q and p are orthogonal and 
b = 0 = a. Suppose now that a =;6 O. Consider the 
operator W = qpa-t. By Eq. (4.1) 

wtW= p; 

therefore W is a partial isometryY The product WWt 

17 M. A. Naimark. Normed Rings, translated from the first 
Russian edition by L.F. Boron (P. Noordholf, Ltd., Groningen, The 
Netherlands, 1959), Chap. I, Sec. 5.14. p. 112. 

must therefore be a projection. It is bcrlq, by Eq. 
(4.2), and this is a projection only if b = a. 

5. LOCAL STATES 

In the previous sections we have investigated those 
local states that can be prepared by the measurement 
of a projection. We will consider in this section a 
wider class of local states. 

In the following, the von Neumann algebra of 
observables based on a region IX will be denoted 
R(IX).lS The spacelike complement of IX will be 
denoted by IX'. The ring R(IX,) will be assumed to be in 
the commutant of R(IX), i.e., 

R(IX') c R'(IX). 

The commutant of R(IX'), R'(IX') then includes R{IX). 
There are two main types of local states, selective 

and nonselective. l In a pure-selective state p, a 
projection p is measured in a finite space-time 
region IX and those independent trials are selected in 
which the measured value is one. A selective state 
takes the background density matrix PT int06 

(5.1) 

In a nonselective state S, some action is performed 
in the region IX, but no selection of trials is made. 
The density matrix PT is taken intol9 

00 t 
PTS = I AnpTAn , (5.2) 

n=l 

where {An' n = 1,2, ... } is a sequence of operators 
in R'(IX') such that 

(5.3) 
n 

We will consider in this section local states S~ set 
up in the region IX by preparing a finite sequence of 
selective and nonselective states. For example, suppose 
S~ = pS. Applying in turn Eqs. (5.2), (5.l), and (5.3), 
we find 

PTpS = I AnPTpA~ 
n 

= I AnPPTpA~(Tr PTPr
l 

n 

= ~ AnPPTpA~ (Tr PT * pA~AmP r· 
By repeated application of Eqs. (5.1)-(5.3), it can be 
shown that for any such state S~ there is a sequence of 

18 R. Haag, Colloque internationale sur les problemes mathematique 
de la theorie quantique des champs, Lille, 1957 (Centre National de la 
Recherche Scientifique, Paris, 1959); H. Araki, Lecture Notes, 
University of Zurich (\961); H. Araki, Progr. Theoret. Phys. 
(Kyoto) 32, 844 (1964); H. J. Borchers, Lecture Notes, Princeton 
University (1966). 

19 Reference 1, Theorem 5. 



                                                                                                                                    

BACKGROUND DEPENDENCE OF LOCAL STATES 1473 

operators Bn in R'(oc') such that 

(5.4) 

where 2n B~Bn is a bounded operator. 
We will show in Proposition 9 that no states S~ of 

the above form can fix all operators. We will then 
investigate in Proposition 10 the local operators fixed 
by such a state. 

Proposition 9: Let S~ be a local state preparable in 
the finite region oc and specified as in Eq. (5.4) by the 
sequence {Bn E R'(oc'), n = 1,2," '}. Then S~ cannot 
fix all operators. 

Proof: Let A be some operator. If S~ determines A, 
then the expectation value 

E(TS" , A) = Tr (PT ~ B!ABn) (Tr PT ~ B!Bn r 
is independent of T. Just as in Proposition 3, this is 
equivalent to 

L B~ABn = a L B~Bn' (5.5) 
n n 

for some scalar a. Suppose Sa fixes all operators. Then 
in particular it fixes all A E R( r/). For such A, Eq. 
(5.5) implies that 

L B;,Bn(A - al) = O. (5.6) 

If R(oc') were a factor,2o this would imply that 

A = aI, 

for all A E R(oc'), and R(rI.') would be the trivial ring 
of scalars, which we assume is not the case. Thus we 
need only consider the case when R(rI.') is not a 
factor. There then exists a projection G in the center 
3 of R(rI.') such that21 

GA = ocG (5.7) 

and 

G 2 B~Bn = 2 B;,B n . (5.8) 

Equation (5.8) implies that 

GBn=Bn, for all n, (5.9) 

and we can take G to be the smallest central projection 
such that Eq. (5.9) holds. Thus Eq. (5.7) holds for all 
A E R(rI.') and G fixed. Let Q denote the vacuum 
vector. Then22 

(R(rI.')Q] = X. (5.10) 

20 J. von Neumann and F. J. Murray, Ann. Math. 37, 116 
(1936), Corollary to Theorem III. 

21 Reference 9, Chap. I, Sec. 2, Example 6. 
22 H. Reeh and S. Schlieder, Nuovo Cimento 22,1051 (1961). 

By Eq. (5.7), 

GAO = (0, GAO)(Q, GO)-IGQ. 

Let GO IIGOII-l = <1>. Then GAO = (<I>, AO)<I>. By 
Eq. (5.10) the vectors AO are dense in Je. Therefore 

G = 1<1»(<1>1, 

and thus G is a finite-dimensional projection. But 
G E 3 C R(rI.') and, as shown in Appendix A, 
dim [GJe] = 00, a contradiction. 

Definition: Let f3 be some finite space-time region. 
Let Fp(S~) denote the set of all operators Ap in the 
local R(f3) such that 

s~ => Ap. 

The following proposition shows that this set can be 
completely characterized by Proposition 6. 

Proposition 10: Let y be some finite region space­
like relative to rI. U f3. Let (j = oc U y. There exists a 
projection q E R'«j') such that 

FP(S~) = R(f3) (\ F(q). 

Proof: Let Ao E Fp(S,,), then S~ ==> Ao and Eq. (5.5) 
holds for all A in :R(Ao). Let H = 2n B~Bn . 

It is known that R(y) is of infinite type.23 •24 In 
Appendix A we show that therefore there exists an 
infinite sequence of orthogonal projections, summing 
to 1, and each equivalent to I mod R(y). There 
exist then partial isometries Wn E R(y) such that 

t 
WnWn = bn.ml, 

2 Wnw! = 1. 
(5.11) 

n 

Consider the operator 

nm 

Thus IIBtBIl = IIHII, and B must be a bounded 
operator, with IIBII = IIHI\I. The operators Wn are 
in R(y) and the Bn are in R'(oc'). Thus BE {R'(oc'), 
R(y)}". The region 15 = oc U y includes both oc and y. 
It follows that b' c oc'. By Assumption (AI) of 
Appendix A, 

R(b) :::> R(y) 

23 Reference 7, Theorem A. 
24 R. V. Kadison, J. Math. Phys. 4,1511 (1963). 
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and R(b') c R(oc'), which implies 

R' (b') ::::> R' (IX'). 

Since also R'(b') ::::> R(b), we have 

R'(b') 3 B. 

We claim that Eq. (5.5) is equivalent to 

BtAB = aH. 

For, since y is also spacelike relative to fJ, 

BtAB = !B~AW~WmBm 
nm 

(5.12) 

By the polar-decomposition theorem, 25 there exists 
a partial isometry W E R' (b') such that 

B = WHt, 

where wt W = E projects onto the range of Hand 
WWt = q projects onto the range of B. 

Let F(A) denote the spectral resolution of H26: 

fllHIl 
H = Jo A dF(A). 

Note that E = 1 - F(O). For TJ > 0, consider the 
operators 

fllllll -t 
Gq = q A dF(A). 

We have 

HG: = G:H = GqHG" = 1 - F(TJ). 

The upper strong continuity of the spectral resolution 
F().) implies that 

E = strong limit" .... o HG: 

= strong limit" .... o HtGq • 

From Eq. (5.12) we get 

GqHtwtAWHtGIl = aG"HGIl • 

Taking the strong limits as first TJ and then It -+- 0, this 
becomes 

wtAW= aE. 

Premultiplying by Wand postmultiplying by wt yields 

qAq = aq. (5.13) 

Equation (5.5) thus implies Eq. (5.13). It is actually 
equivalent to Eq. (5.13), as may be seen b! p.re­
multiplying Eq. (5.13) by HtWt and postmultIplymg 
by WH*. 

Thus Sa: -+- A if and only if Eq. (5.13) holds. By 

OJ J. von Neumann, Ann. Math. 33,294 (\932); Ref. 9, Appendix 
III and p. 5. 

oa Reference 8, Sec. 107. 

Proposition 3, this equation is, however, exactly the 
condition that q -- A. The operator A is an arbitrary 
element of :R(Ao), and thus q ~ Ao if and only if 
Sa: ~ Ao. Since Ao is an arbitrary element of Fp(Sa:), 
we see that 

Fp(Sa:) = R(fJ) (\ F(q). 

6. DISCUSSION 

We have seen that a local state composed of a 
finite sequence of selective and nonselective local 
states will not fix all operators. According to Proposi­
tion 10 it will fix in each region just those operators 
that are also fixed by a pure-selective state. 

Propositions 5 and 6 serve to characterize all 
operators A that are fixed by a pure-selective state q. 
Essentially, A must be such that q is a minimal 
projection for the von Neumann algebra generated 
by A andq. 

It is an open question at present whether a local 
state of the above type exists that will fix all operators 
measurable in a finite space-time region oc. This would 
require the existence of a projection q measurable in 
some larger region fJ that was minimal for the ring 
{R(oc), qr. 
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APPENDIX A 

Let oc be any region such that its spacelike com­
plement oc' contains an open subregion. Let p be any 
projection in the local ring R(oc). We will prove here 
that dim [p.le] = 00. 

We assume the standard axioms for local rings.18 

In particular, we assume: 

Isotony: oc c fJ implies that R(oc) c R(fJ) , (Al) 

Locality: R(oc') C R'(rx), (A2) 

and we assume the existence of a common vector n, 
cyclic and separating for all the local rings22 

[R(rx)n] = .le. (A3) 

We do not assume that these rings are factors. 
By Kadison's Lemma (2),23.24 Assumptions (,,\1) 

and (A3) imply that the rings R(oc) are not of fimte 
type. The same lemma can be seen to show that ~o 
direct summand of a local ring R(oc) can be of fimte 
type. Therefore by Ref. 9 (Chap. I, Sec. 6.7, Proposi­
tion 8, p. 97), the rings R(oc) must be properly 
infinite.27 

27 "Proprement infini" in Ref. 8. A properly infinite factor would 
be either type 100 , 1100 , or III", . 
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For the regions oc considered here, there always 
exist open regions fJ, "I, b such that 

fJ :::> oc, "I C fJ n oc' , and b C fJ'. 

We will show that any projection p E R(oc) is properly 
infinite in R(fJ).28 The result will then follow. For then29 

the Pn all orthogonal and nonzero. Since 

pJe = 2 EEl PnJe , dim [PJe1 = 00. 

Following Borchers,30 we consider the projection 

qJe = [R(fJ)pQ1. 

Borchers shows that q is the central support of P in 
R(fJ) and also that P -- q mod R(fJ). By Ref. 9, 
(Chap. I, Sec. 6.7, Proposition 7, p. 97), the projec­
tion q must be properly infinite in R(fJ). Therefore p 
must be properly infinite in R(fJ). 

The identity operator is in each R(oc). Therefore the 
identity is properly infinite in each R(OC).28 Applying 

o. Reference 9, Chap. Ill, Sec. 2.1, p. 241, Definition 1. 
28 Reference 9, Chap. III, Sec. 8.6, Theorem 1, p. 319, Corollary 2. 
30 H. J. Borchers, "A Remark on a Theorem of B. Misra," pre-

print, Institut fUr Theoretische Physik der Universitat Gottingen 
(1967), Theorem III. 3. 

Ref. 29, we see that the identity can be written as a 
sum over an infinite sequence of nonzero orthogonal 
projections, each equivalent to I mod R(oc). 

APPENDIX B 

We give here the proof of Part (c) of Proposition 5. 
Part (c): The projection C is minimal for the center 

3 of .;\(,. For if not, there exists r E 3 or r < C. By 
Part (a) and Proposition 3, there exists a scalar p such 
that prp = pp. But r E 3; therefore prp = rp and 
rp = pp. This is possible only if p = 0 or I. In the 
first case the central projection C - r < C is greater 
than p. In the second case r < C is greater than p. 
In either case we have a contradiction to the definition 
ofC. 

Thus C is minimal for 3. The center of .;\(,p is 3C 
and must therefore consist of just the scalar multiples 
of C. The ring .;\(,1> is isomorphic to .;\(,1> restricted to 
CJe, ';\('1>1 •• 31 The center of .;\(,1>1< is then the scalar 
multiples of the identity, and ';\('1>1. is a factor. It is 
clear that pic is minimal for .;\(,1>lc' By Dixmier 
(Ref. 9, Chap. I, Sec. 8, Theorem I, Corollary 3, p. 
124) .;\(,1>lc is isomorphic to £(J\,), for some Hilbert 
space J\,' Therefore .;\(,1> is isomorphic to C(J\,). 

31 Reference 9, Chap. I, Sec. 2.1, Proposition 2, p. 19. 
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The notion of coherent superposition is generalized so as to apply to local states. 

1. INTRODUCTION 

A unit vector state Ix) can always be formally 
constructed by superimposing two other vector states, 

Ix) = [a 111') + blIP)] lIa 111') + b IIP)II-l
. 

In practice Ix) would be set up by measuring the value 
one for the projection Px = Ix)(xl. 

This process of coherent superposition applies only 
to vector states. The projections onto single vector 
states are however not observable in finite regions of 
space-time. 1.2 A finite observer therefore cannot 
construct a vector state from an arbitrary background, 
but only from a background that is already a vector 
state. The coherent superposition of vector states is 
then strongly background dependent. 

The coherent superposition of local states is, how­
ever, a common laboratory practice, in which the 
influence of the background state is generally felt to be 
negligible. This laboratory superposition cannot 
therefore correspond exactly to the simple addition of 
vector states. 

In the following we will derive a generalized defini­
tion of coherent superposition that does apply to local 
states. In Sec. 2 we investigate a typical example of 
coherent superposition in a finite laboratory. This 
leads to a general definition in terms of sets of lin~ed 
projections3 in Sec. 3. Proposition 1 in Sec. 4 ~1~es 
the mathematical structure of these sets. PropoSItIon 
2 in Sec. 5 shows the relationship of the general 
coherent superposition to the usual addition of 
vector states. 

Notation: The results and notation of Refs. 2 and 4 
will be used throughout. To each observable there 
corresponds an operation on a Hilbert spac~ .1e:. The 
measurement of the value one for a projectIOn p 
produces a state denoted by p. If this measurement 
takes place in the presence of a background state T, 

• Part of this work was done in 1966 at the Institute for Advanced 
Study, Princeton, New Jers~y. . 

1 M. Guenin and B. MIsra, Nuovo Omento 30, 1272 (1963), 
corollary to Theorem A. . . . 

2 A. L. Licht, J. Math. Phys. 9, 1468 (1968), ProposItion 2. ThIS 
reference will be referred to in the text as BD. 

3 Reference 2, Sec. 4. 
4A. L. Licht,J. Math. Phys. 7,1656 (1966). 

described by a density matrix PT' the total state 
we denote by Tp. It is described by the density matrix 

PTp = PPTP/Tr (PTP), 

An observable A is said to he determined by the state p, 
p --+ A, 

if the expectation value of A in the state Tp is inde­
pendent of T. It is said to be fixed5 by p, 

p::::!?A, 

if every operator B in the von Neumann algebra 
:Jt(A) generated by A is determined by p. 

The relations p --+ q and p ::::!? q are equivalent if q is 
a projection. The expectation value of q in a state Tp 
then depends entirely on p. We call it the probability 
of q given P, and write P(p I q). If two projections 
P, q are such that p --+ q and q --+ p, then we say that 
they are linked,3 and write 

p~q. 

2. ELECTRON SPIN 

Consider the apparatus shown in Fig. 1. Enclosed 
in an evacuated chamber are an electron gun G, an 
electron counter C, and several devices for measuring 
spin xt: i, Zj, I' Y t, \ . Electrons are emitted by G ~n 
a well-collimated beam directed along the y aXIs. 
The counter C records each electron without absorbing 
it or causing it to deviate appreciably from its path. 
The counters Zt, Z \ when turned on record the 
passage of an electron with spin up, down, respec­
tively, relative to the z axis. The counters XU, Y 1.+ 
do the same for spin relative to the x and y axes. 
The x spin may be measured either immediately 
before the z-spin measurement in Xl, or immediately 
afterward in X2. We reserve the right to introduce 
other counters into the chamber without changing the 
diagram. . 

Let c denote the projection correspondmg to the 
observation of an electron by C. Let x f ' x t ' i = 1, 2 
be the projections corresponding to finding the x spin 
either up or down in counters Xl.2. Let Zt ' z \ ,Yt ,! \ 
be the corresponding projections for the z and Y Spill. 

5 Reference 2, Sec. 3. 

1476 
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FIG. 1. Electron spin apparatus; G is an electron gun, C an 
electron counter; xl:! ,Zt,j , Y t,1 are counters that record electrons 
with spin up, down, relative to the x, Z, y axes. 

The whole apparatus is of finite size, and is assumed 
to be in existence for only a finite time, so these 
projections are all measurable in some finite space­
time region IX. They are then infinite projections, 
according to BD Proposition 2. 

We assume ideal collimation and sensitivity. This 
is, of course, unobtainable in practice. There is 
always a small probability that an electron will 
diverge from the beam between counters and be 
absorbed by the chamber wall. A counter rp.ay fail to 
record an electron that passes through it. Spurious 
electrons may be emitted by the walls. We consider 
here the ideal case, and assume that such possibilities 
can be ignored. 

If the z- and y-spin counters are turned off, and the 
x-spin counters are turned on, in this ideal apparatus 
Xl will click if and only if the Xf counter clicks. 
This implies6 that 

I 2 
Xl = Xl = Xl, say. 

Similarly we must have 

xl = X1 = X). 

If Xl clicks, then X) does not and vice versa. The same 
holds for the pairs Zt ' Z) and Y t ' Y) . This implies 
that the corresponding projections are orthogonal, 

Xtx) = YtYI = ZtZI = O. 

Every electron counted by C will be recorded by the 
X, Y, or Z counters if they are turned on, and every 
electron recorded by a spin counter must have been 
counted by C. This is equivalent to 

c=xl +Xj =Yl +Yj =Zt +Zj' 

Let T denote the background state. The condition 
of the universe outside the chamber, the temperature 
of the chamber walls, the stray magnetic field within 
the chamber, etc., are all specified by T. Suppose 
the counter Zt clicks. The state is then Tit. We 
would then expect Xf or Xr to click, each with 
probability t. 

• Reference 2, Sec. 4. 

Stray magnetic fields in the chamber could cause the 
electron spin .to flip between Z and XI. The proba­
bility of X~ clicking would then be different from i by 
an amount depending on T. In a magnetically well­
shielded chamber the probability will be very close to i 
for a wide range of T. In the ideal chamber it will be 
exactly i, independently of T. Then Z t fixes x j , x t ' 

withP(Zt IXj)=p(Zt IXj)=i. 
If counter Xf or Xl were to c1ic~, then in the ideal 

chamber we expect that Z t will click with probability 
t, independently of T. Thus 

and Zt is linked to Xt and xI' 
We expect in fact that all pairs of projections in the 

set S = {Zt I ' Xt j ,Yt j},are linked with probabilities i 
or O. 

Consider the operators formed from products of 
projections in S, XtYt' YtXt' etc. We expect also 
that in this ideal apparatus the expectation values of 
all these operators should be fixed by each projection 
in S. 

It is customary to regard the state Tit as a coherent 
superposition of the states TXt and Tx j , and also as a 
coherent superposition of TXt and TYt. By BD 
Proposition 2, these are not likely to be vector states, 
so that this type of superposition is not just the 
addition of vector states. We give below the mathe­
matical structure of this type of superposition. We 
will show first that {x t ' x j}, {x t ,Y j} are examples of 
"coherent sets of projections." We will then give a 
general definition of the coherent superposition of 
such coherent sets, and we will show that Zt fits this 
definition. 

Remarks: In this ideal apparatus the two different 
counters X, ' X t correspond to the same operator x t . 
They measure Xt in different places and at different 
times. The states Txt and TXf are therefore very 
different. 

The state Txt is prepared before the measurement 
of Zt . The expectation value E(TXt ' Zt) is therefore 
a prediction.7 We expect it in this apparatus to equal 
t independently of T. 

The state Tx f is prepared after the measurement of 
Zt . The expectation value of Zt in this state, denoted 
by M(Tx~z Zt), is therefore a retrodiction. 7 It can be 

7 See Ref. 6 and also S. Watanabe, Rev. Mod. Phys. 27, 179 
(1955). 
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shown8 to equal E(TC, Zt), and will not be independ­
ent of T. 

The state TXt is therefore not well defined. It is 
not completely specified until the place where Xt is 
measured is given. We will however use TXt as an 
abbreviation for either TXt or TX~ . 

A retrodiction is only in certain very special cases 
independent of the background.9 It follows that the 
relation p ->- q is physically meaningful only if q can be 
measured after the measurement of p. We will 
assume this to be always possible for the projections 
considered here. 

3. COHERENCE 

Let Q = {qi' i = 1,2," ,} be a sequence of 
projections. Let W(Q) denote the weakly closed 
* ring generated by Q. The projection q = Uiqi is 
the biggest projection contained in W(Q), and is not 
necessarily the identity. 

Each operator A in W(Q) we interpret as a measure 
of the relative coherence of the states qi' We will say 
that Q is a coherent set if all such measures are 
background independent, that is: 

Definition 1: Q is a coherent set if for all qi E Q 
and all A E W(X), 

Since 'llJ(Q) contains the q;'s themselves, it follows 
from this that the q;'s must be pairwise linked. 

Example I: A collection Ql of one-dimensional 
projections qi = I (]li)( Til is automatically a coherent 
set. The ring 'W(Ql) consists of operators A of the 
form 

for appropriate scalars lX ij • 

Example 2: Q2 = {x I ' x I} is a coherent set. The 
projections x I ' x I are orthogonal, therefore trivially 
linked. 

'Ul(Q2) = {lXxI + fix), for all scalars IX, fi) 

Note that XI U x I = XI + x I = c. 

Example 3: Consider the set Qa = {xI' YI}' In our 
ideal apparatus we must have XI (-+ YI' By BO 

• From Ref. 6, Eq. (2.14), 
M(Txj, zl) = M(T, Zt'jzl)[M(T, ZtX tZt) + M(T, Z jX)ZI)1 1 

= 1M(T, zi)BM(T, zi) + ~M(T. ZI)] , = M(T, zIHM(T, ell 1 

= M(T, cz <,)[M(T, c)) '= M(7,:, ZI) = £(T,:, = ). 
" Reference 6, Sec. 3. 

Proposition 3, we then have 

xIYlxl = tXt, 
YIXtYt = iYI' 

It then follows that 

W(Q3) = {axt + (3YI + YXtYI + I5Yt Xt' 

(3.1) 

for all scalars IX, (3, y, t5}. 

Equations (3.1) imply that Qa ->- W(Qa), and therefore 
Qa is a coherent set. Indeed, it is clear that any pair of 
linked projections forms a coherent set. 

Note that XI U Yt = c. For, let e = Xt U Yt . 
Since c > x) and c > Yt, we have c ~ e. Now 
e > Xt and e > Yt. Therefore 

eYt =Yt, 

eCYt = cYt' 

e(xt + xI)Yt = (Xt + xl)Yt 

= XtYt + exly)· 
Thus 

(3.2) 

We assume that XI ~ YI with probability i. By BD 
Proposition 3, x1YtXI = lx l . Applying this to Eq. 
(3.2) yields 

eX I = XI' 

and e > XI' We have e > XI and e > xI' therefore 
e ~ X t + X I = c. Thus e = c. 

Remark: Consider the projection Zt . We have seen 
that Zt is linked to each projection in both Q2 and Q3 
with probability t. Therefore it neither equals nor is 
orthogonal to any such projection. Also 

Zt < C = Xt U Xl = Xt U Yt, 

and we expect that in both cases 

Zt ->- W(Q). 

This suggests the following definition: 

Definition 2: Suppose that Q = {qi' i = 1,2,"'} 
is a coherent set of projections. Let p be some 
projection. We will say that p is a coherent super­
position over Q, if: 

(I) P<.->qi' for all i; 
(2) P ->- 'W(Q); 
(3) pep I qi) ~ 0, 1 for all i; 
(4) p ~ U iqi' 

These conditions (I) to (4) can be interpreted as 
follows. Condition (I) states that the relationship 
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between p and qi is background-independent. Con­
dition (2) insures that the relative coherence of the 
i{/s is determined in the state p, independently of the 
background. Condition (3) states that p is a coherent 
superposition over no subset of Q, and Condition (4) 
states that p is a coherent superposition over no set 
Q' greater than Q. 

In Examples 2 and 3, Zt is clearly a coherent 
superposition in this sense over {Xt, xl}' or over 
tXt ,Yt}· 

In Example 1, let p", be the projection onto the 
vector state tp = Ia i 9?i' The state p", is the vector 
state tp. The projection p", is a coherent superposition 
in this sense over the qi provided that tp neither equals 
nor is orthogonal to any of the rp/s. 

Remark: If p, Q are as in Definition 1, we will 
occasionally say that the state p is a coherent super­
position of the states qi' 

If Q consists of just one element q; = q, then it is 
clear that Conditions (1), (2), and (4) are automat­
ically satisfied by p = q. Indeed, BD Proposition 8 
can be used to show that if Q = {q} then these 
conditions are only satisfied by p = q. In this case 
we will relax Condition (3) and say that q is a coherent 
superposition over q. 

4. MATHEMATICAL STRUCTURE 

Let p be a coherent superposition over Q. The pro­
jection p may not be in the ring 'lD(Q). For example, 
if the q/s are mutually orthogonal, then it is easily 
seen that no projection in 'lD(Q) can be a coherent 
superposition over Q. Consider however the weakly 
closed * ring'lL generated by p and 'lD(Q). This ring 
does contain p. It is completely characterized by the 
following proposition. 

Proposition 1: (a) The projections p and qi are 
minimal for'lL; and (b) 'lL is isomorphic to qJ{,), for 
some Hilbert space J\,. 

Proof: The projection q is the biggest projection in 
the rings 'lD(Q) and'lL. These rings are therefore 
isomorphic to their restrictions to qJ\,. The restricted 
rings 'lDq(Q),'lLq are von Neumann algebras. We can 
therefore apply BD Proposition 5 with .N' = 'lDq(Q) 
and .At, = 'lLq. We see that p is minimal for "\1 and 
that C'lL is isomorphic to qJ\,), for some Hilbert space 
J\" where C is the central support of p. It remains only 
to show that the q;'s are minimal for'lL, and that 
C=q. 

By hypothesis, pH qi' and Pcp I q;) = ai > O. By 
BD Proposition 3, 

Let A E 'lL. The operator B = q;Aqi is in'lL, therefore 
by BD Proposition 4, 

Now 
pBp = {Jp, for some scalar {J. 

qiAqi = ai2qipqiAqiPqi = ai2qipBpQi 

= ai2{JQipqi = ai1{Jqi' 

Therefore, each qi -+'lL, and each qi must be minimal 
for'lL by BD Proposition 4. 

By definition, C is the smallest central projection 
in "\1 such that 

Consider 
Cp=p. 

Cqi = CqiPqiai1 = QiCpqiai1 

= q;pqjai1 = qi' 

Therefore C > qi for all i, which implies C ~ q. 
But C E"tL, therefore C S q, and we must have C = q 

5. LINEAR SUPERPOSITION 

Let <1> denote the isomorphism taking'lL onto 
£(J\,). Under <1>, minimal projections must go into 
minimal projections. Therefore, for each projection 
r minimal in"\1, there exists a unit vector 'V(r) E J\, 
such that 

<1>(r) = \'V(r»(o/(r»\. 

In particular, let <1>i='V(qi)' Since <1>(q) = 1, the 
<1>;'s must span J\,. Therefore there is a least set of 
scalars exi(r) such that 

(5.1) 

We see from BD Proposition 4 that each such r 
is a coherent superposition in the sense of Definition 2 
of some subset of the q;'s. This subset is clearly 
specified by just those exi(r)'s in Eq. (5.1) which are 
nonzero. 

Let A be any operator in'lL. From BD Proposition 
3 there exists a scalar (J., such that 

and for any T such that Tf is a possible state, 

E(Tf, A) = ex. 

Under the map <1>, Eq. (5.2) becomes 

(5.2) 

\'V(r»(o/(r)\ <l>(A) \o/(r»(o/(r) \ = (J., \o/(r»(o/(r) I. 
Thus 

E(Ty, A) = ('V(r) \<1>(A)\'V(r». 

We summarize these results in the following 
proposition: 
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Proposition 2: Any minimal projection r in <tL is a 
coherent superposition in the sense of Definition 2 of a 
subset of Q. To each such projection r there corre­
sponds a unit vector o/(r) in J{, that is a coherent 
superposition in the usual sense of the vector o/(q;). 
No possible state of the form Tf can be distinguished 
from o/(r) by the measurement of an operator in <tL. 

The Eq. (5.1) expresses a certain linear relation 
between the states f and the ifi' in terms of the 
corresponding vectors in J{,. It is interesting to note 
that it can also be expressed in terms of operators on 
Je. Let 10) be any unit vector in J{,. Equation (5.l) is 
equivalent to 

Denote 
100(r»(OI = Ioci(r) l<l>i)(OI. (5.3) 

s = $-1(10)(01), 

Vrs = <l>-l(l'¥(r»(OI), 
Vis = $-l(l$i)(OI). 

The projection s is minimal in <tL. The operators Vrs , 

Vis are partial isometries in <tL that take s into r, qi' 
respectively; that is, 

t t 
VrsVrs = V;sV;s = s, 

t Vt v,.s Vrs = r, V;s is = q i • 

Equation (5.3) is equivalent to 

Vrs = 2°ci (r)ViS. (5.4) 

We see that in general coherent superposition, the 
linear superposition of vectors is replaced by the linear 
superposition of partial isometries. 

6. DISCUSSION 

The operators in the weakly closed * ring 'll1(Q) 
generated by a set of projections Q = {qi} we interpret 
as measures of the relative coherence of the states ifi. 
If all such measures are fixed by each ifi' then we say 
in Definition 1 that Q is a coherent set. 

A state p is defined in Definition 2 as a coherent 
superposition of the ifi. Such a state p fixes each 
element of 'll1(Q). The projection p is linked to each 
qi' it is not orthogonal to any qi' and it is less than the 
projection Uiqi. The projection p does not equal any 
qi' except when Q contains just one element. 

In Proposition 1 we have seen that such a projection 
p and the qi together generate a Type I ring cu, for 
which they are minimal. According to Proposition 2 
any minimal projection r, say, in <tL is a coherent 
superposition over some subset of Q. 

The measurement of an operator in cu, cannot 
distinguish the state f from a vector state in a certain 
auxiliary Hilbert space.K,. This vector state is a linear 
superposition in the usual sense of the vector states 
corresponding to the qi. This linear superposition, 
when expressed in terms of operators on the over-all 
Hilbert space J{" yields a linear relation between 
partial isometries that generate the projections rand qi . 
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The solution of systems of equations of the Wiener-Hopf type leads directly to the problem of factoring 
matrix-valued functions of one or more complex variables. The matrix-factorization problem is solved 
here for matrices that can be diagonalized by a similarity transformation and also have eigenvalues whose 
logs are analytic and quadratically integrable in a set of strips. As an application of the technique, Green's 
tensor for the elastic wave equation is factored. 

1. INTRODUCTION 

The local particle-displacement vector U(x, t) in a 
perfectly elastic solid whose volume is V and whose 
boundary surface is S satisfies the time-dependent 
elastic wave equation 

02U 
,uy2U + (A + ,u)VV . U - P ot2 = -f(x, t), (Ll) 

where i. and ,u are the Lame parameters characterizing 
the elastic material, p is its density, and f(x, t) repre­
sents the local body-force density acting at position 
x and at time t. If the body force is time-harmonic and 
of the form 

f(x, t) = F(x, w) exp (hot), (1.2) 

then one seeks solutions of (1.1) of the form 

U(x, t) = u(x, w) exp (hot), (1.3) 
where 

P,y2u + (i. + ,u)VV • u + pw2u = -F(x, w). (1.4) 

For an aperiodic body force turned on at t = 0, it is 
convenient to assume that the initial-particle velocity 
and displacement vanish at t = 0. Then a one-sided 
Laplace transform in time applied to (1.1) yields 

,uy2u + (i. + ,u)VV • u - pS2U = -F(x, s), (1.5) 

where 

and 

u(X, s) = LX) vex, t) exp (-st) dt (1.6) 

F(x, s) = Loof(X, t) exp (-st) dt. (1.7) 

The reduced wave equations (1.4) and (1.5) have the 
integral solutionl 

ui(x) = LGiJF J dV + LC;kPqGiAOUp/o~q)mk dS 

+ (%xq) LCjkPPiPUjmk dS, (1.8) 

1 A. T. De Hoop, Sc.D. thesis, Technische Hogeschool, Delft, 
1958. 

where 

~ii is the Kronecker delta, and the summation con­
vention on repeated indices is understood with 
(i,j,p, q) running from 1 to 3. For the time-harmonic 
case (1.4) the infinite-medium Green's tensor Gij 
appearing in (1.8) is given byl 

Gij(x - S, w) 

= _1_ {l.. ~ {exp ( - ik,r) _ exp ( - ikpr)} 
47Tp W20XiOXj r r 

+ V;2 exp (~ik.r) ~i+ (LlO) 

where 

r = {(Xl - ~1)2 + (X2 - ~2)2 + (X3 - ~3)2}!, 

k p = w/v p , ks = wi v, ,1m (k p ) ~ 0, 1m (ks) ~ 0, and 
pv; = i. + 2,u, pv~ = ,u. 

The corresponding form of the infinite-medium 
Green's tensor for the aperiodic case (1.5) is given by 

Gij(x - S, s) 

= _1_ {l. ~.2 {exp (-kpr) _ exp (-k.r)} 
47TP s2 ox;ox; r r 

+ V;2 exp (;k.r) ~i+ (1.11) 

where kp = s/vp and k. = s/u •. 
In what follows we shall be interested in obtaining 

certain factorizations of the double-bilateral Laplace 
transform of the Green's tensors (LlO) and (1.11). 
Let!: represent the double bilateral Laplace-transform 
operator: 

!: = L: L: exp (-SIXI - S2X2) dXI dx2 , (1.12) 

1481 
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Operating on (1.10) with C yields 

C{G;;(x, w)} 

= (pw2rl{LfiKP(Sl' 52) exp (lxaI/2Kp) 

+ Lt,Kisl' S2) exp (/xa//2K.)}, (1.13) 

where for purposes of computing q Gi ,} , ';1' ';2' and 
';3 can be equated to zero in (1.10) without any loss of 
generality. In (1.13) the matrices Lf, and Ltj are given 
by 

( 

S~ SIS. 91 sgn (X3)/2KP) 

L:1 = 919. S~ S. sgn (x3)/2Kp , (1.14) 

9 1 sgn (x3)!2K. s. sgn (x.)/2Kp !K;' 

where 

(S~ + iK;2) 

-so sgn (x3 )/2K. 

-SI sgn (X3)/2K,] 

-so sgn (xa)/2K, , 

(s~ + s:) 

Kp(SI' S2) = (i/2)(s~ + s; + k!)-l, 

Kisl' S2) = (i/2)(s~ + s~ + k~r!, 

{

I; Xa > 0 

sgn (xa) = 0; Xa = 0 

-1; Xa < O. 

(1.15) 

(1.16) 

(1.17) 

(1.1 8) 

The branches of the radicals in (1.16) and (1.17) are 
fixed by the conditions that 

1m {s~ + s; + k!}! < 0 (1.19) 
and 

1m {5~ + s~ + k;}! < O. (1.20) 

This guarantees that as IXal -- 00 

qGij} --0. 

The corresponding result for the bilateral Laplace 
transform of (1.11) when ';1 = ';2 = ';3 = 0 is 

C{Gi;(x, s)} 

= Mfj exp (-syp /xa/) + Mti exp (-sy,lxa/), (1.21) 
2psyp 2psy. 

where 

-sgn (x.) SoY. 
s 

-sgn (X3)SI;.} 

S2Y. -sgn (X3) -S- , 

y~, 

(1.22) 

-S;:o sgn (X3) SlY'} 
(Y: +~) sgn (x.) s:Y' , 

( ) s.y. (S~ + s~) sgn x. -s- --s-. -

(1.23) 

with 

( 1.24) 

(1.25) 

In order to ensure that qGij }, as given by (1.21), 
vanishes as /xa/-- 00, we require that the branches 
of the radicals in (1.24) and (1.25) be chosen so that 

Re (sYp) > 0, 

Re (sy,) > O. 

(1.26) 

(1.27) 

2. FORMULATION OF THE FACTORIZATION 
PROBLEM 

In another investigation2 the writer showed that the 
analysis of diffraction of a plane elastic wave by a rigid 
right-angle wedge, occupying the first quadrant 
(Xl ~ 0, X2 ~ 0) of the Xa = 0 plane in an unbounded 
elastic medium, could be reduced to the problem of 
solving a system of Wiener-Hopf equations in two 
complex variables. A solution of this system was 
suggested by analogy with the known solution for a 
system of Wiener-Hopf equations depending on only 
one complex variable.a In developing the analog 
solution, the problem arose of obtaining a product 
decomposition of the matrix CCGi')",.=O into matrix 
factors analytic in certain pairs of half-planes. It is 
to this problem that the present paper is addressed. 

As preparation for the analysis which we are about 
to undertake, consider the problem of obtaining such 
a product decomposition for a scalar function of 
several complex variables f(zl' Z2, ... ,Zk)' Sufficient 
conditions for the existence of the decomposition have 
been stated by Bochner. 

Bochner's Decomposition Theorem' 

Let logf(zl , Z2, ... , Zk) be analytic and of bounded 
L2 norm in the tube y, ~ Re (z,) ~ ()"j = 1,2,'" , 
k, where the L2 norm of log/(zl, ... , Zk) is defined 
by 

IIIogjll2 = {L: L:IIogj(Xl + iy!, ... , Xk + iYk)1 2 

1 
X dy!,"', dy

k }. (2.1) 

Then logf(z!, ... , Zk) can be additively decomposed 
into the sum of 2k functions [log f(zl' ... , Zk)]n, 
n = 1,2,"', 2k, so that 

2k 

log f(z!, ... , Zk) = L [log f(z!, ... , Zk)]n, (2.2) 
n=! 

• E. A. Kraut, Bull. Seism. Soc. Am. 58, 1083 (1968). 
• B. Noble, Methods Based on The Wiener-Hop! Technique 

(Pergamon Press, Inc., New York, 1958), p. 157. 
• S. Bochner, Am. J. Math. 59, 732 (1937). 
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where for each n the function [logf(zl"" , Zk)]n is 
analytic and bounded within a set of k half-planes 
containing the interior of the tube Yi ~ Re (z,) ~ bj , 

j = I, ... ,k. The functions [logf(zl"" ,zk)]n are 
uniquely determined5 and are representable by Cauchy 
integrals. For example, [log f(zl, ... ,Zk)]1 is a 
bounded analytic function in the set of k half-planes 
Re (zi) > Yi' j = I, ... , k and is represented as 

[logf(zl' ... , zk)h 

1 f r logfa1'···' 'k) d'l d'2 ... d'k 
= (217i)k z,·· ·)Zk (Zl - Sl)(Z2 - S2)· .. (Zk - Sk) , 

(2.3) 

where Zi is a rectilinear contour running from 
Yi - ioo to Yi + ioo in the s; plane. The required 
product decomposition is given by 

2' 

f(Zl, ... , Zk) = II exp [logf(zl' ... , zk)]n' (2.4) 
n=l 

Examples 

Consider the problem of obtaining a product 
decomposition of the form (2.4) with k = 2 for the 
function 

sy = {k2 - (si + sm~-, (2.5) 

where k is real. Bochner's theorem is not immediately 
applicable to (2.5). However, on differentiating (2.5) 
with respect to k, one finds 

1 dy k 
Y dk = (sy)2· 

(2.6) 

The right member of (2.6) is analytic in the tube T(B) 
defined by 

!Re (s;)! < bi (j = 1,2), (2.7) 

bi > 0, !(bi + b;)t! < k, (2.8) 

and has a bounded L2 norm it") T(B). Therefore, 
Bochner's theorem guarantees a unique additive 
decomposition for the right side of (2.6). In order to 
obtain this decomposition, we make use of the follow­
ing result: 

I
oo Ioo t 

-00 _ooKo[k(xi + xi) ] exp ( -SlX1 - S2X 2) dX1 dX2 

= 27T(Sy)-2 = L{Ko(kr)}, (2.9) 

where Ko is a modified Bessel function of the second 
kind of order zero. 

Proof: The function Ko(kr) satisfies the reduced 
wave equation 

(\72 - k 2)Ko(kr) = -217b(x1 )b(x2), (2.10) 

5 E. Kraut, S. Busenberg, and W. Hall, Bull. Am. Math. Soc. 
74, 372 (1968). 

where <5 is Dirac's delta function. On multiplying 
(2.10) by exp (-SIX1 - S2X2) and integrating by parts 
over all (Xl' X2) space, the result follows immediately, 
provided Sl and S2 are restricted to be in the tube 
T(B) of (2.7) and (2.8). 

With the aid of (2.9), it follows that 

ldy = ~ L{Ko(kr)}. 
ydk 217 

(2.11) 

Now let L be expressed as the sum of its restrictions to 
the four quadrants of the (Xl, X2) plane, i.e., 

4 

L = !Ln , (2.12) 
n=l 

where Ln is the operator 

Ln = L: L: dX1 dX2H( En1X1)H( En2X2) 

X exp (-SlX1 - S2X2) (2.13) 

and His Heaviside's unit step function with 

En1=1 (n=I,4), 

En1 = -1 (n = 2, 3), 

En2 = 1 (n = 1,2), 

En2 = -I (n = 3,4). 

(2.14) 

The convolution theorem for Laplace transforms can 
be used to show that the operators Ln map Ko(kr) into 
functions analytic in the pairs of half-planes (B, II) 
defined by 

(B, I): Re (Sl) > -b1, Re (S2) > -b2, 

(B,2): Re (Sl) < b1, Re (S2) > -b2, 
(2.15) 

(B,3): Re (Sl) < b1 , Re (S2) < b2, 

(B,4): Re (Sl) > -b1, Re (S2) < b2, 

with b1 , b2 subject to (2.8). 

Proof: From the convolution theorem, it follows 
that 

lOOlOOftCX1' x2)flx1, x2) exp (-SlX1 - S2X2) dX1 dX2 

5
<,+i001c2+ioo 

= (217i)-2 _ _ gl(Zl, Z2) 
cl-tOO C2-tOO 

where 
x g2(Sl - ZI' S2 - Z2) dZI dz2 , (2.16) 

glZl' Z2) 

= loo loo/;(X1, x2) exp (-X1Z1 - X2Z2) dX1 dx2, 

i = 1,2, (2.17) 

and if f2 is chosen so that 12(.-X:1 , X2) = H(x1)H(X2), 
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then 

g2(Sl - Zl, S2 - Z2) = (Sl - Zl)-1(S2 - Z2)-1. (2.18) 

Therefore 

L: L: H(x1)H(X2)!1(X1, x2) exp (-SlX1 - S2X2) dX1 dX2 

= (hi)_2jC
l+iOOj

C
2+

iOO 
gl(Zl, Z2) dZl dZ2 

c1-ioo C2-ioo (SI - ZI)(S2 - Z2) 

= gl(SI, S2), (2.19) 

for Re (SI) > cl , Re (S2) > c2 • 

We conclude from this that the operator Cl defined 
in (2.13) maps/l(xl , x2) into a function analytic in the 
pair of half-planes Re (SI) > c1, Re (S1) > C2' Now 
let/1(xl, x 2) = Ko[k(x~ + x~)!] and choose C1 = -bl , 
C2 = -b2 ; then C1 maps Ko into (E, 1) and similar 
arguments suffice to show that Cn maps Ko(kr) into 
functions analytic in (E, n). 

Equation (2.11) may be written as 

-log(sy/k) =! -Cn{Ko(kr)} - - , (2.20) d 4 [k IJ 
dk n~1 27T 4k 

and, on integrating both sides of (2.20) with respect to 
k, one finds 

sy(k) = k exp ± Jk [~Cn{Ko(kr)} - ~J, (2.21) 
n~l 00 27T 4k 

and therefore the required factorization of (2.5) is 
given by 

sy(k) = kIT expfk [~Cn{Ko(kr)} - ~J dk. (2.22) 
n~l 00 27T 4k 

For computational purposes, consider the integral 

V(SI' S2) = Cl{Ko(kr)} 

= Loo Loo Ko(kr) exp (-SIXI - S2X2) dXI dX2 (2.23) 

and observe that by symmetry 

C ... {Ko(kr)} = V(E"n1SI' E"n2S2), n = 1,2,3,4, (2.24) 

where E"n1 and €n2 are given in (2.14). To evaluate 
(2.23), let (2.10) be multiplied by exp (-SIX1 - S2X2) 
and integrated from 0 to 00 with respect to Xl and X 2 

with the understanding that 

Loo Loo b(X1)b(X2) dX1 dX2 = 1. (2.25) 

The result is 

CI{Ko(kr)} = (si + s~ - k2)-1 

X {- ~ + slLoo Ko(kx2) exp (-S2X2) dX2 

+ S21'''' Ko(kx l ) exp (-SIXl) dXl}' (2.26) 

where use has been made of the relation 

{~ Ko[(x; + x~h} 
oXI X1~0 

"2*0 

= {K~[(xi + x~)!Jxl(xi + xi)-!}Xl~O = O. (2.27) 
"2*0 

The one-sided Laplace transforms remaining in (2.26) 
are well known and lead to the following expression 
for V(SI' S2): 

V(SI' 52) = Cl {Ko(kr)} = (si + s~ - k2r l 

(s~ - k2r! 

x 

[s + (S2 _ k2)!] 
x log 2 2 S2 > k, 

k 

+ S2 2(k2 _ si)-! 

X tan-l (k - SI); SI < k. 
k + SI 

The definite integrals 

f~kCn{Ko(kr)} dk 

(2.28) 

involved in (2.22) unfortunately are not expressible 
in terms of elementary functions and this complicates 
the further analysis of the factorization. 

If, instead of (2.5), we wish to factor 

K(SI' S2) = (i/2)(si + s~ + k2r!, (2.29) 

the same technique gives6 

K(SI' S2) 

= (iJ2k) IT exp (k[( -ikJ4)Cn{H~2)(kr)} + ~J dk, 
n~1 Joo 4k 

(2.30) 
where H~2)(kr) is a Hankel function of the second kind 
of order zero. In this case 

Cn {H&2)(kr)} = W(€nISl' €n2S2)' (2.31) 
where 

1 

and where (s; + k2)! = kat Si = 0, i = 1,2. 
6 J. Radlow, Arch. Ratl. Mech. Anal. 8, 139 (1961). 
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ln the case of (2.29) it is understood that 1m (k) < O. 
The tube T(B) on which (2.29) is analytic is defined as 
in (2.7) and (2.8) except that k, where it appears in 
(2.8), must be replaced by 11m (k)l. The factors in 
(2.30) are then, respectively, analytic in the pairs of 
half-planes (B, n) defined in (2.15). 

Now consider the following matrix version of the 
factorization problem. 

Problem: Given an (N x N) matrix-valued function 
KiJ(Z1, ... , Zk) of k complex variables analytic in the 
tube Yi ~ Re (z}) ~ OJ, j = 1,2,' .. ,k, obtain a 
product decomposition for Kij of the form 

2k 

Kilzl' ... , Zk) = II Mjj'(Zl, ... , Zk)' (2.33) 
n=1 

where for each n the matrix Mi;'(Z1,"', Zk) is 
analytic in a certain set of k half-planes contain­
ing the interior of the tube YJ ~ Re (Zj) ~ Dj , j = I, 
2,"', k. 

3. DISCUSSION OF THE MATRIX­
FACTORIZATION PROBLEM 

When log Kiiz1' ... , Zk) represents a matrix which 
is analytic in the tube Yj < Re (Zj) < DJ,j = 1,2,'" , 
k, and if the required Cauchy integrals exist, it is 
possible to additively decompose log Kij in a manner 
analogous to (2.2), i.e., 

2k 

log Kij(Z1, ... , Zk) = L [log K i;(Z1, ... , Zk)]n' (3.1) 
n=1 

However, the required product decomposition corre­
sponding to (2.4) can only be obtained if the matrices 
[log Kii]n commute with one another? and this usually 
is not the case. An exception to the rule is the instance 
in which K ii (z1, ... , Zk) is diagonal. Then the matrices 
[log Kij]n must also be diagonal, and of course they 
will commute. We shall exclude this special case from 
further consideration. 

The next simplest class of matrices to consider are 
those matrices which can be diagonalized by a similar­
ity transformation. Suppose that KiJ(Z1" .. ,Zk) is 
such a matrix and let 

KA(Z ... z) - S-IKS 1, , k - (3.2) 

be the representation of K in diagonal form. By our 
previous remarks, a product decomposition for 

K(ZI' ... , Zk) of the form 

can be obtained when the eigenvalues of K (and thus 

7 G. H. Weiss and A. A. Maradudin, J. Math. Phys. 3, 771 (1962). 

of K) can be factorized using Bochner's theorem. A 
product representation for the original matrix 
Kij(ZI, ... , Zk) can then be immediately written as 

2k 

K(ZI' ... , Zk) = n (SlWn'S-1). (3.4) 
n=1 

Commutation is not a problem here because the 
matrices M(n), being diagonal, commute with one 
another and commutation remains invariant under a 
similarity transformation. Another problem arises to 
plague us instead. In general, the matrix (SM(n)S-1) 
will not remain analytic and bounded in the same set of 
half-planes as M(n)(zl' ... ,Zk)' The analyticity do­
mains of the factors appearing in (3.3) unfortunately 
are not generally invariant under a similarity trans­
formation because the matrices S(ZI,'" ,Zk) and 
S-1(Z1' ... , Zk) themselves depend on the k complex 
variables. 

Consider the example mentioned in the beginning 
of Sec. 2. We have from (1.13)-(1.15) 

S1S2lfJ 

(il'2 - silfJ) 
o n 

(3.5) 

for the time-harmonic elastic-wave Green's tensor, 
where 

Al = {tK;2 + (si + si)}Ks, (3.6) 

,1.2 = UK;1K;1 + (si + s~)}Kp, (3.7) 

A3 = UK;IK;1 + (s~ + s~)}Ks' (3.8) 

lfJ = (A2 - A1)/(si + sD = Kp - K s ' (3.9) 
and 

L{Gij}"3=O = Kij(Sl' S2) 

(AI - ~ lfJ) 
= (2pS)-1 

o 

Al = {S2y; + (si + S~)}(S2ys)-\ 
A2 = {S2ypys + (si + S~)}(S2yp)-1, 

o 

o 

A3 
(3.10) 

(3.11) 

(3.12) 

,1.3 = {S2ypys + (si + S~)}(S2ys)-1, (3.13) 

'1jJ = s2(A1 - A2)/(si + si) = (1';1 - 1';1), (3.14) 

for the corresponding aperiodic case (1.21)-(1.23). 
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The functions AI, .1.2 , and .1.3 in (3.5) and (3.10) are the 
eigenvalues of Kij(Sl' S2) and the matrices (3.5) and 
(3.10) are both diagonalized by the same matrix 

S = (sr + Si)_!{~:2:: ~). (3.15) 

o 0 (si + s;)! 

The columns of S form the eigenvectors of Kii(Sl, S2) 
and S satisfies the relation S = S-1. 

In diagonal form K(Sl' S2) becomes 

K(Sl' S2) = 0 A2(Sl, S2) 0 
{

A1(SI'S2) 0 O} 

o 0 A3(s1, S2) 

(3.16) 

and the corresponding factor matrices lVi tn )(S1' S2) 
appearing in (3.3) are given by 

with 
4 

A;(s1' S2) = IT A~n)(s1' S2), i = 1, 2, 3. (3.18) 
,,=1 

For a fixed n each of the three scalar factors Ajn)(s1' sJ, 
i = 1,2,3, is analytic in the pair ofl;lalf-planes (B, n) 
of (2.15). In the time-harmonic case (3.5), the k p and 
ks appearing in (1.l6) and (1.l7) are complex and b1 

and b2 in (2.15) are chosen so that 

I(bi + b~)!1 < 11m (kp}l. (3.19) 

In the aperiodic case (3.10), it is assumed that kp 
and ks in (1.24) and (1.25) are real and that 

I(bi + b~)~1 < Ikpl. (3.20) 

The problem of factorizing the matrix Kij(Sl, S2) 
has now been reduced to that of factorizing its 
eigenvalues as indicated in (3.18). Consider the time­
harmonic case (3.6)-(3.8) first. The eigenvalue 
Al (S1, S2) given by (3.6) is a special case, for on using 
(1.17) one finds 

A1(SI, S2) = -k:K.(Sl, S2)' (3.21) 

and this has already been factored in (2.30). The 
remaining eigenvalues (3.7) and (3.8) each involve the 
product of 

N(sl' S2) = {(4KpKs)-1 + (si + sm, (3.22) 

shown in (2.30). To complete the factorization in 
(3.18) it is necessary to obtain a product decomposition 
for (3.22) of the type indicated in (2.4). For this 
purpose we shall obtain an additive decomposition of 
log N(sl' S2) with the aid of a double Cauchy integral. 
Using (1.16) and (1.17), N(st, S2) becomes 

N(sl' S2} = (si + si) 

( 2 2 k2)!( 2 2 k2)t - Sl + S2 + 1} S1 + S2 + s • (3.23) 

It follows from (3.23) that with the choice of branches 
made in (1.19) and (1.20) N(Sl' S2) is bounded and 
never vanishes. 

Proof: To establish that N(st, S2) is bounded it 
suffices to observe that for large IS11 and IS21 

Next note that N(sl' S2) can vanish only if 

( 2 2) k;k; 
S1 + S2 = - 2 2' 

k1} + k. 
(3.25) 

On substituting (3.25) back into (3.23), one finds 

and in order for (3.26) to vanish the signatures of the 
two square roots which appear must differ. However, 
because of (1.19) and (1.20), this is not the case and 
consequently N(Sl' S2) never vanishes. 

Let a parameter c be defined by 

(3.27) 

Then, when IS11 or IS21 is sufficiently large, there is some 
positive real number A such that 

A o < Ilog cN(sl' s2)1 < 22 (3.28) 
lSI + s21 

Furthermore, the analyticity and bounded ness of 
cN(su S2) in the tube T(B) of (2.7) and (3.19) guar­
antees that log CN(Sl' sJ is also analytic and bounded 
in T(B). Therefore, the double Cauchy integrals 

[log cN(sl' S2)Jn 

(3.29) 

with K1} or K.. These latter functions factorize as converge and yield a complete additive decomposition 
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of log cN(sl' S2) of the form 
4 

log CN(SI' S2) = L [log CN(Sl' S2)]n, 
n~l 

(3.30) 

where [log CN(Sl' S2)]n is analytic in the pair of half-
planes (B, n) defined in (2.15) and (3.19). . 

The required product decomposition of N(sl' S2) IS 

then given by 
4 

N(Sl' S2) = c-1 IT exp [log CN(Sl' S2)]n' (3.31) 
n~l 

In the time-harmonic case the factors appearing in the 
product decomposition (3.18) are given by 

;t~n) = k~2-t exp e~17) 

X expf:'[(-ikI4)[n{H~2)(kr)}+ 41k]dk, (3.32) 

;t~n) = (-2ikp c)-t exp [log cN(s} , S2)]n 

X exp Iv [(-ik/4)Ln{H~2)(kr)) + :kJ dk, (3.33) 

;t~n) = (-2ik sc)-! exp [log cN(s} , S2)]n 

X exp f:' [(-ikI4)[n{H~2)(kr)} + ~kJ dk. (3.34) 

Using (3.15) and (3.4), the original matrix (3.5) is seen 
to have the product decomposition 

4 

K i ;CS1, S2) = IT Kl7~(S1' S2)' (3.35) 
n~l 

where 

Kl7) = (si + s~rl 

(
A~n)s~ + A~n)S;) SlS2(A~n) - ;tin» 

X SlS2(;tin) - A~n» (Ain)si + Ain)s~) 
o 0 

~ ). 
A&n)(si + s~) 

(3.36) 

The results for the aperiodic case (3.10)-(3.13) are 
quite similar. The factors appearing in the product 
decomposition (3.18) are now given by 

Ain) = k: exp fk. [- k [n{ Ko(kr)} + ~] dk, (3.37) 
le" 217 4k 

;t~n) = (-2ckp)-! exp [log cN(s}, S2)]n 

X exp fk
p 

[-k [n{Ko(kr)} + ~J dk, 
Joo 27T 4k 

(3.38) 

A~n) = (- 2cks)-! exp [log CN(S1' S2)]n 

X eXPJk. [-k [n{Ko(kr)} + lJ dk, 
00 217 4k 

(3.39) 

where in this case 

N(S1' S2) = [{k; - (si + sm! 

X {k; - (si + sm! + (si + sm. (3.40) 

The matrix (3.10) has a product decomposition (3.35) 
with factors of the form (3.36), however, with A~n) 
(i = 1, 2, 3) given by (3.37)-(3.39) instead of (3.32)­
(3.34). 

Each of the matrices KJ7)(Sl' S2) in (3.36) would be 
analytic in a pair of half-planes (B, n) defined in 
(2.15), (3.19), and (3.20) if it were not for the singular 
scalar multiplier (si + s~)-} appearing in (3.36). The 
factorization which we have actually obtained has the 
form 

4 

Ki/S1 , S2) = f(s1' S2) IT Kl7)(S1, S2), (3.41) 
n~1 

where the K:7)(s} , S2) are analytic in the desired half­
planes (B, n) and f(s1' S2) is a singular scalar factor 
given by 

(3.42) 

The tube in which an expression like (2.29) is analytic 
disappears in the case of (3.42). This prohibits us 
from using Bochner's theorem (see Sec. 2) to factorize 
(3.42) and thereby prevents us from further simplifying 
(3.41). The source of this difficulty is clearly seen to be 
that the eigenvectors of Kii(Sl, S2)' i.e., the column 
vectors of (3.15), are singular on the manifold 
(si + s~) = 0, and therefore have no tube of analyticity. 
whereas the eigenvalues Ai (S1, S2) (i = 1, 2, 3) of 
K ii (S1' S2) do share a common tube of analyticity. 
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Zak [1. Math. Phys. 1. 165 (I 960)] has given a method for constructing the irreducible representations 
of space groups which involves inducing the representations of the full group from those of an invariant 
subgroup. When a representation of the subgroup is self-conjugate, Zak's prescription for the induction 
is subject to a restriction which makes it inapplicable in some practical applications of the method. This 
paper presents a general prescription for carrying out the induction from self-conjugate representations. 

When a space group is nonsymmorphic, the irreduc­
ible representations of its little groups at the Brillouin­
zone edge cannot be constructed by the usual methods 
applicable to symmorphic groups.1 Zak2 has given a 
method whereby these little-group representations can 
be constructed. The method utilizes the fact that every 
space group contains an invariant subgroup of index 
two or three and consists of a procedure for inducing 
the irreducible representations of the full group from 
those of the invariant subgroup. If the invariant 
subgroup of the little group is symmorphic, its 
representations can be obtained in the usual way and 
the induction procedure can be applied to obtain the 
representations of the little group. If the subgroup is 
not symmorphic, one relies on the fact that it also 
contains an invariant subgroup of index two or three. 
The process is continued until a symmorphic subgroup 
is encountered. Then, by a series of inductions, the 
irreducible representations of the little group are 
constructed from those of its symmorphic subgroup. 

However, Zak's induction procedure is not com­
plete. When an irreducible representation of the 
invariant subgroup is self-conjugate, the prescription 
offered by Zak is applicable only in special circum­
stances which are not always met in practical applica­
tions.3 Below we present a simple, general prescription 
for effecting induction from self-conjugate representa­
tions. This prescription provides, in conjunction with 
Zak's prescriptions for other case~, a complete 
induction procedure. 

We begin by sketching the well-known4 formal 
procedure for inducing associated irreducible repre­
sentations of a group G from a self-conjugate irreduc­
ible representation of an invariant subgroup H of 

1 G. F. Koster, Solid State Phys. 5, 173 (1957). 
2 J. Zak 1. Math. Phys. 1, 165 (1960). 
3 The representations of the space group D!~ (the "rutile" group) 

have been constructed by Zak's method [1. G. Gay, W. A. Albers, 
Jr., and F. 1. Arlinghaus, 1. Phys. Chern. Solids (to be published)]. 
It was necessary to use the prescription given in thIS note to obtam 
certain of the representations. 

4 H. Boerner, Representations of Groups (North-Holland Pub­
lishing Co., Amsterdam, 1959), pp. 95-101. 

index two or three. Let a be any element of G not in H. 
Then, if H is of index two, let its coset be aH; if His 
of index three, let its co sets be aH and a-1H. Let 
r, S, t be typical elements of H, and let D(r) be the 
matrices of a self-conjugate irreducible representation 
of H. Because the representation is self-conjugate, 
there exists a matrix B such that 

D(ara-1) = BD(r)B-l. 

In the index-two case, a2 E H and we have 

D(a2)D(r)D-I(a2) = B2D(r)(B-1)2 

or 
D(r)D-I(a2)B2 = D-I(a2)B2D(r), all r E H, 

so that by Schur's lemma 

B2 = AD(a2), 

where A is some constant. Introducing A = A-~B, we 
have A2 = D(a2). This suggests that we can let the 
matrix A represent the element a and thereby obtain a 
representation of the group G = H + aH. Indeed, 
two associated representations of G may be induced 
from the representation of H. One is obtained by 
adding to D(r) the matrices 

Dl(ar) == AD(r), 

and the other by adding to D(r) the matrices 

Dz(ar) == -AD(r). 

The index-three case is analogous. Namely, because 
D(r) is self-conjugate, there exists a matrix A such that 

D(ara-1) = AD(r)A-l, 

and such that 
A3 = D(a3

). 

Then the representation DCr) of H induces three 
representations of G = H + aH + a-I H. Each of 
these is obtained by adding to DCr) one of the follow­
ing three sets of matrices: 

or 

1488 
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or 
Olar) == e-2 .. i/3AO(r), 03(a-1r) == e2 .. i/3A-I0(r). 

With these formal results, all that is required to 
obtain the representations of G is a prescription for 
obtaining the matrix A. The prescription given by Zak 
is valid only when A turns out to be a scalar matrix. 
The prescription given below is applicable in general. 

We consider the matrix 

C(X) == L 0(ara-1)XO(r-1
), 

rEll 

where X is an arbitrary matrix. We first observe that 
C does not vanish for all X. Namely, because O(r) 
is self-conjugate, there exists a nonsingular matrix B 
such that 

and then 
0(ara-1) = BO(r)B-l, 

C(B) = L 0(ara-1)BO(r-1
) 

rEll 

= L BO(r)0(r-1
) 

= mB, 

where m is the order of H. Second, we observe that for 
arbitrary X 

C(X)O(s) = L 0(ara-1)XO(r-l)0(s) 
rEll 

= L 0(asa-1ata-1)XO(t-1) 
tEll 

= 0(asa-1)C(X); for all s E H. 

We may thus infer from Schur's lemma that, as long as 
C(X) :;z!' 0, C(X) has an inverse and accomplishes the 
similarity transformation from OCr) to o (ara-1). 

Thus, A is equal to a constant times C(X), as long as 
C(X) :;z!' O. 

We thus have the prescription that, to obtain a 
matrix A to represent the coset representative element 
a, one first computes the matrix C(X) for a succession 
of simple matrices X until a nonzero result is obtained, 
and then one normalizes the result so that A2 = 0(a2) 

or A3 = 0(a3), according to whether the subgroup was 
of index two or three. 
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It is shown that, under reasonable assumptions about inelasticity and asymptotic behavior, the usual 
diffraction picture combined with the N/D approach to 1T-1T scattering leads to a singular integral 
equation. The authors' formalism is then used to show that, in conformity with the nearby-singularities 
philosophy, a constant left-hand discontinuity 'is by itself incapable of producing resonances in the GeV 
region. Next, a model for the creation of vector resonances, which combines a long-range force (defined 
by exchange of a cutoff vector meson) plus a Short-range force (compatible with diffraction requirements), 
is introduced. The effect of the short-range force on the self-consistent (bootstrap) solutions is investi­
gated in an approximate scheme. For a self-consistent solution with the correct p-meson mass, which is 
found to exist, inclusion of the short-range force is shown to decrease the self-consistent width by a factor 
of 2, which is nevertheless still greater than the experimental value. 

1. INTRODUCTION 

Most of the low-energy calculations on strongly 
interacting systems are based on the assumption that 
the scattering in the GeV region is determined by 
low-energy singularities and that the effects of the 
high-energy region are completely unimportant. This 

• This work was done under the auspices of the United States 
Atomic Energy Commission. 

t Postal address: Laboratoire de Physique Theorique et Hautes 
Energies, Faculte des Sciences, Orsay, France. 

assumption is fully justified in pion-nucleon scattering, 
notably below 500 MeV, where detailed quantitative 
agreement between dispersion calculations and experi­
ment has been found. 1 It is also justified in nucleon­
nucleon scattering, where reasonable models account 
for all the important experimental features. 2 

1 J. Hamilton, "Dynamics of the 1T-N System," Fiinfte Inter­
nationale Universitatswochen fUr Kernphysik, Schladming (1966). 

2 A. Scotti and D. Y. Wong, Phys. Rev. 138, B145 (1965); H. G. 
Dosch and V. F. Miiller, Nuovo Cimento 39, 886 (1965). 
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No similar agreement can be claimed for pion-pion 
scattering-in particular, for a self-consistent deter­
mination of the parameters of the p meson. For this 
system, it is quite possible that the effects of the high­
energy region are less unimportant.3 •4 Furthermore, 
in a determination of the parameters of the p, the mass 
of which is rather high, the features of the amplitude 
in a region which starts at 2 or 3 GeV are, perhaps, 
of some importance. 

The purpose of this work is to give a hint concerning 
the effect of the high-energy region on the features 
of the vector-meson resonances. For this, the ex­
perimentally well-established picture of diffraction 
scattering is combined with the usual N/D approach 
employed in self-consistent calculations of pion-pion 
scattering. This leads to a marginally singular integral 
equation5 which can be solved by an application of 
methods developed by the authors elsewhere.6 

In Sec. 2 it is shown that, under certain assumptions, 
both Regge behavior and the conventional diffraction 
picture (with nonshrinking forward peak) lead to 
marginally singular N/ D equations. In Sec. 3 the 
possibility that the distant singularities (short-range 
forces) produce resonances in the low-energy region is 
studied separately. For this the basic integral equation 
formulated in Sec. 2 is applied to a model which 
consists of a constant left-hand discontinuity (and 
constant inelasticity). This model is compatible with 
the requirements of unitarity and of the diffraction 
picture, but completely neglects the structure of the 
nearby singularities; as a result it is known to be 
incapable of generating resonances in the GeV region. 
Section 4 contains the formulation of a more realistic 
model whose left-hand discontinuity combines a 
long-range part determined by vector exchange with a 
short-range part compatible with the requirements of 
diffraction scattering. Finally, in Sec. 5, the results of 
an approximate numerical calculation involving the 
model of Sec. 4 are presented and compared with the 
solutions of the conventional vector-meson bootstrap 
(without short-range part). The conclusion is that 
the short-range part tends to decrease significantly 
the coupling necessary to produce a resonance, 
affecting its width to a lesser extent, to reduce the 
self-consistent mass, and, for low cutoffs, to change 
the self-consistent width in the correct direction. In 
particular, the width of the self-consistent solution 

3 H. Burkhardt, Nuovo Cimento 42, 351 (1966). 
4 L. Van Hove, "Theoretical Problems in Strong Interactions at 

High Energies," CERN 65-2~ (1965). . . . 
• That in pion-pion scattermg the usual dIffractIOn requIrements 

lead to a singular integral equation has independently been con­
cluded by D. H. Lyth, Phys. Rev. Letters 17, 820 (1966). 

• D. Atkinson and A. P. Contogouris, Nuovo Cimento 39, 1082 
(1965). 

which corresponds to m~ ~ 30 m~ is reduced by a 
factor of 2. 

In Appendix A, the model of Sec. 3 is reconsidered 
in the approximation of contracting to zero the gap 
between left- and right-hand cuts; this approximation 
has the advantage of providing explicit and relatively 
simple solutions. Again, it is concluded that a 
featureless left-hand discontinuity and inelasticity are 
incapable of producing acceptable resonances. Finally, 
in the contracted-gap case, certain features of the so­
lutions and, in particular, the positions of the zeros of 
the denominator function are studied in Appendix B. 

2. FORMULATION OF THE 
BASIC EQUATIONS 

Consider the elastic scattering of two pseudoscalar 
particles of mass unity, and assume that the partial 
P-wave amplitude AI(Y) admits the usual decomposi­
tion: 

AI(Y) = N(Y)/D(Y); (2.1) 

Y is the square of the center-of-mass momentum. It is 
convenient to consider a once-subtracted representa­
tion for Nand D, with the subtraction point at Y = O. 
Due to the usual threshold properties, N(O) = 0, so 
the equations are 

Y J-WL , a( -Y')D(Y') 
N(Y) = - dy" , 

7r -00 Y (Y - Y) 
(2.2) 

Y food' p(Y')Rb')N(Y') 
D(Y) = 1 - - 'V • 

7r 0 Y'(Y' - Y) 
(2.3) 

Here a( -v) is the discontinuity along the left-hand cut 
- 00 < Y ::;; -WL' p(Y) = [Y/(Y + I)]! is the usual 
phase-space factor, and RI (Y) is the inelasticity of the 
P wave7 ; thus the unitarity condition reads 

1m AI(Y) = p(Y)RI(Y) IAI(Y)12, 0::;; Y < 00. (2.4) 

To derive the basic integral equation of the problem, 
one can substitute (2.2) into (2.3). Then the definitions 

Y = -W, -D(Y)/Y = J(w) (2.5) 

give 

J(w) = - + - dw'K(w, w')a(w')J(w'), 1 1 foo (2.6) 
w 7r WL 

where 

K(w, w') = ..!. foo dx P(X)RI(X) . (2.7) 
7r 0 (x + w)(x + w') 

Next, assume that, for Y ---+ + 00, AI(Y) becomes 
purely imaginary. Equation (2.4) implies 

p(Y)RI(Y) f""oo.I [1m AI(y)]-I. (2.8) 

7 O. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 
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According to the Phragmen-Lindelof theorem,s if 

AI(V) "'"' v~°(log v)"'(Iog log V)~2 ... (log log· .. log vyn 

Consider first Case (i), when for 1'-+ + 00: 

1m AI(1') ,...., (log 1')-lp(1')R1(1') ,...., log 1'. (2.11) 

and 
for 1'-+ 00, The behavior of K(w, w') for large w, w' is controlled 

by the large values of the integrand in (2.7). Thus, 

Ab) "'"' 11'I~o'(log IvIY" 

X (log log IvIY" ... (log log· .. log 11'i)~n' 

for 1'-+ -00, 

and if 

!AICv)! < lae(rr-<lvl, where a = const, 

for all complex v and € > 0, then lXo = IX~, IXI = 
IX~ , ••• , IXn = IX~ and 

a( -v) "'"' 1m AI(1'), for 1'-+ 00. (2.9) 

Lest it be felt that these conditions are too restrictive, 
one may prefer simply to assert (2.9). Any NjD 
system for which 1m AI(1') has different limits for 
v -+ ± 00 would constitute a pathology lying outside 
the scope of this paper. 

It is now shown that all the important models of 
high-energy elastic scattering imply an 1m AI(1'), and 
hence a a(v), such that the kernel of (2.6) has an 
unbounded norm, so that (2.6) is a singular integral 
equation. For energies above a few GeV and 
momentum transfers Itl~ .;.:: I GeV/c, a good param­
etrization of the observed t dependence of the 
scattering amplitude is4 

IA(1', tW = IA(1', 0)12etb
(V). 

It is assumed that, as 1'-+ 00, A(v, t) becomes purely 
imaginary. Then projection onto the P wave gives9 

Ab) = 1. fO dt A(1', t)PI (l +.i) 
41' -4v 21' v-> 00 

(2.10) 

atot(1') is the total cross section, which is taken to be 
asymptotically constant. As for b(1'), the width of the 
diffraction peak, two cases are of interest: 

(i) b(1')""" log v, in accord with the hypothesis of 
asymptotic dominance by a Pomeranchuk-Regge 
trajectory of nonzero slope [1X~(t = 0) ~ OJ 

(ii) b(v),....., const, corresponding to the conventional 
diffraction picture, or to a flat Pomeranchuk trajec­
tory.IO 

8 E. C. Titchmarsh, The Theory of Functions (Oxford University 
Press, New York, 1960). 

• In deriving (2.10), it is assumed that the contribution to the 
integral from large \tl can be neglected. 

10 See, e.g., L. Van Hove, Rapporteur's Report at XIIIth Inter­
national Conference on High Energy Physics at Berkeley, CERN 
preprint (Th. 714), 1966. 

K( ') fOOd log X w,w,....., X . 
o (x + w)(x + w') 

(2.12) 

With the lower limit of integration taken at x = 0, 
this givesll 

K(w, w') ,-..., ![(log W')2 - (log W)2]/(W' - w). (2.13) 

In view of (2.9), a(w),...., (log W)-l. Thus for large 
w, w' the kernel 0[(2.6) reduces to 

K(W,W')<1(W')r-.;!log(W'/W)(l + 10gW). (2.14) 
2 w' - w logw' 

The norm of this diverges (logarithmically) for large 
w, w', so that (2.6) is a marginally singular integral 
equation.12 

Consider now Case (ii). The above considerations 
can easily be generalized to include the asymptotic 
behavior Re AI(1') r-.; const together with 1m AI(v)""" 
const (for 1'-+00). In view of (2.4), (2.7) can be 
split as follows: 

K(w, w') 

_ 1. 1m Al(oo) log(w'/w) 

- 7/' IAI (00)12 
W' - w 

+- x~~~~----~~~~~~ 
llood p(x)R1(x) - 1m AI ( 00) IAI( 00)1-2 

7T 0 (x + w)(x + w') 

(2.15) 

Then use of (2.9) reduces (2.6) to the form 

few) =.! + !:. JOO dol log (w'/w) few') 
(V 7/'2 w£ W' - w 

1 Joo + - dw'KF(w, w')f(w'), 
7/' w£ 

(2.16) 

where 

(2.17) 

KF(w, w') of (2.16) contains the integral of (2.15) 
and the difference a(w) - 1m Al(oo). Thus, with suit­
able assumptions about the way RI(v) and 1m Al{1') 
approach their asymptotic limits, the norm of 

11 I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sums 
and Products (Academic Press Inc., New York, 1965). 

12 Note that in (2.14) the first part of the kernel Ulog (w'lw)]1 
(w' - w) has been treated in Ref. 6; and the second part leads to a 
singular equation which is reduced to the forms of Ref. 6 by a 
simple change of the unknown function [few) .... logw· few)]. 
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KF(w, w') is finite. Then (2.16) is a standard form 
solved and studied in Ref. 6.13 

Furthermore, the definition (2.17) implies 

° S; A S; 1. (2.18) 

Then it is known that solutions free of unwanted 
poles on the physical sheet of y (ghost-free solutions) 
can be constructed by the Nj D approach6.14~16 (see 
also Appendix B). 

The rest of this work is restricted to models of the 
type (ii), for which the methods developed in Ref. 6 
are directly applicable. 

3. INABILITY OF SHORT-RANGE FORCE TO 
GENERATE RESONANCES 

As a first application of the foregoing formalism, 
consider a model with a constant left-hand dis­
continuity 

a(-y) = fmA 1(00), -00 < Y < -WL' (3.1) 

and constant inelasticity 

R1(Y) = RI(CO) = 1m Al(oo) jAI(00)j-2; (3.2) 

also, the approximation pCY) = 1 will be made. 
Then, it is asked whether resonances can be produced 
in the GeV region. This example, which neglects 
basic features of the low-energy part of the amplitude 
and of the long-range part of the potential, cannot be 
realistic for low-energy calculations. Nevertheless, 
it can give some idea of the relative importance of the 
distant singularities in the generation of the strong­
interaction resonances. 

Before consideration of the main problem, it is 
shown that a ghost-free amplitude can be constructed 
by direct application of the Nj D equations. Sub­
stitution of (2.3) in (2.2) gives 

N(y) = B(y) + .!:.R1(00) rCO

dy' B(y) - ~(y/). N(~/), 
7T Jo y - y y 

(3.3) 
where 

Y f- wL a( -v') 
B(v) = - dy' I I ' 

7T -00 Y (y - y) 
(3.4) 

or, due to (3.1), 

B(Y) = [1m A1(00)/7T] log (1 + yl(o[). (3.5) 

I n view of (3.2), 

Rl(oo) 1m AI(OO) S; I; 

then Ref. 6 concludes that an iteration solution of 

13 Other possibilities, e.g., b(v) ~ v~!, lead also to marginally 
singular integral equations of the type treated in Ref. 6. 

14 D. Atkinson and D. Morgan, Nuovo Omento 41,559 (1966). 
15 D. Atkinson, J. Math. Phys. 7,1607 (1966). 
16 A. P. Contogouris and A. Martin, Nuovo Cimento 49A, 61 

(J 967). 

(3.3) (Neumann-Liouville series expansion) exists. 
On the other hand, it is easy to see frol11 (3.5) that, 
for any y, y' ~ 0, 

B(v) ~ 0, [B(Y) - B(y')]/[v - J.'] ~ 0. (3.6) 

Hence, all the terms in this iteration solution are 
positive and 

N(y) > 0, v > 0. (3.7) 
Then (2.3) implies that - D(v) is a Herglotz function, 
i.e., 

1m D(v) < 0, 1m v > 0, (3.8) 
and that 

D(y) > 0, y < 0. (3.9) 

Thus D(y) has no zeros on the first sheet of the 
complex y plane. It is concluded that the solution of 
Eqs. (2.2) and (2.3) which admits a Neumann­
Liouville expansion will be free of ghost poles. 

With (3.1), (3.2), and the approximation p(y) = I, 
Kp(w, Wi) of(2.16) vanishes; then, with the simplifica­
tion WL = I (no loss of generality), Eq. (2.16) can be 
written 

j(w) = 1. + A ("'"w' 10gyo'lw)I«(I)'); (3.10) 
(I) 7T

2 J 1 (I) - (I) 

A is given by (2.1 7). A solution of this eq uation is 

j(w)=.!+Aroodw'R(w,(I)';A)~, (3.11) 
W J1 (I) 

where R(w, w'; A) is a resolvent of (3.10). Reference 
6 shows that there exists a unique resolvent with a 
branch point only at A = I: 

R(w, (0';).) =! foo ds s tanh (7TS) 
2 ~CJ) cosh2 (7TS) - A 

x P_his(2w - l)P-his(2w' - 1). (3.12) 

Thus, the extra requirement of analyticity at A = ° 
(and thus the existence of a Neumann-Liouville 
expansion) leads to the unique choice (3.12); in the 
next section this choice is further supported by 
certain continuity arguments. 

Substitution of (3.12) into (3.1 I) and use of the 
identity17 

cosh 7Tsf'" dx 
P-i+i'(z) = -- -- P_!+iS(X), z> -1, 

7T 1 X+Z 

gives the solution 
(3.13 ) 

DC -w) = w/Cw) 

= 1 + -- ( S ---::--"'-':"-
A7TWfoo I S tanh (ns) 

2 -if) cosh2 (ns) - A 

P _i+ii2w - 1) 
x . 

cosh (7TS) 
(3.14 ) 

17 Higher Transcendental Functions, A. Erdelyi, Ed. (McGraw­
Hill Book Co., New York. 1953). Vol. 2. 
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The foregoing conclusions on the absence of ghost 
zeros of this solution can be checked directly, at least 
for v real and negative (according to Appendix B, 
this is a particularly relevant region). Figure 1 
presents plots of (3.14) in the interval I < (I) < 700 
for various values of the parameter A, subject to the 
condition (2.18); no ghost zeros of D( - (() are 
indicated. 

An analytic continuation of (3.14) to (() < 0 is 
necessary in order to look for resonances. This is best 
accomplished by means of the identity17 

" Pt(-z) = e'il r.pt(z) -::. sin (7T/)Ql(Z) 
7T 

(± according as 1m Z ~ 0), which gives 

D(v) = I - ihv ds ., P_Lj2v + I) 1 Cfj s ta n h ( 7TS) 

o cosh- (7TS) - A 

fw s tanh (7TS) 
- },v ds 2 Q _~ \;/21' + I). 

-'l~ cosh (7TS) - }. 
(3.15) 

To simplify the first integrand, lise has been made of 
the symmetry property15 

(3.16) 

F or v > 0, because of (3.16), the contribution of 
the second term of (3.15) is purely imaginary. Hence 
the condition for a resonance at v = v 11 is 

- I 2" i 'J~ I __ s_ta_n_h_(,--7T_S.:-) -Re D(vII) = - AVI! (S .) 
o cosh- (7TS) - A 

x Re Q-hDv II + I) = O. (3.17) 

The functions Re D(!'), for }, = 0.25, 0.50, 0.75, 
0.95, and I, are plotted in Fig. 2. For 0 < v < 50, 
there are no zeros of Re D(l'); with the beginning of 
the left-hand cut defined by two-pion exchange 
«(1)1_ = m; = I), this region extends up to 2 GeV. 
Moreover, the weak dependence of Re D(v) on v at 
large I' indicates that, probably, there are no zeros at 
all. 

r----,---,---r---r---r---r---r--~8 
A~0.95 

7 

6 

5 

4 ~ 
3 10 

A~0.75 - ______ _ 

A~O 50 ============~;;;;;;~ 2 A~O 25 
-------------------- I 

L---~~~--~---L---L---L---L--~o 
700 600 500 400 300 200 100 0 

- w==-v 

FIG. 1. The function D(I'), given by Eq. (3.14), for rcal negative I'. 

;;: 
10' 

OJ 
0::: 

1.30 

1.10 )"'0.25 
,,'0.50 

0.80 

1.00 
0.50 L-l...--.L-----...L------.L------'------'so 

OSlO 20 30 40 
1I-

FlO. 2. The function Re D(v), given by Eq. (3.17), for 
real positive v. 

For A close to unity (A -+ 1-), the majorizations of 
R(m, m'; A) given in Ref. 6 and the asymptotic 
properties of the Legendre functions for large argu­
ment indicate that, apart from logarithmic factors, 

1m D(v),-..." v~, for v -+ 00. (3.18) 

Since a once-subtracted representation for D(v) is 
used, this behavior is in agreement with the conclusions 
of Olesen and Squires. Is 

The conclusion of this section is that a constant 
left-hand discontinuity along with a constant in­
elasticity is incapable of generating strong-interaction 
resonances: the real part of the corresponding 
denominator function does not vanish at all, at least 
in the GeV region. This conclusion is further streng­
thened by the explicit solution of Appendix A (approx­
imation OJ L = 0). 

In this model, a constant left-hand discontinuity 
and inelasticity can be considered as an abstraction 
representing the effects of the high-energy region. 
I n this sense it can be said that for the generation of 
the known resonances, the high-energy effects are not 
primarily responsible; the resonances are generated 
by the long-range forces. This conclusion is, of 
course, hardly surprising. However, the model also 
shows that an asymptotically constant left-hand 
discontinuity, which is compatible with the present 
experimental information in the diffraction region, 
in no way contradicts the basic principles of domi­
nance by nearby singularities. 

On the other hand, although not primarily respon­
sible, the short-range force may have a significant 
effect on certain features of the resonances. This 
question is taken up in the next two sections. 

4. MODEL COMBINING LONG- AND 
SHORT-RANGE FORCES 

The next application of the formalism of Sec. 2 is a 
more realistic model with a left-hand discontinuity, of 
which the nearby part is given by the exchange of an 

,. P. Olesen and E. J. Squires, Nuovo Cimento 39, 956 (1965). 
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0"2 (-/I) 

~W::-JI 

FIG. 3. One possible way to combine long- and short-range forces; 
however, the attraction is insufficient to generate resonances at 
v ~ 50. 

elementary vector meson of mass m (long-range 
forces), and the distant part is constant (short-range 
force). Thus, for -WI < V < -wL = _m2/4,19 

<Tl(-v, m2) = Y(I + m
2

8
: 4) (I + ~2) 

X o( -v - :)0(W1 + v), (4.1) 

where Y is proportional to the 7T7Tp coupling (the 
width f p_ uu -:::: 120 MeV corresponds to y -:::: 3.8); 
and for v < -WI' 

<T2 ( -v) = AO( -v - WI), with 0 < A < 1. (4.2) 

For simplicity, elastic unitarity (R1(V) = 1] is assumed, 
the generalization to any asymptotically constant 
inelasticity being straightforward. 

One way to combine (4.1) and (4.2) is indicated in 
Fig. 3: <Tl( -v, m2) rises on the left until it reaches 
the value A. Correspondingly, WI is the larger zero of 
the equation 

y(l - (m2 + 4/8w)][1 - (m2/2w)] = A. (4.3) 

Unfortunately, in this model, which has the advantage 
of not introducing additional parameters, calculations 
with 0 < A < 1 and 1 ~ Y S 50 give no indication 
of zeros of Re D(v) for energies up to v = 50. It can 
be said that the attractive part of the potential (== 
positive part of left-hand discontinuity) is not suffi­
ciently strong to produce physical resonances. 
Notice that increase of y strengthens the repulsion 
rather than the attraction.20 

Thus one is led to a combination of (4.1) and (4.2) 
according to Fig. 4, where a sharp cutoff A is imposed 

19 A. P. Contogouris and D. Atkinson, Nuovo Cimento 39, 1102 
(1965). 

20 The particular case y = A(oo, = OJ) corresponds to a left-hand 
discontinuity given entirely by exchange of an elementary vector 
meson. Here, for 0 < y < t no zeros of Re D(v) are indicated in 
the region v ~ 50. For y> t, A. Bassetto and F. Paccanoni 
[Nuovo Cimento 44A, 1139 (J 966)] report the existence of a boot­
strap solution free of arbitrary parameters, which in fact gives both 
the width and mass of the p in very good agreement with experi­
ment. However, as has been stressed by those authors, the corre­
sponding D function is expected to have unwanted zeros. 

on the vector meson contribution, so that 

WI = AUm2 - 1). (4.4) 

It can be shown again that for all A, 0 < A < 1, a 
ghost-free amplitude exists, because an iteration 
solution of (3.3) can be constructed; and R(v) , as 
defined in (3.4), has been found to satisfy (3.6), at 
least for 4 < m2 < 50 and A ~ 10. 

The defect of this model is that it contains two free 
parameters, A and A. In view of the smallness of the 
real part of the forward amplitudes observed in high­
energy p-p and 7T-p scattering,4 it is perhaps reason­
able to assume that A is close to unity, say 0.9 < A < 
1. However, A remains in principle undetermined. 
Still, important information may be obtained by 
comparing the resulting solutions with those from a 
model with the same <T1( -v, m2) (i.e., the same A) 
but with A = O. By keeping the same long-range part 
one may expect to get some information about the 
effect of the short-range force on various features 
of the amplitude. 

This program is pursued in an approximate scheme 
defined as follows: With the left-hand discontinuity 
of Fig. 4, suppose that Eq. (2.16) is written in operator 
form: 

f=fo + AKs'f+ KF'j, (4.5) 

where fo stands for l/w, Ks for the singular kernel 
7T-2 [log (w'/w)/(w' - w)], etc. When the last part 
(KF • f) is neglected, the solution of (4.5) is given in 
Sec. 3 and can be written 

J=fo + AR 'fo; (4.6) 

R represents the resolvent (3. \ 2). The approximate 
solution that will be used is 

(4.7) 

To compare this with the exact solution, note that 
(4.5) can be written 

f= (\ + AR)fo + (l + AR)' Kp ·f. (4.8) 

FIG. 4. Left-hand discontinuity in a realistic model combining long­
and Short-range forces. 
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Reference 6 has shown that for ° < A < 1, and with 
the resolvent (3.12), Eq. (4.8) is Fredholm; hence, 
for sufficiently small A, an iteration solution exists. 
The first iteration gives 

11 = (1 + AR)jo + (l + AR) . KF . J 
Use of the well-known identity2I 

Ks' (1 + AR) = R 

shows that!I differs fromJto terms of order A IIR' KFIIJ 
IIKFII. 

Equations (2.15) and (2.16) show that, for A - 0, 
K]/, tends to a finite limit, say K~~), so that (4.5) 
becomes 

(4.9) 

(a Fredholm equation). On the other hand, since R 
is the resolvent analytic at A = 0, lim AR = 0, 

),-0 

and (4.8) reduces again to the form (4.9). 
Suppose, however, that the calculation is carried 

out, not with R, but with another resolvent R(U, 
which contains a multiple of the homogeneous 
solution corresponding to ! =!o + AKs . f It can be 
seen [Eq. (2.11) of Ref. 18] that, in the limit A-O, 
J~!o and AR(I) ~ 0; hence in this case (4.9) is not 
reproduced. Clearly, on grounds of continuity, it is 
desirable that the limit A - 0 reproduce the situation 
that corresponds to simple exchange of a cutoff vector 
meson [Eq. (4.9)]. 

Note that in the limit A - 0, with J - 10, the 
approximate solution of (4.7) tends toJ -10 + K<j.Y'v. 
Clearly, this is the first iteration of (4.9), usually 
called the "determinantal" solution22 ; most of the 
numerical results of bootstrap calculations have been 
obtained with this type of solution. 

In terms of the solution D( -UJ) of (3.14), Eq. (4.7) 
can be written as 

- (t) 

D(-w) = 1 +-
71" 

f oo d' K(w, w')a(w', m2
) D-( ') x w -w 

2 ' , 
WL('" ) (I) 

( 4.10) 

where a(w, m2) is given by (4.1), (4.2) (or Fig. 4), and 

K(w, 0/) = 2, ((_W_)i log [w~ + (w - 1)i] 
71"( OJ - (I) ) (f) - 1 

- (--;i-)! log [w't + (w' - 1)~]}. (4.11) 
w - 1 

21 F. Smithies, Integral Equations (Cambridge University Press, 
New York, 1962). 

22 F. Zachariasen, Scottish Universities' Summer School Lecture 
Notes, Edinburgh, 1964. 

Again, to determine the resonances (v > 0), an 
analytic continuation to w < ° is needed. For this, 
let 

w = cosh2 ni71" + y) = -sinh2 y 

and, for w < 0, 

sinhy = (-w)i, i.e., y = log [(-w)! 

+ (-w + l)!]. 
Hence, 

(_W_)! log [w! + (w - 1)t] 
w -] 

= (ii71" + y) tanh y 

= {ti71" + log [( _w)t + (-w + l)!]) ( -w )!. 
l-w 

With this, one has 

_ w 
Re D( -w) = 1 + -

71" 

f <Xl I' Re K( w, w')a( (I)', m2
) D-( ') x '(0 -w 

(lJL(m 2 ) (rl ' 
(4.12) 

where 

Re K(w, (0') 

= 2, {( -w )! log [( -w)! + (-w + l)i] 
71"(w-(O) l-w 

- (--;i-)! log [w't + (ul' - l)t J}, (4.13) 
w - 1 

and 

1m D( -(I) 

=~f<Xl dw,ImK(w,w?a(w',m
2
)D(_w'), (4.14) 

7T wL(m2) OJ 

where 
1 (-W)! 1m K(w, w') = --, -- . 

(J)-W l-w 
(4.15) 

The condition, then, for a (narrow) resonance at 
1'= -0) = 1'R is Re D(1'R) = 0, and this results in an 
equation of the form 

Y = y(1'R' m2). 

The coupling necessary to produce a resonance at 
v = 1'R (input coupling) is determined by I. The 
self-consistent (bootstrap) solutions are defined by 
the condition 

1'm2 = 4(1'R + 1), 

and by the relation of the width of the produced 
resonance (output width) to the coupling of the 
exchanged vector meson, which is 

II y = 671"(1 +3 1')i 1m D(1')A ) . 
1'l!' (dJd1') Re D(1') V~VR 
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This expression is approximate and is not a good 
estimate for the large widths which will prove neces­
sary. Nevertheless, the main point, that the widths 
are reduced by the addition of a short-range force, is 
clearly valid. 

5. NUMERICAL RESULTS AND DISCUSSION 

Numerical calculations of the program of Sec. 4 
have been carried out for several cutoff values in the 
range 5 ~ A ~ 80. For each A, two cases were 
compared: 

(a) .Ie = a (i.e., without short-range force); 
(b) }, = 0.95 (i.e., with short-range force). 

In Fig. 5, four curves are shown between y, the 
coupling, and vn/m;, the resonance position, for the 

y 

1.0 10 100 

VR /m~ 
FIG. 5. Bootstrap solutions in the model of Fig. 4 for a cutoff 

A = 10. The curves 1 represent equation (I) of Sec. 4 subject to the 
condition (I'); the curves II represent equation (II). Case (a) corre­
sponds to the absence of short-range force and Case (b) to the 
presence of short-range force. 

cutoff A = 10. Curve (Ia) is a plot of equation (I), 
subject to equation (I'), that is to say, the relation 
between the input, or cross-channel coupling y, and the 
mass of the produced resonance, this latter being 
constrained to be the same as the mass of the input 
resonance. Curve (Ib) is a similar plot, but this time 
with the short-range force added. Curve (na) is a 
plot of equation (n), so that y is now the (reduced) 
width of the output resonance, vR/m; being, as before, 
the self-consistent resonance position. Curve (ub) 
repeats this with the short-range force added. Finally, 
Fig. 6 is a similar graph for the cutoff A = 40; for 
other values of A the results remain qualitatively 
unchanged. 

150 

100 

y 

50 

OL-J-~~~ __ ~~~ll--L-LCU 
0.1 1.0 10 60 

FIG. 6. The same as in Fig. 5 for A = 40. 

Several observations can be made within this 
approximate model, on the basis of Figs. 5 and 6: 
In general, bootstrap solutions exist both without the 
short-range force [intersection of curves (Ia) and (II a)] 
and with the short-range force [intersection of (Ib) and 
(ub)]. 

For each case (a and b), the self-consistent mass 
and width as a function of A is presented in Fig. 7. 
For all A the addition of the short-range force 
decreases the self-consistent mass. For large A, 
the differences Y(a) - Y(b) and (mp/mUnl) - (mp/mu)fIJ) 
are small, as they should be (most of the left-hand 

1 
90 \ (m t 

100 \ m: (a) 
Y(o)'" 48 

80 \ \ Y(b)'" 22 

50 
\ \ 
\ \ 

70 \ \ 
\ \ 

60 \ , 
( mp)2 \ "-

)0.. ~ ). "- .... 
50 "-1"10 m .. (b) ........ -

E E 
'---' 

40 5 

30- f 20 

10 
10 100 

A/m2 
.". 

FiG. 7. The self-consistent mass ratio mp/m" and coupling y as 
functions of the cutoff A. As always, Case (a) corresponds to the 
absence of short-range force and Case (b) to the presence of short­
range force. Experimental values: (mp/m,,)' = 30, Y = 3.8. 
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discontinuity being given by the p exchange); but 
as A decreases, these differences increase. 

It is of particular interest that a bootstrap solution 
with the correct p-meson mass (m! = 30) does exist. 
Here the short-range attraction decreases the self­
consistent width by a factor of 2 (from Y(a) ~ 48 to 
Ylb) r-J 22). 

However, even with a short-range force, this width 
remains about six times as large as the experimental 
value. Thus, the conclusion is that the addition of the 
short-range attraction acts in the correct direction, 
but is not sufficient to explain the whole magnitude 
of the discrepancy. 

(i) For a given resonance position vRlm;, the 
addition of the short-range force significantly de­
creases the necessary input coupling y [cf. curves (Ia) 
and (Ib)]. This is true for each cutoff and is an 
eminently reasonable state of affairs: if a short-range 
attraction is present, the long-range force needed to 
produce a resonance at a given position is reduced. 
Similarly, for a given y, the resonance mass is de­
creased by the addition of the long-range force. 

(ii) For a given VR, the short-range force increases 
the width of the output resonance, however [cf. 
curves (lIa) and (lib)]. This is not surprising, for it is 
known that what is required to narrow the. output 
resonance, for a given mass, is the addition of a 
long-range repulsion,22 rather than a short-range 
attraction. 

Of course, in this calculation many important 
contributions to the binding force have been omitted. 
For example, the exchange of two pions in relative S 
state could be significant, either if its contribution is 
strongly repulsive,23 or if it is strongly attractive, 
with perhaps a resonance.24 It is even possible that 
multipartic1e exchange is important. Moreover, this 
simple model has neglected inelasticity. It is possible 
that a one-channel calculation would require a COD 
pole, even if the correct inelasticity were used,25.26 
and that a dynamical calculation could only be done 
with good accuracy in a many-channel scheme. An 
SU(3) model in which the KR channel was also 
incorporated suggested that this channel might not be 
too important27; but an SU(6) model, in which the 
7TW channel also occurs, would, if it is to be believed, 
require a one-channel COD pole, or equivalently 

23 G. F. Chew, Phys. Rev. 140, BI427 (1965). 
2' C. Lovelace, R. M. Heinz, and A. Donnachie, Phys. Letters 

22, 332 (1966). 
25 E. J. Squires, Nuovo Cimento 34.1751 (1964). 
2' D. Atkinson, K. Dietz, and D. Morgan, Ann. Phys. (N.Y.) 37. 

77 (1966). 
27 D. Atkinson and M. B. Halpern, Phys. Rev. 150, 1377 (1966). 

a many-channel N D-l system.27 In this connectIOn, 
it is interesting that a calculation by Fulco, Shaw, 
and W ong28 of the p meson in the three-channel 
system (7T7T, Kl?, 7TW), with a cutoff and no short­
range force, gives, as usual. a resonance width that is 
too large, although the KK and TTW channels do assist 
in reducing the p width. It can be expected that the 
direction and order of magnitude of the effect of a 
short-range force will be the same in a more sophis­
ticated model of this kind as it was in the work pre­
sented here. That is, we may expect a singular tail to 
assist materially in the narrowing of the 7T-7T P-wave 
resonance. 

From the mathematical point of view, the fact that 
the numerical calculations were done in an approxi­
mate scheme may be considered as unsatisfactory. 
It would certainly be of interest to repeat the whole 
program with the exact solution of (2.16) [or (4.5)]; 
and in view of the presented formalism and of the 
methods developed in .. Ref. 6, which reduce the 
singular to a Fredholm equation, this can be done in a 
straightforward manner. 
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APPENDIX A 

In this appendix, Eq. (3.10) is solved under the 
assumptions (3.1) and (3.2), plus the additional 
approximation involved in eliminating the gap 
between the left- and right-hand cuts (WL = 0). 
This simplification, along with (3.1) and (3.2), can be 
characterized as a high-energy approximation. Such 
a situation is even more unrealistic than that of 
Sec. 3; however, insofar as one is concerned with the 
effects of the distant parts of the discontinuities on the 
resonance region, and because of the possibility of 
obtaining explicit and relatively simple solutions, its 
study is, perhaps, of some interest. 

A disadvantage of this treatment is that, by replac­
ing WL = 1 by WL = 0, the mass scale has been lost. 

28 J. R. Fulco, G. L. Shaw, and D. Y. Wong, Phys. Rev. 137, 
BI242 (\965). 
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Thus, it is necessary to subtract the Nand D equations 
at some point v = Vo = -Wo (not the normal thresh­
old), at which D(v) can be normalized to unity; the 
value of Wo reintroduces a mass scale. With 

Rkn)N( -wo) = a, 

the integral equation becomes 

few) = 1 + 0 log (w/O)o) 
w - Wo 7T W - Wo 

(AI) 

+~ (OOdw,IOg(w'/w)f(w'). (A2) 
7T2 Jo W' - w 

In operator notation this can be written 

1= a1 + a2 + (?f7T2)KI, (A3) 
where 

1 0 log «(O/wo) 
0 1 =? ---, a2 =? - , 

W - Wo 7T W - Wo 
K =? log (w'/w). 

w' - 0) 

Then, defining/1 '/2 by 

Ii = ai + (?f7T2)K/; for i = I, 2, (A4) 

one has 
(A5) 

The functions /; are solutions of (A4), which can be 
expressed in the form 

(A6) 

where R is a resolvent of the kernel K/7T2, satisfying 

(A7) 

It was shown in Ref. 6 that R exists but is not unique: 
it has a two-parameter manifold. However, if the 
solution is required to have no singularity at A = 0, 
and thus to admit a perturbation expansion in powers 
of A, a unique resolvent is singled out, which has a 
branch point only at A = I (see also Appendix 8). 
This resolvent is 

, I sinh [So log (0//0)] 
R(w,O) ; A) = ------;-

7T[A(1 - }.)]~ 0/ - 0) 

(AS) 
where 

J 1 I A = sin2 (7TSo)So = (i7T)-1 log [( _A)2 + (I - It) 2) , 

with ° < So < i for ° < A < 1. 
One might solve the two equations (A4) by using 

the resolvent (A8). To find j~(ol) it is necessary to 
evaluate (A6) for i = I by performing the integral 
explicitly. The result is 

NOI) = _1- cosh [So log (01/('10 )], (A9) 
(I) - 0)0 

The equation for 12(0) is trivial, since 

a2(w) = (a/7T)K(O), 0)0), (AIO) 

so that by comparing (A4) for i = 2 with (A7), one 
has immediately 

12(0) = a7TR(w, 0)0; A). (All) 

Finally, by (A5), one has the solution 

D(v) = (0) - wo)/(w) 

= cosh [So log (O)/wo)] 

+ B-1 sinh [So log (0)/0)0)]' (AI2) 

where 
B == [A(1 - A)]!ja. 

Substituting w = -v, one has, for v real and positive 
(== physical region), the following real and imaginary 
parts: 

Re D(v) = cos (7TSO>[ cosh (So log (:J 
+ ~ sinh (So log ~JJ, 

1m D(v) = sin (7TSo>[sinh (So log ~J 

+ ~ cosh (So log ~JJ (AI3) 

Now, the condition for a resonance at v = vilis 
Re D(vll ) = 0, i.e., 

tanh [So log (vll/wo)] = -B. (AI4) 

As v 11 changes from zero to infinity, the left-hand side 
progresses monotonically from -1 to + 1. Accord­
ingly, if/B/ < I, there is one, and only one, solution of 
(A 14), while if /B/ > I there are no solutions. In the 
former case the coupling (or, equivalently, the width) 
of the resonance is 

g2 3 [ I m DC v ) ] 

47T c::: ~ (djdv) Re D('lI) \,~VII 
3 ( A )! 37T = - tan (7TSo) = -- . 

So I - A arc sin A~-
(A15) 

[n the first equality of (A15), the phase-space factor 
[(110 + 1 )/vo]! has been replaced by unity. Notice that 
the subtraction point (1)0 and the subtraction con­
stant N( -0)0) (or equivalently B) have disappeared, 
and (AI5) is a simple equation involving only A 
and the width g2/47T. 

Hence, in the approximation 0)[, = 0, and provided 
that /B/ < I, a constant left-hand discontinuity is 
capable of producing a resonance at some point 
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v = vn satisfying (A14). However, one can see from 
(A1S) that for all A, 0 < A < 1, the corresponding 
width is exceedingly large (g2j47T > 37T; compare, 
for example, with the experimental value for the 
width of p - 27T: g!uj47T c::: 0.6). Such a wide 
resonance can hardly produce any of the usual effects 
on the cross section of the corresponding process [and 
hardly justifies the use of formulas like (AlS), which 
are meaningful only for narrow resonances]. Thus it 
cannot be considered acceptable. 

To find solutions of the equation 

g2j47T = (3/So) tan (7TSo) 

corresponding to g2/47T c::: 1, one needs So outside the 
interval 0 < So < t. As the first Riemann sheet of the 
A plane corresponds to -i < So < i, this means that 
one has to go to higher A sheets. On the higher sheets, 
branch points exist at both A = 0 and A = 1 (see 
Appendix B); moreover, the continuation of a 
solution onto a higher sheet is not necessarily a 
solution of the original equation, because the integral 
in (A2) will no longer converge. The continued 
solution corresponds to a higher CDD class.H Thus, 
in fine" there is no resonance with acceptable width 
generated by a featureless, constant left-hand dis­
continuity. 

APPENDIX B 

The purpose of this appendix is twofold: First, 
to present the sheet structure in A of the resolvent of 
Appendix A [Eq. (AS)]; second, to study in certain 
simple examples (corresponding to WL = 0) the zeros 
of the denominator function. As the approximation 
W L = 0 leads to relatively simple explicit solutions 
having a number of features in common with the 
exact ones, the conclusions are expected to provide 
useful insight. 

To find the structure of (A8) it is convenient to 
map the infinity of Riemann sheets in A onto the 
complex plane of another appropriate variable w 
defined by 

A = cos2 (7TW). (Bl) 

Under this mapping, 

2 sinh [(i - w) log (m'jw)] 
R(W,W';A)=---

7T(W - w') sin (27TW) 
(B2) 

This is a merom orphic function of w; its poles corre­
spond to branch points in A and appear at 

w=m, m=O,±i,±l,±%,···. (B3) 

Thus, the various sheets of A are mapped onto 
parallel strips of the w plane (Fig. 8). 

mw 

8 8 ~ 8 I~ 8 8 8 , + + + , + 
,< I 

I 
I 
I 

IV III II Sheet I II III 
I 
I 
I 
I C, 
I 

( ~ 0 I 2 I 10 0 I ~ 

-3/2 -I -1/2 0 11/2 \. f1/ 3/2 2 Re w , 
I , 
I 
I 

IV III II Sheet I II III 
I 
I 

I 
I 
I C2 

8 8 8 8 '8 8 8 8 
I + , + I, + , + 

I 
-< I 

FIG. S. Appropriate mapping [defined by (81)] of the resolvent of 
Eq. (AS), which determines its structure in A. 

The point A = 0 corresponds to m = ±i, ±!, .... 
In particular, w = i does not lead to a singularity of 
(B2); and as the first sheet of A corresponds to 
o < Re IV < 1, it is concluded that (B2) has no 
singularity at A = 0 on the first sheet. However, on 
higher sheets A = 0 is a branch point. 

Sheet II is defined to be the sheet connected to 
sheet I across the cut 1 ~ A < OC! and maps onto the 
strip 1 < Re w < ~. Here there are branch points at 
both A = 0 (cut - 00 < A < 0) and A = 1 (cut 
1 < A < OC!), and this is true for all higher sheets. 
It follows that a double circuit around A = I which 
does not enclose A = 0 (C l of Fig. S) brings one back 
onto sheet I; however, circuits enclosing A = 0 and 
A = 1 (C2 of Fig. 8) lead into higher sheets. Notice 
the similarities with the sheet structure of the exact 
resolvent (for W L ¢ 0)15: as in that case, the bran(:h 
points may be said to behave individually like square 
roots but together like a logarithm. 

Consider now the zeros of D(v) corresponding to the 
resolvent (B2), and take (for simplicj~y) N( -(1)0) = O. 
Then Eg. (AI2) reduces to 

D( -w) = cosh [So log «(1)/(0)0)]' (B4) 

Clearly, the physic;al sheet of (I) is 

-7T < arg w < 7T (BS) 

and corresponds to 0 < arg v < 27T. 
Suppose now that A varies over real values. At 

first - 00 < A < ° corresponds to }j' = k + ~ + iv, 
k=O, ±1, ±2,"', andO<v<oo (or -00< 
v < 0). Hence A = -sinh2 (7TV), SO = -iv, and the 
zeros of (B4) appear at 

w = (1)0 exp [en + ~)(7T/r)], n = 0, ± I, ±2, .... 

(86) 
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This gives two sets, each of an infinite number of 
zeros, lying on the positive real w axis; for ° < v < 
00, the one set, which corresponds to n = -1, -2, 
-3, ... , accumulates at w = 0, and the other set 
(n = 0, 1,2, ... ) accumulates at w = 00. In view of 
(B5), these zeros lie on the physical sheet of the com­
plex v plane (along the negative real v axis). 

Next, suppose that it varies on its first sheet along 
o < J. < 1. From Fig. 8 this corresponds to w = real, ° < w < 1. Now, the zeros of (B4) appear at 

w = Wo exp , n = 0, ± 1, ± 2, .... [
(2n + 1)l7J 

2w - 1 

For all n, and win 0 < It' < 1, 

larg wi > 17. 

Hence, none of these zeros lies on the physical sheet 
of w (or v). 

Finally, let J. > 1. This corresponds to It' = k 
+ iv, k=O, ±1, ±2,···, and O<v<oo (or 
- 00 < v < 0). Hence J. = cosh2 (m) and the zeros 
of (B4) appear at 

w = Wo exp [(2n + 1)17 2v 2- i ], 
(2v) + 1 
n = 0, ± 1, ±2, .... 

For aU v, ° < v < 00, this relation gives at least one 
pair of complex zeros on the physical sheet of w. 
Note that the zeros of each pair do not appear at 

complex conjugate positions; in this case the Rie­
mann-Schwartz reflection symmetry is violated. 

The conclusion is that for J. < 0 and A > 1, the 
denominator function has zeros on the physical sheet 
of the complex v plane which correspond to un­
wanted poles of the amplitude (ghosts). However, 
for ° < J. < I these zeros disappear from the physical 
sheet. 

This conclusion can be further strengthened by 
similar analysis of a different resolvent. For example, 

R(1)(w, w'; J.) 

217[J.(J. - 1)]~ 
sin [qo log (w'/(O)] w' + (I) 

'---" 
w' - w (w' W)2 

where 
qo = 17-1 log [}J + (J. - I)!] 

is one of the resolvents of (A2) having a branch point 
at}. = 0.6 Here, for - 00 < }. < 0, D(v) has at least 
one complex pair of zeros on the first sheet of v 
(violating the Riemann-Schwartz symmetry); and for 
A > I it has a double infinity of zeros along - 00 < 
v < O. However, again for 0 < }. < 1, no zeros 
appear on the physical sheet of v. 

In view of these examples and of more general 
theorems on the existence of ghost-free solutions of 
partial-wave dispersion relations,16 one presumes that 
only the case 0 < }. < 1 (considered in Secs. 2-5) 
can possibly lead to solutions of physical interest. 
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For nonrelativistic P-wave Nj D equations we consider the two different cases depending on whether 
the solutions of the subtracted equations, assuring automatically the right threshold-behavior conditions, 
satisfy the unsubtracted equations or not. In both cases we investigate the meaning of the corresponding 
interactions. 

I. INTRODUCTION 

Among different theoretical and practical difficulties 
connected with the use of partial-wave dispersion 
relations as well as Nj D equations, a current one is the 
requirement of correct threshold behavior for the 
solutions. 

When we consider the un subtracted equation and 
assume for the left-hand-cut discontinuity some 
general condition, such that the solution exists, then 
in general this is not sufficient for the solution to 
exhibit the threshold-behavior requirements. Of 
course it can be argued that this comes mainly 
because we can determine only a part of the left-hand­
cut discontinuity, and if the whole discontinuity were 
known this problem probably would not occur. 
Nevertheless it can be realized that these threshold­
behavior conditions for the solutions of the un sub­
tracted equations are in fact intrinsic conditions for 
the left-hand-cut discontinuities. 

Furthermore, it is usual to consider as "ansatz 
equations" some subtracted equation where the 
threshold behavior conditions are automatically 
satisfied. Whether or not such procedure is always 
allowed is not so clear. For instance, it is well known 
that in the N/ D equations in general we modify the 
asymptotic D behavior. We have in fact two different 
cases. In the first case the solution of the "ansatz" 
subtracted equation is also a solution of the un sub­
tracted equation. This means that the above intrinsic 
conditions for the left-hand-cut discontinuity are 
satisfied. In the second case these intrinsic conditions 
are not satisfied and the solutions of the ansatz 
subtracted equations are not solutions of the un­
subtracted equations. In that last case the following 
question arises: What is the meaning of the ansatz 
subtracted equation? 

Consider for instance the nonrelativistic N/ D 
equations; we know that the Yukawa-type family 
belongs to the first case. But we recall that dispersion 
relations leading to Nj D have been proved only for 
Yukawa-type family. It follows that if we can show 
for the second case that our considered ansatz 

subtracted equation has :;t meaning at all, then we 
must necessarily find some kind of singular inter­
actions. We recall that the Marchenko1 inversion 
formalism is a powerful too12 for studying the meaning 
of the N / D equations in the I = 0 case. We shall use in 
this paper Blazek's3 extension for I =F- 0 of the Mar­
chenko formalism. In the following we shall give for 
I =F- 0 some general results concerning the inversion 
problem (mainly the dispersive formulation of the 
Jost solutions). However, we shall investigate explicitly 
whether or not we can attribute a real meaning for 
some ansatz subtracted equation only for the P-wave 
case. 

II. SUBTRACTED AND UNSUBTRACTED 
EQUATIONS IN CONNECTION WITH 
THRESHOLD BEHAVIOR FOR I ~ 0 

In order to reconstruct the SI(k) matrix from the 
left-hand-cut discontinuity, we consider the resulting 
integral equation offl(k)//z( -k) [an approach equiva­
lent to Nt! D I, fl(k) being the lost function fl( -k) = 
DI(k2

)] such that SI(k) = /z(k)//z( -k). 

Unsubtracted Equations 

We assume in this section that the potentials are 
of the generalized Yukawa-type family "regular" at 
the origin 

AV(r) =fooe-arAC(IX) dlX and foo 1c(:)1 drx < 00. 
In m ex. 

In that case we have4 the following resulting integral 
equation: 

(

fl (k = -ix) = Fb), 

Fl(x) = 1 +foo f1 LltCY) Fl(y), (1) 
mf2 X + Y 

* Paper presented at the 1967 International Conference on High 
Energy Physics at Heidelberg. 

1 Z. S. Agranovich and V. A. Marchenko, The Inverse Problem of 
Scattering Theory (Gordon and Breach, Science Publishers, Inc., 
New York, 1963). 

2 H. Cornille, J. Math. Phys. 8, 2268 (\967); 1PNO TH76 Nov­
ember 1966 (to be published in J. Math. Phys.). 

3 M. Blazek, Commun. Math. Phys. 3, 282 (\966). 
• E. J. Squires, Strong Interactions and High Energy Physics 

(Oliver and Boyd, London, 1961). 

1501 



                                                                                                                                    

1502 H. CORNILLE AND G. RUBINSTEIN 

where we call -P,AI the discontinuity of the Sl matrix, 

P,AI(X) = -(2i7T)-1[SICU, ix + ,,) - Sz(p" ix - ,,»), 
x> m12. (2) 

For the Yukawa-type family (short-range type), the 
threshold-behavior conditions for the Sl matrix are 
satisfied5 for any I, 

(3) 

This means that the FI(X) solutions of (I) corresponding 
to the Yukawa-type family satisfy automatically 

p = 1,2, ... , t, (4a) 

or equivalently 

1'( )_f,ooFI(X)Ab)d -0 a l P - x - , 
m/2 x21' 

p = I, 2, ... ,t. ( 4b) 

We emphasize that (4b) must be considered as an 
intrinsic condition for the discontinuity 

(f en F/p I)AI(x) dx = 0) 
m/2 x2p 

and a boundary condition for (I). pAL' corresponding 
to Yukawa-type family, is such that (4b) is satisfied; 
then we can try to include these boundary conditions 
in (1). If (4a) and (4b) are satisfied, then 

FI(X) = FI(O) 

+ [FI(X) - FI(O) -1't(2;2~11)!(::::~lFb»)(=J 
and we get, for 1 C. 1, 

Fl(x) = FI(O) + pJoo gz(x, y)Ab)Fb) dy, 
m/2 

(5) 

B. Ansatz SUbtracted Equations 

Now we consider formally the following equation 
considered as ansatz: 

Fl(x) =F/O) + p (Xl gl(X, y)A,(y)FI(y) dy (6) 
~ ml2 

without any subsidiary condition and we put formally 

"'I Ft (x = ik) 
S, = _ . . 

Ft(-x = -Ik) 
We define 

iiJJ(u) =Joo i'z(y)Az{y) dy p = 1 2 .,. 1. 
1 r 2.1-' '" 

",/2 Y 

& With the modifications for exceptional cases; R. G. Newton, 
]. Math. Phys. 1, 319 (1960). 

1. First, if 

ii;'(p) = 0 for p = 1,2,"', [, (4c) 

it is easy to see from (6) that Fl,) = const X Fl(x) 
where FI(x) is a solution of (I) satisfying (4b). (A 
normalization constant is not important for the ratio 
Ft! f\ or Fli F l , so we are free to multiply both the 
numerator and the denominator by a constant.) 
Furthermore, if 

FI(O) -fCY) FI(Y)A'(Y)dy = 1, 
»1/2 Y 

the constant is 1; Fl = Fl' So the conditions a~ = 0 
(p = 1, ... , I) for the ansatz subtracted equation (6) 
are the conditions such that the solution Ft is also 
solution of the unsubtracted equation (I) or equiv­
alently these are the conditions such that Fl solutions 
of (I) satisfy the threshold conditions (4b). This 
means only that in this case the threshold-behavior 
requirements are intrinsic conditions for the discon­
tinuity and do not depend on whether the equation 
considered is (I) or (6). rn this case we note also that 
Fl(x) -+ const. 

x-,.oo 

2. Second, for any solution of (6) we have auto-
matically 

-- F(x) = 0 p = 1 2 .. , I (4d) 
( 

a2p-l ) 

OX2P-1 t x=o' '" 

such that the right threshold behavior is always satis­

fied for Sl' 
3. Third, we consider (6) where (4c) is not satisfied 

(at least one af ~ 0). But of course (4d) is verified. In 
those cases where the solution of (1) is not a solution of 
(6) and where the solution of (I) does not satisfy (4) 
and (4b) the following question arises. Has the 
corresponding ansatz (6) a meaning? Or equivalently, 
can we give a real meaning to the interactions 
"p,A(x)" or to the St matrix? We note that we know 
a priori in this case that even if we are able to analyze 
the interactions, we cannot find a member of the 
Yukawa family, so that we know a priori that we must 
find some kind of singularity. We emphasize that 
a different ansatz is possible in order to force the 
threshold behavior. We consider here one particular 
ansatz and try to understand the corresponding 
meaning. In fact we shall investigate here the P-wave 
case, but we shall give also some general results. In 
the following we consider "regular discontinuities" 
pAl(x) of (1) such that the Fredholm-type solution 
of (1) exists. 

We reca1l2 that for I = 0 the Marchenko1 inversion 
formalism gives the possibility to interpret the Nj D 
equations. We shall use the extension of Marchenko 
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formalism given by Blazek3 for 1#:O and try to see if 
for 1 = 1 the ansatz (6) has a meaning at all. 

DI. INVERSION FOkMALlSM 

We do not want to give a complete analysis but 
only integral equations for the Jost solutions. 

At the beginning we assume only that the potentials 
VCr) satisfy sufficient conditions such that the follow­
ing integral equation for the Jost solutions il(k, r) ~ 
ile-ikr exists for r > 0: 

il(k, r) = wl(kr) - iO)dr'g/(k, r, r')V(r')fz(k, r'), (7) 

, ! ( in (l + n)! 
W (p) - iie-·p ~ --) a a - -->--'---'--I - ~ -2 l,n' l,n- 1(/- ),' 

n--O p n. n . 

(8) 

gik, r, r') = i( - )l(2k)-1[w1(kr)w1{ -kr') 

- w1( -kr)wl(kr')]. (9) 

We note that we do not assume anything for V when 
r -40- 0, but for r --+ CIJ we assume that V decreases 
exponentially or weaker conditions. Similarly, as for 
1= 0, we put formally 

fl(k, r) = wz(k, r) + 10) KzCr, t)wl(kt) dt. (10) 

In Appendix A, using the properties of spherical 
Hankel transform,6 it is shown that if we substitute 
(l0) into (7) we get 

(dJdr)[KI (r, t = r)J = -!V(r). (11) 

The method used gives also the possibility of obtaining 
an integral equation for Kt(r, t) from VCr) and conse­
quently the possibility of finding sufficient conditions 
for VCr) such that Kl(r, t) exists (as has been done l for 
I = 0). For simplicity we shall not investigate this 
integral equation in this paper. 

Now we assume that the potentials are of the 
Yukawa type. Blazek3 has given the extension of the 
Marchenko equations for Kz(r, t) in the case 1#:0: 

6 H. Comille, Compt. Rend. 1St, 2135 (1960). 
7 Blazek has considered only the case where no bound states 

are present. But for the Yukawa family and,u~(x)"sufficientlyweak" 
we are in this case [see, for instance, I = 0 (Ref. 2)J. If bound states 
are present, we define the scattering data (similarly as for I = 0) as 
coming from two parts: the first one gives the contribution of the 
continuum as (13), the second supplementary part comes from 
these bound states. Finally, our fundamental equations (12) and (15) 
remain unchanged with this modified scattering data. 

where ~l is the scattering data' 

- (_1)1+1 
'Glr, t) = --

217 

XL+"",O)dk(l - SI(k»h1(-ikr)hz{-ikt) 

and8 jlh1(iz) = Wl(Z). 

(13) 

For the Yukawa-type family, we can rotate the 
integration path in the upper-k complex plane (as for 
1= 0, see Ref. 2) and we get 

TII(r, t) = (- )!/t roo ~l(x)h!(xr)hz(xt) dx. (14) 
J ... /2 

If we substitute (12) in (10), taking into account (14), 
then we get an integral equation for the Jost solutions 

Flx, r) =il (k = -ix, r)/il, 

Fl(x, r) = h,(xr) 

+ /t roo (- )1~I(y)Fz(y, r)Gz{x, y, r) dy, 
Jml2 

GI(x, y, r) = 10) hl(xt)hl(yt) dt. (15) 

For I = 0, (IS) reduces to the previously found inte­
gral equations.2 

For regular potentials like the Yukawa family, 
where the singularity of the solutions are given by the 
centrifugal potential, the Jost functionh(k) is 

Uk) = lim rlk'l'lk, r)/(21 - I)!!. (16) 
r->O 

So we define .it(k, r) = r'klJz(k, r)/(21 - I)!! and we 
get from (15) 

F,(x, r) = il (k = - ix, r), 

F I ht(xr) 
leX, r) = (xr) (21 _ 1)!! 

Joo I (X)t + /t (-) ~b)Fiy, r) - GI(x, y, r). (17) 
m!2 y 

In conclusion, for the Yukawa family we know that 
FI(x,O) = Fl(x), so that (I7)must reduce to (I) when 
r-O. 

Now we do not assume, that /ttl,(x) corresponds 
necessarily to a member of the Yukawa family, but 
we still consider a "regular discontinuity" for ~(x) 
such that the Fredholm-type solutions of (I) exist 
[independently from the significance of this solution 
of (1)]. 

We get formally from (12), (14), and (15) a set of 

8 Note that in the integrand of (1-3) the right threshold behavior for 
S,(k) is necessary in order to avoid a singularity when k ~ O. 
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results. First jf we put 

Fl(x, r) = f/~ h1(xy)'Mr, y) dy 

and i>l = p,b1, we get 

(/>t( r, y) = + p, b/y, t)(Pz( r, t) dt, hey - r) J'YJ 
(21 - l)!! r 

K/r, y) = p,blr, y) + p, Lye b/y, t)K1(r, t) dt. 

(18a) 

(ISb) 

We see that (18a) and (I8b) have exactly the same 
kernel. This is in fact the main property giving the 
possibility of connecting the NjD formalism and 
the inversion formalism. For instance, for r > 0 the 
eigenvalues (fl values such that nontrivial solutions of 
the homogeneous equations exist) of (I 5) or (1S) are 
the same. Furthermore, we remark that the kernel of 
(17) is (X/y)l times that of (15) such that the traces of 
both kernels are the same and consequently the Fred­
holm determinants for r > 0 of (I5), (17), and (18) 
are also the same. Moreover, we shall show that, as 
for I = 0, this Fredholm determinant has a key role 
in the theory. 

In Appendix B it is shown that the solution of 
(I8b) is such that 

K ( ) 
_ (djdr)'J)z(p" r) 

I r, r -
'Dl(p" r) 

(19) 

where <J)1(P" r) is the Fredholm determinant of (15), 
(17), and (18). Then the potential corresponding to 
the discontinuitt fl~I(X) is, from (11) and (19), 

V(p" r) = -2 .!!.-.(d/dr)<J)z({t, r»), (20) 
elr :!)/(fl, r) 

as for2 I = O. We note also that as in the I = 0 case 
from (20) we can see that V(p" r) are of short-range 
type and decrease exponentially. 

On the one hand (similarly as for 1=0)1 if for 
some ro > 0, <J)l(,u, ro) = 0, then V has second-order 
poles when r -+ r 0, leading to a repulsive singular 
potential at r o. If the multiplicity of the roots of 
<J)1(P" ro) = 0 is m, then 

V(p" r) ~ 2m/(r - ro)2. 

On the other hand, we note that when r -+ ° we have 

• Some care must be taken in order to understand these formulas. 
If we start from a given regular potential VCr) and consider the 
corresponding set of left-hand-cut discontinuities d, (which can be 
calculated from the Born expansions), it does not follow that there 
corresponds to the new set (tId,), via (19), (20), an I-independent 
V(p, r), For instance, when It is varying, for / = 0 the only second­
order poles which can appear for Ve,l, r) correspond to repulsIve 
singular potentials, whereas for /:;& 0 also smgular attractive 
potentials can appear at the origin. In other words if we linearize the 
Nt D equations with the same parameter (lId,), then the corre­
sponding potentials are, in general, I-dependent. 

a great difference with the I = 0 case. The conditions 
about ~l(X), such that (1) is of Fredholm type, are not 
sufficient for I -:;e 0 to assume that <J)l(fl, 0) exists, 
This is due to the singular character of the kernel 
of (I5), (! 7), and (I8) becoming from 

. [(21 - 1)! !)2 
G1(x, y, r) ~ I 1 21-1 [I + OCr)}. 

xyr 

For instance, if we investigate I = 1, we find in general 

( const 
'.J)'~1(P" r) ~ -- (I + OCr)}; 

r-O r 
for 1=2, 

( const 
'j)1~2(P" r) ~ -3- [1 + 0(1')] 

r-tO r 

(these constants being functions of p, can vanish 
for special p, values). More generally, jf 

:D1(p" r) ~ (constjr")[l + OCr»), 

we see that V ~ (- 211/r2) leading to singular attractive 
r-J>Q 

potentials at the origin. 
Of course, for a Yukawa-type family regular at the 

origin, the corresponding :J)I(P" r) cannot be singular 
at the origin. 

First we note that (20) can be written 

1 [OCC Joc - dx . V(p" t) £It = Jog :J)Jp, 1'). 
2. r x 

If we write Vas a Laplace transform 

Veu, r) =J'lO e-arC(~, ft) d~, 
In 

then 

As for I = 0, this last relation can be used in order to 
reconstruct the potential from the discontinuity. 

Inversely, if we consider a Yukawa-type potential 

AV(r) = Afif.'e-arC(G:) d~ 
m 

and the corresponding discontinuities 

2: A~~;)(X), 
p 

where ~f are the contributions coming from the 
nth Born approximation, then :!)I(P" r) becomes a 
function of A: 

and 
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For the Yukawa-type family the Fredholm deter­
minant of (I5), (17), and (18) is weB defined when 

r = O. 
In the following we consider only I = I. 

IV. CONNECTION BETWEEN INVERSION 
FORMALISM AND N/ D EQUATIONS FOR 

P WAVE 

In this sectionlO we consider (17) for I = 1 

F(x, r) = e-xr(1 + xr) -JCFJ flD.(y) 
m/2 

x F(y, r) ~ (_1_ + _1_) e-(x+Y)r dy, (17') 
y xyr x + y 

where 

f(k) 
F(x = ik, r) . -ikr 

,r = ,-..J Ie 
kr r~ 00 

is the Jost solution corresponding to 

V(,u, r) = -2 !!...(d/dr)'l)(,u, r»), 
dr :D(,u, r) 

~(,u, r) being the Fredholm determinant of (17'). We 
want to investigate in which cases we get from (17') 
either the un subtracted equation 

F(x) = 1 + ,uJCFJ D.(y)F(y) dy (1') 
m/2 X + y 

or the ansatz subtracted equation 

F(x) = F(O) + flJw x2~(Y)F(Y) dy. (6') 
m/2 y(x + y) 

We still assume that D. is such that the Fredholm-type 
solution of (1') exists: 

J
ooD.(X) 
--dx < 00, 

m/2 X 

-- dxdy < 00. J'" J'" ( D.(y) )2 
111/2 ",/2 X + y 

(21) 

The Fredholm-type solutions of (17'), (I'), and (6') 
can be written 

F(x, r) = e-.rr(l + xr) + u'f(x, fl, r) , 
'.J)(,u, r) 

F(x) = F(O)[I + u'i'(x,,u)], 
'l)(,u ) 

F(x) = I + N(x, ,u) 
'l)(,u) , 

(22) 

(23) 

'l)(,u) being both the Fredholm determinant of (1') 
and (6'). 

A simple example: the discontinuity replaced by one 
pole ,u.1(x) = fl6(x - b). First, from (I') we get 

10 We omit the index / = I in the following. 

N<O 

_______________ b - - - - - - - - -

2b/9 2b 
N>O /" 

--- - - - - - - - - - - - - :~~ ~ /:- --::--'--~--~-~-~--~~ 
,f 

'f 

FIG. 1. f1D. = fl{j(x - b). 

F'(0):D(,u) = -fl/b2 such that fl = 0 is the only value 
assuring the threshold behavior for (If). This is a well­
known result. It follows that (1') and (6') have no 
common solution. Second, from (17') and (6') we get 

F(x, r) (b 2
) -- c:::: - [1 + flg(X, b) - ,ug(b, b)], 

r r~O ,u 

g(x, b) = b2(x + b)' 

- F(O) 
F(x) = :D(fl) [1 + flg(x, b) - flg(b, b)]. 

Then from inversion we get the solution of the ansatz 
equation (6') with F(O) = -ljF'(O). We get also 
:D(fl, r) = 1 + ,u[(b2r)-1 + (2b)-I]e-2br, so 

V c:::: -2/r2 (fl ¥:- 0). 
r~O 

But whereas in the case fl > 0, V has no second­
order pole for r > 0, on the contrary for ,u < 0, V has 
a second-order pole at ro > 0 such that :D(,u, ro) = 0 
and near this ro , V c:::: 2/(r - ro)2 (we shaH see that 
this type of repulsive potential leads to the presence 
of a ghost as in the 1= 0 case).2 In Fig. 1 we have 
represented the roots Re x > 0 of F(x) = 0 and the 
sign of the normalization N corresponding to x > 0 
root (states in the physical sheet). For fl < 0 we find 
always a ghost while for ,u > 0 when a state is present 
on the physical sheet (fl > 2b) we have a true bound 
state. 

From SI(k) = F(ik)/F( -ik) we get 

tgOI~1 = ,uk3/b2(b2 + k2)(1 _ fl(b
2 

+ 3k
2

») 
2b(k2 + b2) , 
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and for p, > 0 it is easy to verify that the usual Levin­
son theorem must be modified. We find o( (0) -
0(0) = -17(lln,,) + 17/2 where nns = 0, 1 depending 
on whether a bound state is present or not. (We find 
also similar modification in the case p, < 0 where a 
ghost appears.) This violation of the Levinson 
theorem with a supplementary term 17/2 comes from 
the fact that F(x) ~ x and not a constant as for the 

.r~C(J 

Yukawa family (note that Sl~l(k) ~ -1). We 
k--oo 

emphasize that for p, > 0 the interaction is ph~sicall.y 
availablel 1.12 because the threshold behavIOr IS 

verified by construction of the ansatz and because 
when a state is present on the physical sheet it is a 
true bound state. 

If we use this left-hand-cut discontinuity of the 
Sl~l matrix - p,o(x - b) in order to write a dispersion 
relation directly for the partial wave amplitude 
[Sl(k) - 1 ]/2ik, it is easy to verify for p, > 0 that the 
solution Sl(k) = Fl(ik)/Fl(-ik) deduced from the 
ansatz (6') satisfies this dispersion relation. In con­
clusion, the subtracted equation in this pole case is 
the only equation having a meaning in potential 
scattering but as a consequence the asymptotic be­
havior of the Jost function (or D in N/ D) is modified: 
it is not 1 but x and further the corresponding V is 
- 2/r 2 near the origin and a ghost is present when 

2 
VCr) ,....., 2' ro > 0, fJ, < O. 

' .... '0 (r - ro) 
Two poles: p,Ll(x) = ill2blO(X - bl ) + il22b20(X -

b2); bl > 0, b2 > O. We get 

~(p,)F'(0) = ill + il2 + ilti12(bl - b2)2 

2 bl b2 bl b2(bl + b2) 

It is easy to verify that if ~(p,)F'(O) = 0, then the 
singular part of ~(p" r) vanishes so that we g~t a 
Yukawa-type family in general (in fact, a sl~g~t 
generalization as for I = 0, Ref. 2) and from (17 ) It 
can be shown that F(x, 0) reduces to the solution of 
(I'). We see that in the ill' il2 plane only a curve 
corresponds to (I') and this is the curve for the 
common solutions of both (1') and (6'). If F'(0)~(p,) ¢ 

o then lim F(x, r)/r is reduced to a solution of (6') 
,~o 

with F(O) = - [F'(O)]-l and V ,....., -2/r2. In all cases 
,~o 

the possibility of ghosts is still associate~ with ~econd­
order poles for r > 0 leading to margma.lly sI~gu~ar 
repulsive V(p" r). In this case where, the dlscontIn~lty 
is replaced by two poles, (I') and (6) have a meanmg 

11 We can verify in this case also. that Martin's condition" abo.ut 
the sign of the contribution commg from the left-hand-cut diS-
continuity is satisfied. . 

12 A. Martin, Nuovo Omento 38, 1326 (1965). 

but they correspond to different domains in the 
ill' il2 plane. This example shall be treated in great 
details in a separate paper where we shall extend self­
damping properties of the interactions from the S­
wave casel3 to the P-wave one. l4 

General case: In Appendix C it is shown that 

1 - = 
'.D(p" r) = - ~(p" r) + ~(p" r) 

r 

1 -
~ - ~(p" 0) + d(p,) + OCr), 

' .... 0 r 

e-X
' - = 

JY'(x, p" r) = - - '.D(p" r) + JY'(x, p" r), 
r 

where, due to the condition (21), the limits r ....... 0 of 
i>, ~, and i' exist. Then lim [JY'(x, p" r) + ~(p" r)] 

exists also. Further, it is shown in Appendix C, from 
the Fredholm-type solution of (1), 

i>(p" 0) = -~(p,)F'(O) [F'(O) = «d/dx)F(x»x~o], 

(24) 

showing explicitly the connection between the thresh­
old-behavior condition for (I') and the singularity 
of ~(p" r) when r ....... 0 [leading to VCr) ~ -2/r2]. 

~o 

In Appendix D it is shown that 

lim (JY'(x,p" r) + ~(fl' r» = X(x,p,) + ~(p,). (Dl) 
' .... 0 

If we apply these results to (22) we get 

F(x, r) ~(,u) + X(x, p,) 
-r- ::0 -F'(O)~(p,) + r d(p,) 

(25) 

From (6') it is easy to get 

F(x) -+ x (00 Ll(y):(y) dy. 
X"'" Jm/2 y 

In Appendix D it is shown that for the same flLl(x) 
there exists a general relation between the correspond­
ing solutions of (1') and (6'): 

(oo fJ,Ll(Y)~(Y) dy = -F'(O) 
Jm/2 y _ 

= -J- (oo p, Ll(Y)~(Y) dy. (D2) 
F(O) Jm/2 y 

This shows explicitly that there exists a straight­
forward connection between threshold condition for 
the un subtracted equation and asymptotic behavior 
for the subtracted one. 

13 H. Cornille, Nucl. Phys. B3, 655 (1967). . 
14 H. Cornille and G. Rubinstein, Nuovo Omento (to be pub­

lished). 
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Coming back to (25) we see that we have two cases. 

First case: F'(0)'D(,u) = N'(O, ,u) ¥ O. 

This is the case where the solution of the ansatz 
(6') is not a solution of (1') and conversely. This is 
also the case where the solution of (1') does not give 
the right threshold behavior for the S matrix (we have 
an S-wave threshold behavior). ]n this case we see 
that 'D(,u, r)""'" const/r and V(,u, r) c:::: -2/r 2 such 

r-O T-O 
that the whole potential (V + centrifugal potential) 
simulates a regular potential like in the S-wave case 
when r --4- O. (But note that V decreases exponentially 
when r --4- 00 such that this whole potential goes like 
2/r2 when r --4- 00.) From (25) we get 

lim F(x, r) = __ 1_[1 + v~(x, ,u)]. (26) 
r-->O r r(o) !D(,u) 

We see that in this case the equation obtained from 
inversion formalism is the ansatz subtracted equation 
(6') with F(O) = -l/F'(O) whereas (1') hasno meaning 
(at least in potential scattering). But the interactions 
analyzed as potentials are not of the Yukawa-type 
family, regular at the origin, although they decrease 
exponentially. These potentials are marginally singular 
and attractive at the origin but can have poles of the 
second order for r > O. We consider now ,u values 
where no second-order poles for V appear at r > 0 
['D(,u, r) ¥ 0 for r> 0], such that we have only the 
singularity V,....., -2/r2• ]f F(x) = 0 for some x > 0, 

r~O 

then the corresponding state can be considered really 
as a bound state because the corresponding wave­
function F(x, r) is normalizable: Further, the threshold 
behavior is satisfied for the ratioF(ik)/F( -ik) such that 
S(k) = F(ik)/F( -ik) with its discontinuity -,uI1Ax) 
really has a meaning. Nevertheless, such types of 
interactions lead to special features different from the 
usual Yukawa-type family. 

From (02) for F(O) = -l/F'(O) we get 

F(x) ---+ x and S(k) ---+ -1. 
x-+oo k--'OO 

We see that the Jost functions (or D in N/ D) do not go 
to constants when x --4- 00 (like regular Yukawa-type 
family) but on the contrary go to x. If we define 
!t~l(k) = FUk) we can, as usual,5 evaluate 

1 J d 2i7T dk log Fl(k) dk 

in 1m k < 0 leading to a modified Levinson theorem 
(because f(k) ---+ ik, we have a supplementary con-

k-CD 

tribution from the large semicircle in the lower half­
plane). We get 

i5'~l(O) - i5'~l(oo) = 7TnBS - 7T/2. 

This type of Levinson modification in connection with 
asymptotic behavior of D not going to a constant is well 
known in the relativistic case, but we note that here 
we have 7T/2 and not a multiple of 7T. We want to show 
that the value 7T/2 is a nonrelativistic effect and can 
be well explained by Martin's theorem. 12 We consider 
relativistic partial wave amplitudes a,(k2) for equal­
mass particles (leading in the nonrelativistic limit to 
k-leiO , sin 15,). We write a dispersion relation and if 
1m a,(k2) ---+ 0 such that the left-hand-cut contri-

kL_~oo 

bution ~ 0 (the assumed properties of 11, in this 
k--OO 

paper leads also to this case), then12 an unsubtracted 
relation holds and 1m a!(k2) ---+ O. (Here we have 

k 2-_oo 

found 1m a'~l ---+ k- l .) However, in the relativistic 
k2-+00 

case the relativistic phase factor ---+ 1, then neces-
k'l.-~w 

sarily 15(00) = 0(7T); whereas in the nonrelativistic 
case because of the present k-1 factor, 

i5'~l(oo) - 7T/2 = O(7T) 
is allowed. 

At the end we want to emphasize that these different 
possibilities for the asymptotic 0 behavior, 0--4-
const, as for a Yukawa family, or D --4- X as for the 
case considered in this section, do not come from the 
fact that we represent S, by a quotient. If we require 
D(x) (in N/ D) or F(x) going to constant when x --4- 0, 
then these different asymptotic behaviors come en­
tirely from different ,u values of the discontinuity 
pl1(x) or from different interactions. 

Second ease15: F'(O)'D(,u) = N'(O, p) = O. 

The corresponding solution is a solution of both 
(1') and (6'). The solution of (1') gives directly the 
right threshold behavior for the S matrix. From (25) 
we get 

lim P(x, r) = ('D(,u) + .N'(x, ,u»/d(,u). 
r-->O 

In Appendix E it is shown that 

F(O) = 'D(,u)/d(,u), 
such that 

lim F(x, r) = F(O)[l + .Jf(x, ,u)]. 
r-->O 'D(,u) 

We see that lim F(x, r) is a solution of (6') with 
r~O 

F(O) = F(O) because F'(O) = O. It follows that 
lim F(x, r) is also a solution of the un subtracted 
r-O 

equation (I'). In this case 'D(,u, r) is not singular 
when r = 0 and (17') as well as (l8b) are of the 
Fredholm type for r > 0 and r = O. 

15 In fact, we do not consider jJ(,I) = O. If the Fredholm-type 
solution of (1) breaks down m(,u) = 0] and also F'(O)~)(/I) = 0, 
then a more detailed analysis is necessary." 
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As in the 1= ° case, if1>Cu, 0) = d(fl) =;I:. 0, then the 
potential is regular at the origin. This case includes 
the Yukawa family and, as for I = 0, not only these 
potentials. For instance, if 2)(fl, r) --+ ° (ro 2 0) 

r--ro 
with a root of multiplicity m, then V becomes re-
pulsive as 2m/{r - ro)2. We note also that in this case 

foo ll.(y)~(y) dy = 0, 
m/2 y2 

such that For F goes to 1 when x --+ 00. 

In conclusion to this section, concerning the two 
different cases considered above, we see that for 
fl~t=l (x) satisfying (21) the following are required: 
(a) right threshold behavior for the un subtracted 
equation; (b) Fredholm character of the inversion 
equation for r = 0; (c) asymptotic behavior D --+ 1 
(in N/ D); (d) no presence of marginally singular 
attractive potential like -2/r2 at the origin; and (e) 
since the solution of the subtracted equation also is 
a solution of the un subtracted one, they can be 
obtained by using the same intrinsic condition on the 
discontinuity. 

V. GHOSTS AND BOUND STATES 

For I = 0, we reca1l2 the results [~)t=o(fl) being the 
Fredholm determinant of Ref. I]: 

(i) When fl crosses some roots of~)t=o(fl) = 0, then 
in general a real ghost appears at infinity in the 
physical sheet. 

(ii) When fl crosses some roots of ~)t=o( - fl) = 0, 
then, in general, a bound state appears at the origin. 

(iii) For a fl value such that both ~)t=o(±fl) = 0, 
a more detailed analysis is necessary. 

We want to show that for the P wave and the sub­
tracted equation (6'), the threshold-behavior conditions 
N'(O, fl) = ° and ~)t=l(fl) = ° play the same role as 
~)t=o(fl) = ° and ~)t=o( - fl) = ° in the S-wave case. 

A. Bound States 

When N'(O, fl) =;I:. ° from Sec. IV [Eq. (26)], then 
lim F(x, r)/r is a solution of (6') and 
r '0 

F(x) = - [N'(O, fl)]-I [~)(fl) + J\'(x, fl)]. 
-

Because N(O, fl) == 0, we see that if ~j)(fl) = ° then 
F(O) = ° and a bound state appears at the origin [for 
instance, see Fig. 1 for the one-pole case :J)(fl) = 

1 - fl/2b and a bound state appears for fl = 2b]. 
In conclusion, for the subtracted equation (6') 

bound states appear at x = ° when ~)(fl) = 0. 

B. Ghosts 

We consider states appearing at infinity in the 
physical sheet [roots of F(x) = ° and x --+ co]. We 

recall that if N'(O, fl) =;I:. ° then F(x) --+ x such that 
x--",W 

no real ghost can appear at infinity (this does not 
mean that no ghost can be present at x finite, as can 
be seen with the one-pole case and fl < 0; see Fig. I). 
This result can be seen also if we subtract in (6') the 
equation for Xo > 0. We get 

where 

F(x) = F(xo) + ('x; flK,.o(x, y)F(y)dy, 
J",/2 

[ 

X2 x~ ] K,..,(x, y) = ~(y) 2( ) - 2( ) . 
Y x + y y Xo + y 

We see that if for particular fl values F(xo) = 0, then 
fl and F(x) are eigenvalues and eigenfunctions of 
Kxo(x, y). This means that fl is a root of ~\)(fl)' the 
Fredholm determinant corresponding to Kx,,(x, y). In 
general, the fl roots ~)J,,,(fl) = ° are functions of xo, so 
we write them fl(Xo)' In Appendix F we show that 
~\.cfl) r-:' -xo[N'(O, fl) + O(I/xo)] and we see that 

J'o .. 'lJ 

roots F(x) = ° can appear at infinity only if 

F'(O):D(fl) = N'(O, fl) = 0. 

For instance, in the one-pole case we see that for 
fl = 0, which is the only value N'(O, fl) = 0, a real 
ghost appears at infinity. 

This proof works only if .u(xo) is really a function of 
Xo. Assume now that there exist special fl values, roots 
of ~\)(.u) = 0, but independent of xo ' Then these .u 
values are also roots of ~xu=o(fl) = ° corresponding 
to the kernel Kxu=o(x,y) = (x2/y2)(x + y). Therefore 
these .u values are roots of 'J)(fl) = ° and for these 
values a more detailed analysis is necessary. For 
instance, there exist such values in the two-poles 
case,H 

VI. CONCLUSION 

J n the first part of this paper, with the help of 
Blazek's extension of Marchenko's inversion for­
malism, we have established a dispersive integral 
equation for the Jost solutions for I =;I:. 0, where the 
kernel is proportional to the left-hand-cut discon­
tinuity of the St matrix (the discontinuity being such 
that the N/ D equations are of the Fredholm type). 
We have also obtained the integral equation giving 
the possibility of reconstructing the potential from 
this left-hand-cut discontinuity. From this last 
eq uation we get, for instance, that the potentials are 
short range (decrease exponentially), so we know that 
if we reconstruct the St(k) matrix from the first 
equation (Jost-solutions integral equation), then the 
correct threshold behavior for SI(k) will be satisfied. 
So these two equations are sufficient tools in order to 
solve the problem of the threshold behavior for 
nonrelativistic N/ D equations. Indeed, when we know 
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the two Jost solutions (asymptotically ingoing or 
outgoing wave), we can reconstruct the SI(k) matrix 
by taking the ratio of these two functions and investi­
gating the limit of the radial coordinate going to zero. 
Further, knowing the behavior of the potential near 
the origin, we get the corresponding singularity of the 
Jost solution near the origin. Consequently, from the 
Jost solution, we can obtain the Jost function (or 
D in Nj D) and see if the integral equation for the 
Jost function exists. The great difference with the 
I = 0 case is that, in general, the potentials (although 
having a Yukawa-type asymptotic behavior) are 
marginally singular attractive at the origin, so the 
behavior of the solutions is not given by the centrifugal 
potential alone (as for I = 0, we find also the possi­
bility of second-order singularity leading to repulsive 
potentials). So if integral equations exist for the Jost 
functions, then the kernels in general will be modified 
at least in order to get the right threshold behavior 
for the SI matrix. This is why we have a priori (without 
any justification and independently of inversion 
formalism) considered an ansatz subtracted equation 
by modifying the kernel of the unsubtracted one in 
such a way that the new Jost functions (or D in N/ D) 
lead directly to a correct behavior for the SI matrix. 

In the second part of this paper we have restricted 
our study to the P-wave case and investigated whether 
or not such an ansatz subtracted equation has a 
meaning: more explicitly, if the ansatz can be deduced 
from integral equation for the Jost solution and what 
the features of the corresponding interactions are (we 
note that the same study can be made for I > 1 in 
order to see if our ansatz or another one has a meaning 
at aU). For I = 1 we have found two cases following 
different values of the discontinuity. In the first case 
the un subtracted equation satisfies the right threshold 
behavior. We find that the corresponding potentials 
include the Yukawa family and are in general not 
singular at the origin. The asymptotic value of D is I. 

In the second case the unsubtracted equation does 
not satisfy the correct threshold behavior: the ansatz 
subtracted equation is the equation having a meaning, 
the potentials r-' -2/r2 near the origin, D does not 
go to a constant at infinity, and the Levinson theorem 
must be modified. This case never corresponds to 
the Yukawa-type family which has been considered in 
order to prove the Mandelstam representation in 
potential scattering. Since these two cases correspond 
to different discontinuities of the S matrix, the corre­
spondingly different asymptotic behavior of D cannot 
be attributed to any ambiguity coming from the use of 
the ratio N/ D. (We fix the behavior of D as constant 
at the origin.) In this paper these two cases are 

distinguished by different behavior of the potentials 
near the origin. For 1= 0 we recall that we obtained 
not only the Yukawa family but also marginally 
singular repulsive potentials. But for these badly 
behaved potentials we recall that there appear ghosts; 
so, requiring only available physical states in the physi­
cal sheet, we can reject these badly behaved potentials. 
For I = I and the above second case, the situation is 
different. For instance in this paper, for the discon­
tinuity replaced by one pole, we have seen that always 
the potential is marginally singular attractive at the 
origin (except the trivial case where the residue of the 
pole vanishes); nevertheless values of this residue 
exist such that the present state on the physical sheet 
is a true bound state and consequently from spectrum 
requirements we cannot reject the corresponding 
interaction. In fact, in a further paper14 we shall 
seek the possibility of a self-damping connected 
domain of physical1y available interactions for the 
subtracted equation considered here, where the dis­
continuity is replaced by a finite number of poles. 

Finally, we recall that in potential scattering for 
the Nj D equations the discontinuity is taken as input 
and the only thing we can do is to try to analyze the 
consequences corresponding to different input. It is 
why we think it can be interesting to investigate in the 
relativistic case, by taking into account crossing, 
whether or not such different features (D ->- const or 
not) connected with different discontinuities can be 
explained from the consideration of the other channels. 
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APPENDIX A 

We want to show that 

Kz(r, r) = - VCr') dr'. 1100 

2 r 
(AI) 

We consider 1m k < O. Substitution of (10) in (7) 
yields 

100 

KI(r, t)wz(kt) elt = [1 + [2' 

i1(k, r) = - 100 

dr'gz(k, r, r')V(r')wlkr') 

= fCD K\ll(r, t)w/(kt) dt, (A2) 

[2(k, r) = - i"'dr'gl(k, r, r')V(r') 

X roo dr"KI(r', r")wz(k, r") Jr. 
= 100 

K\2'(r, t)wz(kt) dt, (A3) 
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where K! = K[I) + K[2). We want to find K!(i) from 
(A2) and (A3). For 1= 0, Wo = ie-i).:t and we have 
to consider l a Fourier or Laplace transform. But for 
I ¢ ° we recall that if we define the operator D! such 
that 

then 

and we get 

Dl{l(i)(k, r» = L') e Kln(r, t)e- ikf dt. (A4) 

Using D z the problem is thus reduced to find a Fourier 
or Laplace transform. Using (8) for w! we get 

- gz(k, r, r')wz(k, r") 
3! ( / ") -il,(r-r'+r") I CJ(p r, r , r =e 
o kP+l 

3! ( / ") -ik(r'-r+r") I CJ(p -r, -r, r -e 
o kP+l ' 

where the CJ(p can be determined from (8) and are not 
singular for r, r', r" ¢ 0, 

4! ( , ") D ( ) _ -ik(r-r'+r") ~ I'p r, r , r 
z -gzw1 - e f kP+l 

41 ( '") -ik(r'-r+r")~ I'p -r, -r, r 
-e k 

o kP+l ' 

where YP are still not singular for r, r', r" ¢ 0, 
yo(r, r', r") = -ir IJ2. Now we use 

k-Pe-ikr = iP LX) e-ikt(t _ r)P-l«p _ 1)!)-1 

and we get 

DzI l = LX) Ver') ~ {LX) dtyp(r, r', r" = r/)(t - r)P 

- LX) dtyp( -r, -r', r" = r/)(t - 2r' + r)"'} dt', 

(AS) 

where YP = YpiP+lJp! 
We change the order of integration in (AS) and 

comparing with (A4) we get 

t l K:I>(r, t) = ~ {(t - r)'" 100 
dr' yir, r', r" = r')V(r') 

[<l+r/2) 
+ J. drt(t - 2r' + r)P 

X yp( -r, -r', r" = r/)v(r/)}. (A6) 

With similar algebra from Diz we get 

t!K:2l(r, t) = 2 dr'Ver') (t - r + r' - r")'" 
41 { [00 J,t-r+r' 

o ..,r r' 

X yp(r, r', r")K!(r', r") dr" 

J,

(t+r/2) 1I+r-r' 
- dr'V(r') (t - r' + r - r")'" 

r r' 

X yp( -r, -r', r")K!(r', r") dr''). (A7) 

From (A6) and (A 7) and yo(r, r', r" = r') = ir' we see 
that (AI) follows. 

APPENDIX B 

We want to show that 

d 
K!(r, r) = - ('DI(ft, r»/'Dlfl, r), 

dr 
(Bl) 

where 'DICu, r) is both the Fredholm denominator of 
the integral equations (15), (17), and (18). The 
Fredholm type of solution of Kz{r,y), which is a 
solution of (18b), can be written, for y = r, as 

'J)!(ft, r)KzCr, r) 

= ftb!(r, r) + ft2100 XzCft, r, tl)bz(tl , r) dtl , (B2) 

wherel6 

'D(ft, r) = 1 + ! (_~)n 'J)(n)(r), 
I n. 

~(>( ) ~ (_ft)n ,(>(n)( ) 
v, ft, r, tl = k--oJ1 r, tl . 

o n! 
(B3) 

In order to prove (BI), due to (B2) and (B3), we have 
only to show that 

_1_ ~ 'D(n+2)(r) 
n + 2dr 

= - b(r, r)'D(n+l)(r) 

+ 100 
(n + l).N'(nl(r, tI)b(tI, r) dtI • (B4) 

From Fredholm's theory we get 

'D(n)(r) = 100 

dtI ... J,oo dtnEn{tI' t2 , ••• , tn), 

x(n)(r, tI ) = 100 
dt2 •• .1 00 

dtn+lHn(r, t I , t 2 ,"', tn+l)' 

where 
En(tl, t2 , ••• , tn ) 

b(tI' tI ) b(tl, t2) 

16 Because our proof is I-independent. we omit the index I in the 
following. 
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Hn(rl' t l , t2, ... ,tn+1) 

b(r1t1) 'b(r1r2) 

b(t2' t1) b(t2' t~\ 
= 

b(r1 tn+1) 

b(t2,ln+1) 

b(tn+1, t1) b(tn+1, t2) ••• b(tn+1' tn+1) 

We obtain 

_1_ ~ ~(n+2)(r) 
n + 2 dr 

= -=L !f'" dt1 .. 'l'" dt;_ll
oo 

dt H1 · . ·loo dtn+2 
n + 2 i~l r r r r 

X En+2(t1, ... , ti - 1, r, tH1 , ... , tn+2) 

= -100 
dt1 ... 100 

dtn+1E,,+2(r1' t1, ... , t,,+1)' 

where we have used the symmetry 

En('" ,t i ,'" ,ti ,"') = En('" ,fi ,'" ,fi ," '). 

Now we develop En+2 following the elements of the 
first column: 

En+2(r1 , f1' ••• , tn f-1) = b(r, r)En+1(t1 , ••• , tn+1) 

n+1 
+ L bet;, r)(-)iM;'+1(r1 , t1,"', ti"", tn+1), 

i~1 

where 

and 

b(r1 ,t1) 

0(t1' t1) 

b(rl' tn+1) 

b(t1, tn+1) 

M~+1(r1' t1, ... , t n+l) = bet i-I' t1) ••• o(t i-I' fn+1) . 

b(t j+1' t1) ••• 'G(tHl' t n+1) 

0(tn+1' t1) '" b(tn+1' tn+1) 

Similarly, as was done for the 1= 0 case,2 it is easy to 
get the identity 

100 
dt1 .. 'I' X> dtn+1b(t i' r)M ;,+1(1'1' t1, ' .. , tn+1) 

= 1" cltl ... 100 

cit n+l( - )i-lb (t1 , r)M~+l(rl' f1 ,"', tn+1)· 

Finally we get 

_1 _ ~ ~(n+2)(r) = _ b(r r) [ot) cit '" ro~ cit 
n + 2 dr ' Jr 1 Jr n+l 

X EnH(tl, . , . , tn+1) + (n + 1) 

X LXJ dt1 ·· '1°Odtn+lb(tl' r)H n(r1, t1 ,'" tn+1)' 

which is the relation (84), 

APPENDIX C 

We want to show that the singular part of the 
numerator and the denominator in the Fredholm type 
of solution of (17) for I = 1 are linked to the threshold 
condition (4). 

1. From the Fredholm type of solution of (1), the 
condition (4) can be written17 

~(fl)F'(O) = ~ dUI' , . dUn 
00 (-fl)n fOO (00 
1 (n - 1)! m/2 • m/2 

n 

X Ln(u1 , U2 ," " Un) II ~(Ui)' (CI) 
1 

where '])(fl) is the Fredholm determinant of (l): 

'])(fl) = 1 + L( -fl)nfn! roo dU l ' •• roo dUn 
Jm/2 Jm/2 

X II ~(Ui)P n(U 1 , ' . , , Un), 
i 

1 

1 1 

Un + U 1 Un + U2 2u n 

U~ U~ u2 
n 

1 1 

Ln = 
U 1 + U2 2u 2 U2 + Un 

(C2) 

1 

Pn and Ln have the same elements except for the 
first row. 

2. The Fredholm determinant of (15), (17), and. 
(18b) is 

X e-2
l:
u;rII Mui)M,,(r, Uu"', un) (C3) 

i 

Q.,.(U 1 , U1) , , , Qr(U1 , Un) 
Mn(r, U1,"', Un) = , ......... , .... ,.,. 

Qr(Un , U1) , , • Q.(un , Un) 

17 We investigate only 1= 1 so that we drop the index I. 
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with Qr(Uu Ui ) = (uiujr)-l + (u i + Uj)-l. Mn is sin­
gular when r -+ 0 and it is easy to see that we get 

Mn(r,'" ,ui ,···) 

= y-IMn(ul ,"', un) + Mn(u1,"', Un). 

When we substitute this expression of Mn in (C3) we 

definecorrespondently :D(,u, r) = r-1'j)(,u, r) + :n(,u, r), 

where i)(,u, r) and i>(,u, 1') go to a constant when 1'-+0 
because we recall that we have always assumed that 
n(y) is such that the Fredholm type of solution of (1) 
exists. It is easy to see that Mn = Pn and 

where M~ is the same determinant as Pn except that 
the elements of the jth column are UtI, u2

I, ... , u;;I. 
We get 

f 00 dU I .. ·f 00 du ne-2l:u:r II n(U
i
) 

ml2 111/2 i 

and finally 

i)(,u, r) = - i ,un (<YO du
l

'" roo dUn IIn(U i ) 

I (n - 1)! ./m12 Jm/2 i 

X e-2l:u;rYn(UI, ... ,Un), (C4) 

where 

0 
1 1 

UI U2 un 

0 0 0 
UI 

1 

U2 U2 + UI 2u2 U2 + Un 

1 1 1 1 

3. The Fredholm-type solution of (17) correspond­
ing to the kernel -n(y)r(x+Y)THr(x, y) with 

1 x 1 
H(x,y)=-+---

T y2r y x + y 

is 
_ . X(x, ,u, 1') 
F(x, r) = e-xr(1 + xr) + :D(,u, r) , 

where 

X(x,,u, r) = - L ---- dill' . . dll >1 
00 ,u" r~ J.r 
I (/1 - I)!. 111/2 111/2 

-(.r+2l:u, Ir( 1 + ) II "( )2 (. . . . ) e ulr /..lUi III,X,lI l , ,II". 
i 

2,,(r, x, lIl' •.. , 1I ,J 
HrCx, til) HrCx, tl 2 ) 

H r(u 2 , lI) H r (U2, U 2) Hr (lI2 ,lI,) . (C5) 

Hr(u n , UI) HrClI" , lI 2) Hr(u,,, lI,,) 

I.!. is easy to see that Z" = (l/r)Zn(x, UI ,'" ,ulI ) + 
Zn(x, UI , U2, ... , un), where 

Zn(x, UI , ••• , un) 

x x x 

uJx + uI ) u2(x + lI2) u,lx + Uft) 

U2 1 

UI(U 2 + lI I ) 2u2 

Un Un 

UI(U n + UI ) U 2(U" + U2) 2u n 

0 
ui 

1 

Z,,(x, UI ,"', Un) = 1 . (C6) 

1 

We put Zn = (l + ulr)Zn' We define X(x,,u, r) = 
r-I.N'(x, fl, r) + X(x, fl, r) such that .N' and .N' are 
obtained from (C5) when Zn is replaced respectively 

by Zn and u1Zn + Zn + ulrZn . From the assump­

tions made about n(y) we know that .N' and ,)'J' go to 
a constant when r -+ O. 

Using 

we get with some algebra 

(-l)nZn(x, UI , ••• , ttn) 

0 
1 

ui U~ tt 2 
n 

1 
x + ttl X + U2 X + Un 

1 

tt2 + UI 2u2 U2 + Un 
(C7) 

1 
1 
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In the following we shall show that exrj\i'(x, p, r) is x­
independent. Taking into account this result in (C7) 
for x = 00, we get Zn = (- )n+1L". Similarly, from 
this result we can put x = 0 in (C6) and perform the 
following algebra: we factorize Uf

1 from the (i + I)th 
column (i = I, 2, ... , n) and Uk from the (k + I)th 
row (k = 1,2,3, ... ,II). We get Z" = - Y". Finally 
we have the relations 

.N\x, p, 0) = ~(p)F'(O) = -~(p, 0), 

exr.N\x, p, r) = -':D(p, r). (C8) 

4. We want to show that exrj'(x, p, r) is x-inde­

pendent. The x dependent part of err.if(x, p, r) is 

W(x, p, r) = - I pn 
n~l (/1 - J)! 

X (00 du I '" (CD dll"e-2rlljr IT i\(u;)s,,(X, lII,"', lin)' 
Jm/2 J1I1/2 i 

where s" is the same determinant as ZrI (C7) except 
that the first element of the second row is O. 

We develop Sn, following the elements of the first 
column, 

n 

SrI = 2, (-I i+nS,~(x, U 1 , ••• , un)' 
i~2 

where 

ui u~ u; 

X+lI\ X+ 1I 2 X+U j 

J 

lIj_I+U I lI j _ 1+U 2 Uj_1+U j 

UHI+UI 1Ij-f1 +Uz UHI+U j 

Un + III lI r1 +Uz lI rI +lI j 

U; 

X+U" 

!/j_l+U n 

Uj11+U n 

2u Il 

UI is only in the first column, uj only in the jth, so Sil 
is antisymmetric by 1 ~ j and W(x, It, r) == O. 

5. From (C8) it is easy to see that 

lim (.""(x, p, 1') + 'J)(p, r» = x'i>(p, 0) 
r-O = = 
with + 'J)(ft, 0) + .~'(x, ft, 0), 

~(p, 0) = 2,fI.
n J'" £lUI" 'f'f~ dU rI II 1\([/,.) 

1/ 11! 11//2 HI /2 t 

x M,,(lI1,UZ,"',lI rI ), 

= if) p" Jif~ 
J\'(X, ft, 0) = - 2: £ill i ' .. 

" I (11 - I)! 11,.2 

X foo dUll II i\(lI,) 
m/2 t 

Taking into account H/u i , Uj ) = (ui/uj)Qr(U i , u j ), we 
have also 

~)(p, 0) = I P" foo dUI ... roo dUn II i\(Ui) 
rI /1! m/2 J m/2 t 

and 

D(p, r) = I - du l ' . . dUn IT i\(u i ) 
~ pnf~ foo 

n /1! m/2 m/2 i 

X e-2l:UirZn(Ul, uI , ..• , Un), (CIl) 

2" and 2" being defined in (C6). 
6. We called d(p) the nonsingular part of ~(p, r). 

When 1'-+0 

d(p) = (!!. :D(p, r») + 1)(/1,0). (CI2) 
dr r~O 

We want to show that d(p) is also the Fredholm­
denominator determinant of 

R(x,y) = (x + y)-l + X/y2. 

With some algebra, (CII) can be written as 

:D(p, r) = - 2: - du l ' • . dUn IT i\(u i ) 
ifJpnJ'if> Jif> 
In! m/2 m/2 i 

X R,,(r, UI , ..• , Un), 
with 

o 

RrI(r, lit,"', lin) = 

lin 

e-(Ui+Uj)r 

(P~,(l/l"", lin»!.; = ---
Ui + U j 

P,~(lI\,···, Uri) = P,,(U t ,···, Uri), 

P" being defined in (C2). 
To get (djdr):D(p, r) we consider (d/dr)Rn(r l , U l , ••. , 

u,,): 

n-l-l 

= -S,,( lIl, ... , u n)- 2, R;,(u l , ... , un), 
j~2 

where S,,(UI ,"', Uri) has the same elements as 
Rn(O, u1 , ••• ,un) except the first row which is 
replaced by (0, I, I, ... , I), and R~(UI' .•. , un) has 
the same elements as R,,(O, U 1 , ••• , un) except for the 

X (uiZ,,(x, UI ," ., lin) + Zn(XI"', Un»· (C9) jth row which is replaced by (1, 1, ... , 1). Then 
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(CI2) is equivalent to 

deft) = L~ du l ' • • dUn IT ~(uJ nJa) Ja) 
n n! m/2 m/2 i 

x (Sn(UI,"" Un) + Pu(Ul ,"', Un) 

n+1 ) 
+ j~2 R~(Ul"'" Un) . (C13) 

We remark that the sum 

o ... 0 

1 

can be written R~=l(UI"" ,Un) because it has the 
same elements as Rn(ul , ... , un) except those of the 
first row which are (1, I,"', I). Then, 

deft) = L~ du l ' . . dUn IT ~(u;) nJa) Jro 
n n! m/2 m/2 i 

n 

X LR~(Ul' U2 , •• " Un). (C14) 
j=l 

With some algebra one can show that 

-1 
1 1 

We develop A n+l(Ul , ••• , un) following the elements 
of the first row; then 

+ L P~(Ul' ... ,Un), (CI5) 
j 

where P~ (ul , ••• ,un) has the same elements as P n 
except the jth column which is (ullu;, uzlu;,"', 
Un/U:). Now if we consider the Fredholm determinant 
of R(x, y), we find also a term Pn coming from 
(x + y)-l alone and n other terms P~. 

APPENDIX D 

We want to show that 

lim [.N'(x, fl, r) + j)(fl, r») 
r-o 

== xi>(fl, 0) + 1)(p" 0) + ,N'(x, fl, 0) 

= .N'(x, ft) + 1)(ft), (Dl) 

where j)(ft, r), .N'(x, ft, r), .N'(x, ft), and ~(fl) corre­
sponding to the Eqs. (17') and (5') are defined in (22) 

and (23); and i:>(fl, 0), 1)(fl, 0), and .N>(fl, 0) are 
defined in (C4), (C9), and (ClO). 

1. Using xZj[y2(X + y») = (x/f) - x/fy(x + y»), 
we can write 

.N'(x, fl) 

= _! (-flt fro dUl ... fa) dUn II ~(Ui)( _)n 
n (n - I)! Jm/2 Jm/2 i 

X (Zn(X, til,"', Un) - ~ Z~(X, Ul ,"', Un»), 

~here Zn(X, Ul , ••• ,Un) is defined in (C6), and 
Z~(x, Ul , ••• , un) has the same elements as 

except those of the jth column which are (X/y2, 
u2/u; , ... ,un/u;>. _ 

We remark that Zn(Ul' Ul ,'" ,un) appear both in 

<J)(fl) and 1>(fl, 0) giving the same c~ntribution in the 

rhs and the Ihs of (01). Similarly, Zn(x, Ul , .•• ,un) 

appears both in .N'(x, fl) and .N'(x, fl, 0) giving also 
the same contribution in the rhs and in the lhs of 
(01). To prove (01) it is now sufficient to show that 

fln fa) dUI .. ·fOC> dUn IT ~(u;) 
n! m!2 m/2 i 

X (n~ Z~(x, Ul , ••• , Un) - ~ Z~(L1l' L1l' ... , 1I ,,») 

2. We get with some algebra 

o 

x 
- L Z~(x, L1 l ,' •. , lin) = LI2 

j 

Lin 

1 

= O(n+l)(X, til' •.. , Un). 



                                                                                                                                    

P-WAVE NjD EQUATION 1515 

This identity is also valid for x = u1 • We develop 
a(n+l)(x, uI , ..• ,un) following the elements of the 
first column, and remark that the minor corresponding 
to (a(n+I»2.1 is Zn(O, UI , .•. ,Un) (C6); we call 
(3(n+I)(x, UI , ••• ,un) the remaining term. a(n+l)(x, 
U ... u) and (3(n+1)(x U ... u) have the same 1, 'n , 1, 'n 

elements except that 
({3(n+I»2.1 = 0, 

so that 
a(n+l)(x, UI , ••• , un) 

= -xZ,,(O, UI , ... , Un) + (3(n+1)(x, UI , ••• , Un). 

On the left-hand side of (01'), if we consider the con­
tribution of the first term coming from 

Zn(O, UI , ... , un) = - Y,,(u I , ... , Un), 

we get xj)(,u,O). Then the equality (01') is now 
reduced to 

,unfoo foo - dul ' . . dUn II ~(Ui) 
n! m/2 m/2 i 

X (-n{3(n+1)(x, UI ,"', Un) + a(n+1)(u l , U I ,"', Un» 

= dUI' . . dUIUI _,un foo foo 
(n - I)! m/2 m/2 

X Zn(x, UI , ••• , lin) II ~(Ui)' (01") 

3. We define blk such that 

blk{3(n+1)(x, UI , ••• , Uk' ... , Un) 

= (3(n+I)(X, Uk' ... , UI , .•• , Un); 
then we have 

nf 00 dU I .. ·foo du n II ~(Ui){3(n+1)(x, UI , ••• , un) 
m/2 m/2 i 

= ! foo dU I ... Joo dUn II ~(ui)b1k{3n+l(x, UI ,"', lin)' 
k m/2 m/2 i 

where we have taken symmetry properties into account 
in the integration. We define 

L blk{3(n+I)(X, til' ... , Un) - a(n+1)(UI , til' .•. , Un) 
k 

where 

y(n+2)(x, !II' ... , Un) 

° ° ui 

° 
X x 

Un 

In order to verify this identity, it is sufficient to 
develop y(Il+2) following the elements of the first 
column. We remark that the minor corresponding to 

(y(n+2»k.1 is (- )k+1bl,k_2f3(n+1) (x, ... , un) and that the 
minor corresponding to (y(n+2»2.1 is a(n+1)(ul , UI , ... , 
un). Now (01") is reduced to 

,un foo dUI .. ·foo dUn II ~(Ui)y(n+2)(x, lIl' ... , Un) 
n! m/2 m/2 i 

= _,un foo dU I •• ·foo dUnLlIZn(X, LlI' ••• , Un)' 
(n - I)! m/2 m/2 

(01"') 

4. We develop y(n+2)(x, UI , ••• , un) following the 
elements of the second column 

Y(n+2)(x U ... u) = ~(-)ju .y(n+2)(x U ... LI) 
, l' 'n £.. ') J+2 '1 , 'n , 

j~l 

where y}~!2) is the minor corresponding to (yn+2)i+2.2' 
Taking into account symmetry properties, each term 
of the sum in the left-hand side of (01111) gives the 
same contribution, and because 

the identity (01111) is satisfied. 
B. We want to show the following relation between 

the solutions of (1') and (5'): 

-F(O) =foo ~(x)F(x) dx = -J- foo ~(x)F(x) dx. 
m/2 x2 F(O) m/2 x2 

(02) 

The Fredholm-type solution of (1') can be written 
F(x) = 1 + !V(x, ,u)j<J)(,u); then by comparison with 
(23) we have only to show 

foo (.N>(X,,u) _ N(X,,u»)~(X)dX = ° (02') 
m/2 x 2 x 2 

or 

where 

'Fn =Joo dxJoo du l " .Joo dUn rl~(Ui) 
m/2 m/2 m/2 I 

X cP,,(X, lII' Ll2 ,"', Lln)[~ - \], 
Ul X 

cP"(X, til' liZ, ••• , tin) 

1 
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But because 

we get c/>n(x, uI ,···) = c/>1l(u I , x,···) and 'Yn = O. 
Then (02) follows. 

APPENDIX E 

We want to show that 

deft) = 'D(ft)IF(O) when F'(O) = 0, (El) 

d(ft) , 'D(,u) , F(x) being defined by (C12), (el), and 
(1'). We remark that if F'(O) = 0 then F(x), which is 
a solution of (1'), is also solution of 

F(x) = 1 +foo ,u~(y)F(y)R(x, y) dy, (E2) 
m/2 

with R(x,y) = (x + y)-l + xly2, 1](x,,u) and d(,u) 
being. respectively, the Fredholm numerator and 
denominator of the Fredholm-type solution of (E2). 

Then, to prove (El), it is sufficient to prove 

From (E2) we have 

d(,u) + 1](0,,u) 

= I (-ft)nf'" dUI .. ·foo dUn II ~(Ui) 
In! m/2 m/2 i 

with 

Un(Ul , ... , Un) 

= 

R(UI, UI) R(ul , U2) 

R(u2, Ul ) R(u2, U2) 

R(UI' Un) 

R(u2 , Un) 

and Vn(Ul>"', un) is the same determinant as 
U (U .. , u) except the first row which is (Ul l , n 1, n .. 

U- 1 ••• u-l ) Using the same method as III Appendix 
2' 'n' 

D, we get 

where 

1 Un 

In Vn for the elements of the jth row (j = 2, ... , 
n + 1) we subtract the corresponding elements of the 
first one. With some algebra we get 

1 
1 

1 P n 

Then (El) follows. 

APPENDIX F 

We want to investigate the singular part (when 
Xo -->- (0) of the Fredholm determinant of 'D"'o(,u) 
corresponding to the kernel 

K = ( x
2 

_ x~ ) ~(y) 
"'0 lex + y) y2(XO + y) 

defined on [mI2, co]. It is easy to see that 

'D"'o(,u) -::::= -xo[A(,u) + O(XOI)], 
Xo---ioo-OO 

where A(ft) is the Fredholm determinant correspond­
ing to the kernel 

(
_X

2 
_ _ ~)~(y). 

lex + y) y2 
We get 

A(,u) = i (-,utf
oo 

dUl .. ·f'" dUn II ~(Ui) 
on! m/2 m/2 i 

X (1rA~(UI"'" Un)), 
3~1 

where Ai is the determinant Pn defined in (e2) except 
that the elements of the jth column are (u12,'" 

Uj2, ... , U;2). Taking into account symmetry properties 
in the integration with respect to the variables 
UI , ••• ,Un we can see that each A~ gives the same 
contribution and because A~ = Ln [see (eI2)] we 
get 

A(,u) = I (-ft)n foo dUI .. ·foo dUn II ~(ui)Ln 
o (n - 1)! m/2 m/2 i 

= 'D(ft)F'(O). 
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